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Abstract Dynamic transient response of a compos-

ite sandwich plate with a penny-shaped debonded

zone has been studied by using the finite element

analysis within the ABAQUS/Explicit code in this

paper. In order to accurately predict the response of the

debonded sandwich plate to impulsive loading, con-

tact–impact and sliding conditions along the damaged

skin-to-core interface were imposed in the model

through a kinematic predictor/corrector contact algo-

rithm. The accuracy of the finite element (FE) model

used was verified by comparing between numerical

predictions and experimental data known in literature

for the frequency spectrum of a cracked polycarbonate

laminated beam containing a delamination. By ana-

lyzing nonlinear aspects of the transient dynamics of

the sandwich plate, it is shown that the presence of the

debond significantly alters its short-term response. In

this respect, a considerable influence of contact events

within the debonded region on the plate’s global

dynamic response was found out. These results were

presented in both time and frequency domains. The

predictions performed also showed that the FE model

applied would be useful for nondestructive evaluation

of defects in composite sandwich plates, and for

studying dynamic response of such plates to impact.

Keywords Sandwich plates � Skin-to-core

debond � Nonlinear transient vibrations �
Dynamic contact � Finite element analysis

1 Introduction

Composite sandwich materials are referred to struc-

tural materials whose properties might be tailored for

creating high performance structures [1]. This their

ability makes such materials more attractive over the

traditional ones for using in different engineering

applications. However, because sandwich materials

consist technologically of high distinctive constituent

layers, they exhibit a more sensitivity to damage. One

of the most frequently concerns encountered in

composite sandwich materials is interfacial cracking

or the loss of cohesion between the basic layers,

known as skin-to-core debonding. The presence of

debond within a sandwich structure is known to cause

reduction of overall stiffness and strength, to alter

vibrational characteristics and may even lead to its

eventual disintegration [2]. Therefore, a study of

debonding effects on the mechanical behavior of

sandwich structures is of importance.
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Due to the wide practical applications of sandwich

plate-like structures in aircrafts, automotive vehicles

and marine shipping industry, dynamics of sandwich

plates is a subject of intensive investigations in this

respect. A considerable amount of research efforts

pertains to prediction of natural frequencies and

appropriate mode shapes of debonded sandwich plates.

Most of analytical and numerical models developed to

describe this issue are based on linear approaches in

which contact between the segments detached at the

skin-to-core interface is neglected. It is usually assumed

that the debonded parts are either freely penetrating to

each other or constrained to move together or separated

by additional spring elements, see e.g. [3–7] among of

others. Effects of multiple debonding on free oscilla-

tions of sandwich plates have been studied using the

similar models in [8, 9]. The modified Galerkin method

was used to solve a free vibration problem, formulated

for a simply supported debonded sandwich beam with a

rectangular cross-section, by using the Hamilton’s

variational principle along with the high-order sand-

wich panel theory in [10].

Another a common feature of those practical

applications is a dynamic transient behavior of sand-

wich panels. Low velocity impacts, air blast and

underwater blast loads, by which aircrafts, marine and

automotive vehicles are exposed during in-service life

are examples of suddenly applied loads resulting in

short-term transient oscillations in their sandwich

structural components. The understanding of transient

failure modes is vital for structural durability and

damage tolerance of sandwich panels, e.g. [11, 12].

The transient dynamic response of sandwich panels

containing a post-damaged partial debond at the

layered interface allows one to evaluate their residual

structural performance. In addition, in context of

structural health monitoring, some vibration-based

nondestructive evaluations of defects in damaged

structures including a debond within sandwich panels

rely on transient data, e.g. [13, 14]. The accurate

prediction of real time transient dynamic response in

debonded sandwich panels is possible, when intermit-

tent contact between skin and core in the damaged

interface can be modelled in detail. Hence, nonlinear

analysis is required to be applied to such problems. As

a result, numerical difficulties arise of contact mod-

elling that makes the use of pure analytical models

restricted in the aforementioned investigations, while

numerical approaches are widely utilized for that.

Because of versatility in solving complex topological

and multi-physical problems, the finite element method

(FEM) has been used by many researchers for studying

dynamics of laminated and sandwich plates accounting

for intermittent contact within the damaged interface. In

[15] intermittent contact between delaminated segments

of a composite beam has been modeled using a node-to-

node frictionless contact formulation. The contact

constraints were imposed by a modified Lagrange

multiplier method. An implicit Newmark algorithm was

exploited for time-stepping procedure to predict

dynamic response of the delaminated beam under both

impulse and harmonic loads. Authors in [16] investi-

gated transient dynamics of a debonded sandwich beam

using a finite element (FE) model, where time dependent

contact conditions at the damaged interface were

simulated with a kinematic node-to-node frictionless

contact algorithm. The transient analysis of delaminated

smart composite plates has been studied in [17] using an

improved layerwise laminate theory. Both large defor-

mations and interlaminar contact within the delaminated

zone were taken into account. The ‘‘breathing’’ phe-

nomenon of delamination was simulated by applying

two distinctive contact spring models. The associated

governing equations were integrated with a modified

predictor–corrector method involving the Newmark-

beta algorithm and Newton–Raphson iterations. A

much more sophisticated FE beam model in respect of

contact–impact between a thin detached part and a

remaining part of beam has been formulated in [18].

Authors applied the surface-to-surface frictionless con-

tact algorithm within the penalty method within the LS-

DYNA code. The penalty parameter and the contact

damping value were varied to fit experiment data

obtained by the authors previously. A nonlinear

dynamic analysis of sandwich plates containing a

post-impact zone involving core fracture and interfacial

debond under impulse and harmonic loads has been

performed in [19]. In those simulations to model the

contact phenomenon during forced oscillations, the

surface-to-surface contact definition and kinematic

contact algorithm within the ABAQUS/Explicit code

were used. Although in that paper the global dynamic

response of the sandwich plates was examined, how-

ever, the contact phenomenon existing between the

detached skin and core was not investigated in detail. A

rigorous mathematical formulation based on the for-

malism of continuum mechanics for the underlying

elastodynamic problem of a body with an interfacial
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crack involving the Signorini’s and Coulomb’s laws and

a finite element statement of the problem within an

explicit scheme were presented in [20]. Finite element

simulations with the ABAQUS/Explicit code of tran-

sient response and forced dynamics of a simply

supported rectangular sandwich plate with a penny-

shaped debonded zone were considered as examples of

applying that FE modeling. While the research provided

the nonlinear dynamic analysis of debonded sandwich

plates accounting for contact, the performed numerical

studies examined only global dynamics and no detailed

features of nonlinearity sources caused by intermittent

contact arising within the debonded zone were analyzed.

However, the knowledge about that local dynamic

process could shed light on the more understanding of

the debonded plates’ dynamic problem itself.

In the present paper we aim to investigate the

influence of intermittent contact between the detached

skin and core on the global transient response of a

sandwich plate containing skin-to-core debond. Using

the three-dimensional FE model of the sandwich plate

developed in [20], the transient dynamic behavior of a

simply supported rectangular sandwich plate with a

central penny-shaped debonded zone is studied in the

current work. Comparisons between transient responses

of the debonded sandwich plate and the same intact

plate, obtained with the ABAQUS/Explicit code are

used to make conclusions about the influence of

intermittent contact on the sandwich plate’s short-time

dynamics. Time histories and frequency spectrum

contents of signals acquired from the both sandwich

plates are compared and analyzed for this purpose.

Studies for different sizes of the debonded zone are

carried out to clarify the dissipative character of

intermittent contacts and to emphasize their influence

on the dynamics and dynamic stress state of the

debonded sandwich plate. The detailed analysis of

contact–impact events in the debonded zone is per-

formed for discovering effects invoked by nonlinear

contact–friction interactions and, as a result, to gain the

better understanding of the transient dynamic behavior

of sandwich plates with interface defects.

2 Finite element modeling

Let us consider a rectangular sandwich plate contain-

ing a penny-shaped zone of radius R detached at the

center between the upper skin and the core, as shown

in Fig. 1. The dynamics of the debonded sandwich

plate is inherently nonlinear even for the presumed

case of small displacement kinematics and the

simplest linear constitutive relations because the

contact area between the detached skin and core is a

priori unknown and additional boundary conditions or

constraints on the relative displacements and traction

in the debonded zone should be imposed. Thereby, the

elastodynamic problem formulated for the debonded

sandwich plate involves a complete set of equations

relating to the initial boundary-value problem with

boundary conditions being a part of the solution. To

get a solution, approaches based on numerical proce-

dures discretising the problem are commonly utilized.

In this context, the FEM is the most used modelling

technique. Finite element formulations of elastody-

namic problems with contact as well as some numer-

ical solutions for cracked bodies accounting for

contact between crack surfaces can be found in books

on contact mechanics, e.g. [21, 22] and recent papers,

e.g. [23, 24], respectively. Here, only a general finite

element approximation of the problem at hand is

briefly presented below.

2.1 Finite element equations of motion

with contact

Following the standard displacement-based finite

element statement of the elastodynamic problem with

contact and friction, displacements between contact-

ing surfaces should be constrained by impenetrability

conditions, i.e. none of material points is allowed to be

penetrated. Besides, the displacement field being

applied should be able to describe the discontinuous

behavior introduced by friction, i.e. sticking and

sliding situations as well as to trace a path as a result

of sliding. In respect to kinetic requirements, contact

ba/2

R
hc

hf

hf

Fig. 1 Half of sandwich plate with penny-shaped debonded

zone
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traction arising due to normal contact should be not

tensile, and frictional contact forces have to oppose

sliding directions. Also, the balance of momentum on

a contact boundary should be fulfilled.

A general form of the finite element solution of the

aforementioned problem with assumptions of linear

elasticity and small deformations can be written as the

following set of nonlinear differential equations:

M €UðtÞ þ C _UðtÞ þ KUðtÞ ¼ FextðUðtÞÞ � FcontðUðtÞÞ
ð1Þ

Herewith the system (1) should be subjected to initial

conditions on _Uð0Þ and Uð0Þ, boundary conditions on

a predefined surface, and impenetrability and friction

conditions on a boundary associated with contacting

surfaces.

In (1) at each instant of time t we define that €UðtÞ,
_UðtÞ and UðtÞ are the global vectors of unknown

accelerations, velocities and displacements, Fext and

Fcont are the global vectors of the given external and

calculated contact forces, and M, C and K are the

global mass, damping and stiffness matrices, respec-

tively. These global vectors and matrices are typically

calculated by the assembly of element level contribu-

tions [25].

It should be noted that the vector of contact forces

Fcont consists of normal and tangential elements,

which are defined by appropriate normal tN and

tangential tT components of a contact traction vector

tc ¼ tN þ tT for each contact pair. In turn the contact

pressure components are conjugated to normal gN and

tangential gT gap functions describing the relative

movements of contacting surfaces with respect to each

other in the normal and tangential directions, respec-

tively. In terms of the ‘‘master–slave’’ contact defini-

tion commonly used in the finite element

formulation, the gap functions can be presented in

the forms [22]:

gN ¼ ðx� � �xþÞ � �nþ ð2Þ

and

gT ¼ gTa
�aþ

a
with gTa ¼ x� � �xþð Þ � �aþa ; ð3Þ

where x� is a point of slave surface and �xþð�n1; �n2Þ is

its orthogonal projection on the master surface

parameterized by na (a ¼ 1; 2), and �nþ is the unit

vector normal to the master surface and �aa (a ¼ 1; 2)

are the tangent base vectors at the point �xþ. In the

geometrically linear case, the rate of tangential gap

function at this point can be found as

_gT ¼ _�n
a
�aþa ¼ _gTa

�aþ
a

with _gTa
¼ _x� � _�x

þ
� �

�

�aþa ¼ aab
_�n
b
;

ð4Þ

where aab ¼ �aþa � �aþb is the metric tensor at �xþ.

Then the impenetrability conditions known as

Karush–Kuhn–Tucker inequalities can be formulated

as follows:

tN � 0; gN � 0 and tNgN ¼ 0; ð5Þ

where tN is the scalar quantity of the normal contact

pressure, i.e. tN ¼ tN �nþ.

The friction conditions arising in tangential direc-

tions can be written in the form:

ktTk� scrit; kgTk� 0; ðktTk � scritÞkgTk ¼ 0; ð6Þ

where scrit is a threshold of tangential contact traction

when a tangential slip occurs. The value of threshold is

evaluated according with a friction law adopted. The

Coulomb friction law defines scrit ¼ ltN , where l is

the coefficient of friction.

The using an analogy between plasticity and

friction leads to the following form of (6):

_gslip
T ¼ _c

oUðtTÞ
otT

¼ _c
tT

ktTk
; ð7Þ

along with loading–unloading conditions in the form:

U� 0; _c� 0 and U _c ¼ 0; ð8Þ

where _c is the slip rate parameter and the potential

function is presented as UðtTÞ ¼ ktTk � ltN .

In (1) the system material damping defined by the

matrix C is assumed that can be represented by

Rayleigh damping [26]:

C ¼ aMþ bK ð9Þ

The factors a and b can be determined on the basis of

the modal damping ratio as follows:

nn ¼
a

2xn

þ bxn

2
; ð10Þ

by specifying any desirable ratio for any two selected

frequencies xn of the undamped system with the given

M and K.
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2.2 Explicit time-stepping procedure

The semi-discrete system of equations (1) has to be

completely discretized in a time domain. For this the

time interval ½0; T � is divided into non-overlapping

subintervals such that ½0; T � ¼
SL�1

i¼0 ½ti; tiþ1�, where

ti\tiþ1, and t0 ¼ 0, tL ¼ T . Hence, the solution

satisfying (1) can only be found in a finite number of

time steps. Let the time increment be Mtiþ1 ¼ tiþ1 � ti

and for the simplicity accelerations, velocities and

displacements referring to this time increment are

denoted by €Uiþ1, _Uiþ1 and Uiþ1, respectively. Then the

totally discretized system of equations (1) at a certain

instant of time tiþ1 ¼ ti þ Mtiþ1 can be written down

as follows:

M €Uiþ1 þ C _Uiþ1 þ KUiþ1 ¼ Fext
iþ1 � Fcont

iþ1 ; ð11Þ

with the initial conditions U0 ¼ �U and _U0 ¼ �V, given

boundary conditions and boundary conditions being

calculated due to developing contact.

Following the explicit time-stepping algorithm

based on the central difference operator (see e.g.

[25]), first, accelerations at the beginning of each

increment Mtiþ1 are calculated. For this purpose the

Eq. (11) is reexpressed in the form:

€Ui ¼ M�1ðFext
i � FiÞ; ð12Þ

where Fext
i is the vector of the given external nodal

forces at time ti and Fi is the sum of nodal internal

Fint
i ¼ KUi, damping F

damp
i ¼ C _Ui and contact Fcont

i

forces which are updated during the previous time

increment Mti.

Thereafter, the accelerations calculated at ti are

used to advance the velocity solution to ti þ 1
2
Mtiþ1

and the displacement solution to ti þ Mtiþ1 in accor-

dance with the following formulas:

_Uiþ1
2
¼ _Ui�1

2
þ Mtiþ1þMti

2
€Ui

Uiþ1 ¼ Ui þ Mtiþ1
_Uiþ1

2

ð13Þ

The initial half-step lagging of velocity ð _U�1=2Þ is

calculated from the initial velocity assuming that the

initial acceleration is constant over the lagging half-

step.

The key to the computational efficiency of the

explicit procedure is the use of a diagonal (or lumped)

mass matrix, i.e. the mass matrix M is being

understood as lumped in (11). Then, the inversion of

the mass matrix that is employed in the computation

for the accelerations in (12) is computationally very

fast. As resulted from (11)–(13), the explicit algorithm

advances the kinematic state known from a previous

increment to the next one without iterations and

tangent stiffness matrix and, thus, no equations are

being solved simultaneously that saves the computa-

tional time significantly. Moreover, the computational

cost in the explicit integration procedure rises linearly

with problem size. However, the explicit time inte-

gration is only conditionally stable, i.e. the time

increment used for integrating over time in (11) must

be smaller than the stability limit of the central-

difference operator, [25]. An estimation of this limit is

the transit time of a dilatational wave speed (cd) across

the length of the smallest element in a finite element

mesh (Le), i.e.

Mtcrit �
Le

cd

ð14Þ

2.3 Kinematic contact algorithm

An explicit form of expressions applied to compute the

contact forces Fcont
iþ1 in (11) at each time increment is

defined by a contact algorithm used. In this work the

kinematic contact algorithm is suggested to be

employed. It is a predictor/corrector method enabling

to impose exactly the constraints (5), and (7) and (8)

on the global equations (11) by modifying accelera-

tions, velocities and displacements of nodes, at which

contact is active in the current time increment. An

algorithmic setting of the kinematic contact approach

within the explicit time integration scheme can be

found in [20]. A short description of this algorithm is

given below.

In the predictor phase, a kinematic state of the

model in the time increment Dtiþ1 is advanced by

ignoring any contact conditions. This may result in

penetration and overpredicted slip, as shown by the

configuration of a slave node S in Fig. 2.

Then, the contact force f cont
NS

resisting to penetration

is calculated as a function of penetration depth ðdNÞpred

of the slave node, its mass mS and time increment

Dtiþ1. Analogously, the unconstrained rate of tangen-

tial movement ðvT aÞpred
of the slave node with respect

to the master surface in the direction a, the node mass

and the time increment are used to calculate a
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tangential contact force f
pred
TS

required to oppose

sliding. In the corrector phase of this time increment,

for each such slave node contacting with or penetrat-

ing through the master surface, an acceleration

correction is applied to recover its predicted penetra-

tion and/or sliding as follows [27]:

€Ucorr
S ¼ €Upred

S þ €UNS
þ €UTS

; ð15Þ

where €Upred
S is the predicted acceleration of the slave

node, €UNS
and €UTS

are acceleration corrections

reflecting the response of the master surface to the

contact forces f cont
NS

and f cont
TS

, respectively. From those

corrected accelerations, the velocities at Mtiþ1=2 and

the displacements at Mtiþ1, i.e. at a final configuration

in which the slave nodes are exactly in compliance

with the master surface can be found solving (13).

Therefore, the vector of contact force Fcont
iþ1 including

both the normal and tangential components is deter-

mined as well as the updated configuration specified

by the displacement vector Uiþ1 is found.

It is worth to be noted that to apply a certain contact

algorithm at each time increment for calculating the

contact forces Fcont
iþ1 , a set of active contact constraints

should be known before solving (11). The active set of

constraints is defined by an iterative process called as

contact searching. This algorithm involves two

phases: the global search that locates the closest to

each other segments, and the local search that

calculates the gap functions gh
N and gh

T on the contact

boundary between the segments found in the global

search. For more details on search algorithms we refer

to books on contact mechanics, e.g. [21, 22].

2.4 Finite element model

The FE model used for a simply supported rectangular

sandwich plate with a circular debonded zone at the

center of the skin-to-core interface is the same model

that was developed in [20]. For the sake of complete-

ness, that model is briefly presented here.

In Fig. 3a the FE model of the debonded sandwich

plate developed with the ABAQUS code is shown.

Reduced integrated 8-node continuum shell finite

elements SC8R with displacement degrees of freedom

only are used for discretization of the skins. These

elements enable to model both thin and thick plate/

shell problems. In the case of skins made of laminated

composites, the continuum shell elements are stacked

to provide a more refined through-the-thickness

response.The core of the sandwich plate is modelled

with first-order reduced integrated 8-node continuum

solid ‘‘brick’’ elements C3D8R which are directly

connected to nodes of the continuum shell elements

representing the skins. To avoid the hour-glassing

i+1

i

n

dN

pred

Predicted

Corrected

Configuration

Configuration

fNS

cont

fTS

cont

a

S

vT

pred

Fig. 2 Kinematic contact constraint algorithm

1

4

5

C3D8RSC8R

Master

Slave

2

3

(a) (b)

Fig. 3 The debonded

sandwich plate with penny-

shaped debonded zone:

a three-dimensional FE

model; and b details of

modeling at the debonded

zone
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problem in these elements, the ‘‘hourglass stiffness’’

method available in ABAQUS is used. Moreover, the

improved ‘‘centroidal strain’’ formulation in compu-

tation of strains at the elements is utilized to increase

the efficiency of the ABAQUS/Explicit solver. More

details concerning the finite elements involved can be

found in [28].

The complicated mesh geometry of the debonded

sandwich plate is generated by partition of the total FE

model onto several parts, which are connected with

each other through the share nodes. The penny-shaped

debonded zone is presented by an actual small gap

between the finite elements of the upper skin and the

core. The mesh density is higher in the central part of

the plate, where the contact–impact phenomenon is

expected to be modelled and it is rougher for the

remaining part of the plate. No artificial adjustment of

either the material or geometrical properties is made at

the debonded region to ensure as close as possible a

physically real case.

The surface-to-surface contact model in the Expli-

cit version of ABAQUS is utilized for the detached

parts in the skin-to-core interface. Contact pairs

between those surfaces that may come into contact

with each other during the analysis are formed by faces

of the appropriate underlying finite elements. Since the

surfaces coming into contact have high dissimilar

mechanical properties, a pure master–slave contact

pair formulation is used, Fig. 3b. Because surface-to-

surface contact is applied, meshes of two contacting

surfaces should not be perfectly matched to each other.

Moreover, this type of contact implies that contact

conditions are enforced in an average sense over

regions nearby slave nodes rather than only at an

individual slave node. Thereby, it provides more

accurate contact stress and pressure results [28]. The

small-sliding contact tracking algorithm is utilized for

the contacting surfaces because small oscillations are

presumed. The ‘‘hard’’ contact model available in the

FE code implying no penetration at each constraint

location and no contact pressure transmission unless

the surfaces are in contact is accepted to model normal

interactions between the contacting surfaces. The

isotropic Coulomb friction model specifies the contact

behavior of these surfaces in tangential directions. The

contact constraints are imposed and the contact forces

are calculated by using the kinematic contact enforce-

ment method described shortly in Sect. 2.3.

To realize the boundary conditions of simply

supported edges, all vertical and one of in-plane

displacements of the skins’ finite elements depending

on the edge location within the coordinate system are

constrained. It is assumed that initial displacements

and velocities are zero, i.e. the transient motion begins

from the sandwich plate at rest. An impulse load is

applied as a concentrated force acting as a step

function at a certain node of the FE model, i.e.

FðtÞ ¼
F0; 0� t� t�

0; t [ t�

�

The duration of the applied force t� was taken much

shorter than the analysis time tend (one tenth of the

analysis time).

3 Numerical results

3.1 Beam finite element model

First, the performance of the FE model, described in

the preceding section and the fidelity of nonlinear

transient dynamic simulations performed with this

model were verified to correctly deal with these

problems. Because results of transient response for a

debonded sandwich plate was not found in the

literature, the transient dynamic analysis of a delami-

nated polycarbonate three-layer composite beam con-

taining also a transverse crack, for which experimental

results are known in [29], is carried out. It should be

noted that although the beam example does not include

all issues stemming from distinct materials in different

layers, as it takes place for a sandwich plate, conver-

gence studies within the explicit marching scheme and

results treatment based on the signal processing

technique are the same as for the plate model.

The beam was clamped on one end and loaded by

an instant force on the other end with t� ¼ 10 ms and

F0 ¼ 5 N. In this case the step load was simulated as

described in the test. The dimensions of the delami-

nated beam, the same as in [29] are 610 mm long by

51 mm wide and by 12.1 mm thick. The crack is

located 249 mm from the clamped end and the

delaminated region splitting the first and second

constitutive layers by the gap of 0.2 mm is extended

30 mm towards the clamped end and 48 mm towards

the free end. The beam is constructed with the layers of
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equal thickness. Mechanical properties of the poly-

carbonate material are accepted as the following:

Young’s modulus is 2,400 MPa, Poisson’s ratio is

0.37, material density is 1,200 kg m�3 and coefficient

of friction is 0.38.

The FE model of sandwich plate presented in

Fig. 3a was appropriately modified into a three-

dimensional delaminated beam model, as shown in

Fig. 4a. The three dimensional continuum finite

elements C3D8R [28] were used for meshing the

beam. The mesh contained the 6,000 finite elements

with aspect ratio near one and, herewith, one element

per each beam layer in the transverse direction was

utilized. The total number of unknowns in the model

was about of 26,000. Time increments used in the

temporal discretization are automatically chosen by

ABAQUS/Explicit on the basis of a maximum natural

frequency in the underlying FE model. For the

elaborated model, the time increments were approx-

imately of 1:5	 10�6 s and their total number was

about of one million in 2 s of the analysis time.

The deformed form of the beam at the instant of

loading is shown in Fig. 4a just to illustrate its FE

model. The dynamic transient analysis accounting for

the contact–impact behavior between the delaminated

layers and cracked edges is performed with ABAQUS/

Explicit implementing the computational algorithms

described in Sect. 2.

The transverse displacement time history calcu-

lated at a point nearest to the free end of the

delaminated beam is converted into the frequency

domain data via the spectral analysis by using the fast

Fourier transform (FFT) within the Matlab software

environment [30]. The comparison of frequency

contents of the delaminated beam between the exper-

imental data known in [29] and the results predicted by

ABAQUS/Explicit are presented in Fig. 4b. From this

plot one can see that the numerical results are in a

relatively good compliance with the experimental

ones. Thereby, the FE model described in the paper

possesses an enough capability to be used for model-

ling the complex non-linear dynamic behavior of

plate-like structures.

3.2 Plate finite element model

One configuration of a sandwich plate containing a

penny-shaped debonded zone is used throughout the

numerical predictions in what follows. A simply

supported rectangular sandwich plate of length

a ¼ 270 mm and width b ¼ 180 mm consisting of a

50 mm-thick WF51 foam core and 2.4 mm-thick

GFRP skins is analyzed. The mechanical properties of

constituent materials of the sandwich plate, adopted as

in the previous paper [20], are given in Table 1. The

friction coefficient is accepted l ¼ 0:1, that is a lower

boundary of the range of friction coefficients for

plastic–plastic material combinations. The modal

damping ratio equals to 1 % of the critical value. In

order to study the influence of debond on the sandwich

plate dynamics, a range of radii of the debonded zone

(Fig. 1) associated with a ratio of the debonded

region’s area to the area of sandwich plate plane as 5

10, 15 and 20 % are considered in calculations further.

The debonded sandwich plate is subjected to an

impulse concentrated force with the amplitude of

-130

-110

-90

-70

-50

-30

-10

0 10 20 30 40 50

ABAQUS

(a) (b)Fig. 4 The FE model of the

delaminated beam: a the

deformed shape; and b the

power spectrum at the point

of free end

Table 1 Material properties of the foam-cored sandwich plate

Components Elastic constants

Foam core Ec ¼ 85 MPa, Gc ¼ 30 MPa, qc ¼ 52 kg m�3

Face sheet Exx ¼ Ezz ¼ 19:3 GPa, Eyy ¼ 3:48 GPa,

Gzx ¼ 7:7 GPa, Gxy ¼ Gyz ¼ 1:65 GPa,

q = 1,650 kg m�3
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F0 ¼ 10 kN during the time t� ¼ 1 ms applied at the

central point of its lower skin. It should be noted that

the force amplitude is chosen so that neither geomet-

rical nor material nonlinearities are activated. For this

purpose an overall deflection of the sandwich plate and

stress states within the both skins and the lightweight

core of sandwich plate were examined under the

applied external force in preliminary studies, which

are not presented in the current paper, but are the same

as in [31].

Moreover, before the transient dynamic analysis of

the debonded sandwich plate, convergence studies

concerning refinement of the FE spatial discretization

have previously been performed. Both the solution

accuracy and the computational cost were taken into

account. The general mesh contained finally one layer

of the continuum shell elements for skins and ten

layers of the brick elements for the core through the

plate thickness for the given sandwich plate. The total

number of unknowns in the FE model was about of

80,000. The temporal solution was carried out with

time increments approximately of 4	 10�7 s that

gave about 150,000 increments for modelling a

transient response in 50 ms.

Time histories of transverse displacements and

accelerations, calculated at the central point of the

upper skin (point N 1 in Fig. 3a) of the sandwich plate

without and with the 10 %-sized debond are compared

in Fig. 5. One can see that there are significant

differences in both waveforms and signal properties

between the time histories of intact and debonded

sandwich plates. As resulted from Fig. 5a, the wave-

form of displacement signal of the debonded plate is

more disturbed than that of the intact plate, because the

transient dynamics of the debonded sandwich plate is

accompanied by intermittent contact between the

detached skin and the core. As well, the presence of

debond increases the amplitude and period of free

decay oscillations for the debonded plate. This result is

attributed to decreasing the stiffness of the plate due to

debond. Moreover, it can be seen that the amplitude of

displacement time history for the debonded plate

decays faster with a time progression than that for the

intact plate, as shown by comparisons of the trend-

lines of displacement signals in Fig. 5a. This fact is an

evidence of increasing the internal damping capacity

in the debonded plate due to the presence of debond,

which introduces additional dissipative mechanisms

caused by repeated contacts. Figure 5b shows the

comparison between acceleration time histories of the

sandwich plate with and without debond. It is clearly

seen that the signals are so much different. The

amplitude of acceleration time series for the debonded

sandwich plate significantly larger than that for the

corresponding plate without debond. Thereby, inter-

mittent contact occurring between the detached skin

and core contributes considerably into the sandwich

plate’s transient dynamics.

Next, it is shown that the aforementioned effects

caused by the debond increase with enlarging the size

of the debonded zone. The time histories of the upper

skin’s central deflection (point N 1) of the sandwich

plate with distinct sizes of the debonded zone are

presented in Fig. 6a. One can see that the amplitudes

of displacement curves and the values of time lag of

free decay oscillations (Fig. 6a) as well as the

attenuations of displacement signals (see trend-lines

in Fig. 6b) are clearly magnified by the debonded zone

size. They increase considerably with increasing the

debond.

The logarithmic decrement reflecting a damping

capacity of the sandwich plate are calculated for those

different sizes of the debonded zone. The results are

listed in Table 2. It is obviously seen that even in the

case of the smallest debond, the logarithmic decre-

ment for the debonded plate is almost twice that of the

corresponding intact plate. The logarithmic decrement

increases significantly with increasing the debond

size. This means that the dissipation of energy in the

sandwich plate increases with enlarging the debonded

zone. Thus, this damping parameter is a very sensitive

characteristic of the presence of debond within

sandwich plates. Such results are consistent with

vibrational tests of debonded sandwich structures

known in the literature, e.g. [32].

Natural frequencies of the sandwich plates with and

without debond are determined from acceleration

transient time histories collected at the monitored

central point N 1, Fig. 3a. The FFT is applied to the

sampled signal in the time domain to represent it as a

series of spectral peaks in the frequency domain. The

positions of those peaks over the frequency range

observed are analyzed that provides the calculation of

appropriate resonant frequencies. The power spectra

of the debonded sandwich plates with respect to the

spectrum of the intact plate are compared in Fig. 8a–d.

Meccanica

123



To obtain a better visualization of detected peaks

corresponding to actual frequencies, the spectral data

are handled by using windowing and smoothing

signal-processing techniques. A Hanning window is

applied to the resulting spectrum for reducing the

spectral leakage occurring in the FFT due to non-

periodicity of the predefined time data block. The

Savitzky–Golay smoothing based on the least-square

fitting of polynomials to the segment of spectral data is

used to reduce noise. It is important to notice that this

smoothing procedure effectively reduces high-fre-

quency noise to an optimal level of the signal-to-noise

ratio while retains the shape of the original signal. A

detailed explanation of the spectrum extraction pro-

cedure relying on signal-processing techniques is
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Fig. 5 Transient time histories at the point N 1: a displacement; and b acceleration
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(b)
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Fig. 6 Transient response for different sizes of debond at the point N 1: a displacements; and b displacement trend-lines

Table 2 The logarithmic decrement of the intact and deb-

onded sandwich plates

Intact plate Debonded plate

5 % 10 % 15 % 20 %

0.029 0.046 0.104 0.149 0.199

Table 3 Natural frequencies (Hz) of the intact sandwich plate

and the sandwich plate with the 10 %-sized debond

Intact Debonded Intact Debonded

1,074.2 957.03 2,832.0 2,675.8

1,562.5 1,308.6 2,968.8 2,792.9

1,757.8 1,406.3 3,144.5 2,910.2

1,953.1 1,621.1 3,261.7 3,007.8

2,187.5 1,953.1 3,378.9 3,281.3

2,285.2 2,109.4 3,496.1 3,359.4

2,578.1 2,382.8 3,750.0 3,593.8

2,675.8 2,500.0 3,808.6 3,785.1
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beyond the scope of this paper, one can find more

information in appropriate books, e.g. [33].

Several natural frequencies extracted by the men-

tioned above spectrum analysis for the intact plate and

the plate with the 10 %-sized debond are listed in

Table 3. As seen from Table 3, all the natural

frequencies tend to decrease with increasing the

number of mode, but this effect does not exhibit a

monotonic character. The amount of frequency drop is

dependent on the mode of interest, as seen in Fig. 7.

More detailed discussions concerning the influence of

the debonded zone on natural frequencies and asso-

ciated mode shapes of sandwich plates can be found in

[7, 8].

Analyzing the spectral plots in Fig. 8a–d one can

see that the applied load excites predominantly the

fundamental mode in all the cases. In doing so, it is

seen that the larger is the debonded zone size, the

bigger is the reduction in the fundamental frequency in

comparison with that of the intact plate. This is due to

decreasing the global stiffness as a result of increasing

the debond. The wider peaks at the resonant frequen-

cies of the debonded plates indicate higher material

damping in them than in the intact plate. The larger is

the debond, the wider are the peaks and the less are

their amplitudes due to increasing damping with

increasing the debond.

0%

5%

10%

15%

20%

Frequency shift

Fig. 7 Relative changes of natural frequencies between the

intact plate and the debonded plate with the 10 %-sized debond
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Fig. 8 Power spectra of the sandwich plate with and without debond calculated at the point N 1: a 5 %-sized debond; b 10 %-sized

debond; c 15 %-sized debond; and d 20 %-sized debond
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Another distinctive feature resulting from those

frequency signals is the distortion of the shape of

peaks around the natural frequencies and the appear-

ance of additional peaks both before and after the

fundamental frequency in the frequency spectra of

debonded sandwich plates in comparison with the

spectrum of the same intact plate, as shown in Fig. 8a–

d. This fact is attributed to the intermittent contact

behavior between the detached segments in the

debonded plates. Those interactions generate addi-

tional stress waves that superimpose with waves

produced by the external impulse force. In turn, the

excited waves spread in the structure in dependence on

a state of contact. As a result, wave modulation and

frequency mixing can be observed in the frequency

response. These results are in qualitative agreement

with data reported for dynamics of cracked structures

in the literature, e.g. [34, 35]. The behavior indicated

by these predictions highlights a high nonlinearity of

the debonded plate’s transient response.

The enlargement of the debonded zone affects

qualitatively and quantitatively the spectrum of the

sandwich plate. As shown in Fig. 8a–d, the larger is

the debond, the amplitudes of response peaks are

bigger before, but smaller after the fundamental

frequency. The increasing of the vibration energy at

the low frequencies is proportional to the enhancing of

friction contact interactions between the detached skin

and core for the bigger debond. While the decreasing

of the magnitudes of peaks in the high frequency

domain is caused by the increasing of the damping

capacity of the bigger debond due to clamping and it

manifests itself through suppressing the high frequen-

cies. Thereby, the results presented above allow us to

conclude that the dynamics of the debonded plate

completely depends on a way by which the contact

surfaces behave. In this respect the behavior between

the detached skin and the remaining part of the plate

with 10 %-sized debond is studied in detail further.

Figure 9 compiles the time histories of transverse

displacement and velocity of the core and the upper

skin calculated at the center of the debonded region

(points N 2 and N 3 in Fig. 3b). Tracking the transient

motion of the detached fragments in Fig. 9a, one can

see that they interact with each other during a defined

time interval, after that as the amplitude of vibrations

is no longer enough to close the debond, the parts

vibrate separately. Referring to Fig. 9b, d, the plots

present the transient displacement and velocity time

histories, respectively, within the time interval, where

interactions between the separated skin and the

remaining plate occur. From Fig. 9b it can be seen

that at each vibration cycle the distinct phases of

motion of the contacting parts such as sudden impact

(clamping), permanent contact and separated motion

(free flight) can clearly be distinguished. Every

contact–impact event is generally characterized by

an energy trade-off between the contacting parts and,

as a consequence, sharp changes in relative velocities

of these parts take place, as shown in Fig. 9d, whereas

their relative displacements are less disturbed due to

thereof, Fig. 9b. During permanent contact between

the detached surfaces, the normal component of their

velocities are the same, and the tangential ones can be

directed oppositely if sliding of the contacting points

with respect to each other occurs. One can notice from

Fig. 9a that as the time progresses the duration of

permanent contact decreases, and motion with impact-

like contacts between the interacting skin and core

mainly exists up to ceasing the interactions between

them. The above mentioned behavior of the contact–

impact motion has also been demonstrated as far as

impact oscillators are concerned, e.g. in [36] and

presented as results of experimental tests and FEM

predictions with beam elements for a delaminated

beam in [37].

To separate accurately phases with and without

contact between the detached skin and the remaining

plate at the monitored central points N 2 and N 3

during vibrations, variations with time of normal and

tangential contact forces with respect to the central

deflection time histories of these two parts depicted by

subtle lines are presented in Fig. 10a, b, respectively.

It can be seen that the normal contact forces are

essentially bigger than the shear ones at each contact

event. Hence, one can conclude that the contacting

surfaces interact with each other mainly in the normal

direction, however, due to rotation and lateral move-

ment of the thinner detached skin sliding may occur

too. These two interaction mechanisms act simulta-

neously in most of the motion cycles, thus permanent

contact, which can be even very short-term, follows

impact in most cases. Also Fig. 10a, b show that the

contact forces increase first and then gradually reduce

with time as the vibrations attenuate. The magnitude

of contact forces may seemingly be dependent on

different reasons such as inertial forces, local

deformed form of the detached fragments and global
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deflection pattern of the plate caused by an external

load or a combination of all these factors.

The effect of the debond size on the evolution of the

contact forces is presented in Fig. 11. The normal and

shear contact forces for the smallest and largest

debond considered are only presented there. The

values of the contact forces for the other cases of the

debond size are intermediate between those previous

(a)

-2

-1

0

1

2

3

4

5

0 0.01 0.02 0.03 0.04 0.05

Remaining plate

Detached skin

(b)

-2

-1

0

1

2

3

4

5

0 0.002 0.004 0.006 0.008 0.01

(c)

-3

-2

-1

0

1

2

3

0 0.01 0.02 0.03 0.04 0.05

Remaining plate

Detached skin

x104

(d)

-3

-2

-1

0

1

2

3

0 0.002 0.004 0.006 0.008 0.01

Remaining plate

Detached skin

x104

Fig. 9 Time histories of the contacting surfaces at the points N 2 and N 3: a displacement during the analysis time; b displacement in

the time interval ½0; 0:01� s; c velocity during the analysis time; and d velocity in the time interval ½0; 0:01� s
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Fig. 10 Time histories of the contacting surfaces at the central point N 2 of the plate with the 10 %-sized debond in the time interval

½0; 0:01� s: a contact normal force; and b contact shear force
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ones. It can be seen from the figure that with increasing

the debonded zone the magnitude of the contact forces

increases and the evolution of these forces with time

changes. The latter means that the character of contact

behavior is changed with variation of the debond size.

Thus, the debond size governs the contact behavior

completely that in turn influences on the transient

response of debonded sandwich plate as pointed out

above.

As the debonded sandwich plate is loaded by the

impulse force, the plate begins to oscillate. Due to the

plate’s vibrations the debonded region is passing from

closing to opening and vice versa with a continuously

developing surface of contact, encompassing a variety

of intermediate configurations. Thus, the contact

forces arising between the detached skin and the core

at each contact point are interconnected within the

contact interface. To clearly understand the contact

behavior between the detached surfaces, spatial rep-

resentations of contact force distributions are required.

The distributions of both normal and tangential

contact stress vectors at certain moments of time for

the first six cycles of motion, where contact at the point

between the detached segments was noticed in the
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Fig. 11 Time histories of the contact forces, calculated at the central point N 2 depending on the debond size: a contact normal force;

and b contact shear force

Fig. 12 Distributions of the normal contact traction (upper row) and the shear contact stress vectors (middle and lower rows) at instants

of time: a t ¼ 0:1 ms; b t ¼ 1 ms; c t ¼ 4 ms; and d t ¼ 6 ms
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sandwich plate with the 10 %-sized debond (Fig. 10),

are displayed in Fig. 12a–d. One can see that varia-

tions of the actual normal contact traction due to

contact–impact motion of the detached segments

change the nature of sliding mechanism that is

represented by the appropriate distributions of shear

contact stress vectors.

As shown in [20], the contact forces have a

considerable influence onto the global dynamic stress

state of the debonded sandwich plate. Herewith,

stresses are mainly concentrated within the debonded

region. To represent the stress concentration occurring

within the debonded zone due to the contact interac-

tions, the stresses calculated inside the debonded zone

and far away from it are compared for the intact and

debonded plates. Figure 13 shows such comparisons

between the time histories of Mises stresses computed

at the point N 5 which is far away from the debonded

zone and at the point N 4 collocating on the boundary

of the debonded zone (see Fig. 3a). It is evidently that

the Mises stresses of the sandwich plate with and

without debond are almost the same at the point far

away from the debonded region, but they differ

significantly at the internal point of the debonded

region. At this point, the stress level of the debonded

plate exceeds that of the corresponding intact plate in

several times. This effect is more pronounced with

enlarging the debond, i.e. the large is the debond, the

high stress level takes place within the debonded zone,

Fig. 13a, c. While the stress level at the point far away

from the debonded region is only slightly affected by

the increasing of debond, Fig. 13b, d.

4 Conclusions

Dynamics of the debonded foam-cored sandwich plate

subjected to an impulse load is studied using the FEM.

The transient dynamic analysis taking into account

intermittent contact between the detached segments of

the damaged skin-to-core interface is carried out with

the ABAQUS/Explicit code. The numerical results
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Fig. 13 Time histories of the Mises stress calculated at the point: a, c inside of the debonded zone (N 4); and b, d outside of the

debonded zone (N 5)
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showed that the short-term response of the debonded

sandwich plate is considerably affected by the pre-

sence of debond. Using the transient time history data

predicted, it was identified that contact occurring

between the detached skin and the remaining plate,

firstly, damps the free decay oscillations making them

slower, but faster decaying than those of the intact

plate. In doing so, the larger is the debond, the more

clearly these effects can be seen. Secondly, the

existence of intermittent contact changes the wave-

forms of the all extracted time histories. Also, in

contrast to the intact plate the magnitude of the time

signals of the debonded plate is higher. The spectral

analysis processed for the time signals of the intact and

debonded plates revealed that their frequency contents

differ considerably. The reducing of the fundamental

frequency and the additional peaks in the both low and

high frequency domains are main features of the

debonded plate’s spectrum in comparison with the

spectrum of the intact plate. The shift of the natural

frequency and the appearance of the additional

frequencies in the spectrum are more significant with

increasing the debonded zone. Finally, the dynamic

stress state in the debonded plate is evaluated. The link

between contact-induced normal and tangential forces

within the developing continuous contact surface is

found out. As well, a localized character of the contact

forces’ effects which are mainly restricted by the

debonded region is clearly demonstrated by the

comparisons between stress histories calculated at

the points inside the debonded zone and far away from

it. It may be noticed that the finite element model

described in this paper can be useful for investigating

non-linear transient dynamics of sandwich plates

including aspects of damage identification.
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