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This paper deals with forced vibrations of two-DOF systems with more
than one equilibrium positions. Such systems may be obtained by dig-
itization of elastic post-buckling systems. A vibration mode, which is
periodic at small force amplitudes and becomes chaotic as the force am-
plitudes are slowly increased, is selected. It is possible to formulate and
solve the problem of stability of a periodic or chaotic vibration mode
in a space with greater dimension using the classical Lyapunov sta-
bility definition and some calculating procedures. Instability of phase
trajectories is used as a criterion of the chaotic behavior in dynamical
systems. Trajectories with very close initial values are compared. Use
of the Lyapunov stability definition shows mutual stability/instability
of the trajectories. Calculations permit to observe an appearance and
enlargement of the chaotic behavior regions. Specific results are ob-
tained for the nonautonomous Duffing equation and pendulum system.

1 Introduction

Models under consideration may be obtained by digitization of some elastic systems that
have lost stability under a constant compressive force. If displacements of the nonlinear
elastic system are approximated by a single harmonic of the Fourier series expansion for
space coordinates, a system having a single degree of freedom is obtained. Behavior of the
model described by the nonautonomous Duffing equation was examined in papers [1,2 et al.].
At small force amplitudes, periodic motions close to one of two stable equilibrium positions
are observed but irregular, apparently chaotic motions begin as the force amplitudes are
slowly increased.

If the first two harmonics of the Fourier series for space coordinates are used, one obtains
a set of two-second order ODEs, coupled in nonlinear terms only. In this case an energy
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”pumping” from one vibration mode to another mode is possible. Thus one can formulate
a problem of the stability of periodic or chaotic vibration mode in a space with a greater
dimension. There are many publications on the general and special problems of stability of
periodical solutions, e.g., fundamental works by Lyapunov [3]; Ince [4]; Andronov, Vitt and
Khaikin [5]; Minorsky [6] etc. But a problem of stability of chaotic modes in a space with a
greater dimension has no analytical solutions in a general case.

We make use of the classical Lyapunov stability criterion for a case when initial vari-
ations are not arbitrary small that is they are limited below (Section 3). As a result we
obtain some test suitable for a computer realization. It is discussed a connection of this
test with an approach used by Schiehlen [7], and with so-called Lyapunov exponents(Section
3). Calculations, corresponding to the proposed test, are realized as long as boundaries of
stability and instability regions in the space of system parameters are variable. Stability of
regular or chaotic modes of nonlinear beams and shells (Section 4) are considered. Note that
first results obtained for this problem were published in papers [8,9].

The chaotic behavior of nonlinear dynamical systems is an object of recent and current
investigations. The first ideas on the chaotic behavior of dynamical systems can be found in
works by Poincare’ [10] and Birkhoff [11 et al.].

Criteria for the onset of chaos beginning in dynamical systems are very diverse. A
detailed survey of various such criteria of the chaos beginning was published by Moon [2]. The
most important analytical or numerical-analytical criterions of the chaos beginning: criteria
are based on the configuration of the homoclinic trajectories, period doubling, overlapping
of resonances, analysis of spectra, calculation of Lyapunov exponents, “Smale horseshoe” et
al [12-15]. All trajectories contained in the “strange attractor” region are unstable, that is
trajectories which are close to each other at some point of time then diverge exponentially
[2,16,17].

We suggest here an approach to determine the onset of chaos based on the Lyapunov
definition and the proposed calculating test (Section 5). Mutual instability of phase trajecto-
ries is used as criterion of chaotic behavior in dynamical systems. One compares trajectories
that are initially very close. The proposed test shows the mutual instability of the trajecto-
ries. Calculations permit to observe a process of appearance and enlargement of the chaotic
behavior regions if some selected parameters of the dynamical system under consideration
are changing. Specific results were obtained for the nonautonomous Duffing equation and
pendulum system when an amplitude of the external periodic action increases.

2 Principal Model

Consider the following system that can be obtained by discretization of equations of nonlinear
dynamics of some elastic systems:

ÿ1 + δ ẏ1 − α y1 + β y3
1 + c y1 y2

2 = f cos ω t,

ÿ2 + δ ẏ2 + ay2 + b y3
2 + c y2 y2

1 = 0, (1)

where y1 (t) and y2 (t) are unknown functions; δ is the coefficient determining friction; all
coefficients are positive (excepting may be the coefficient α).

The system (1) can be obtained in the following problem. Consider nonlinear bending
vibrations of a beam with a length equal to l. Within framework of the Kirchhoff hypothesis
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the vibrations are described by the following equation [18]:

µ
∂2w

∂ t2
+ EI

∂4w

∂ x4
− ES

2l

l∫
0


(∂w

∂ x

)2

dx


 ∂2w

∂ x2
+ Γ

∂2w

∂ x2
= F (x, t), (2)

where x is the space coordinate; w(x, t) is the bending deflection; µ is the density of the
beam material; E is the Young’s modulus; S is the area of the transversal cross-section;
I is the corresponding moment of inertia; Γ is the axial compressive force; friction will be
introduced later; F (x, t) is the distributed external effect.

Let w = wxx = 0 if x = 0 and x = l. Let the function F (x, t) be presented as

F (x, t) = f1 cos ωt sin
(

πx
l

)
. Representing the deflection as truncated Fourier series (by

sines) and making use of the Bubnov-Galerkin procedure for (2), one comes to a system of
nonlinear ODEs connecting coefficients of the series. Taking into account two harmonics of
the Fourier series expansion,

w = y1 (t) sin
πx

l
+ y2 (t) sin

nπx

l
, (3)

one obtains the system (1) for determination of y1 (t) and y2 (t), where δ is the coefficient
determining friction;

α = − 1
µ

[
EI

(
π
l

)4 −
(

π
l

)2
Γ
]
; β = ES

4µ l

(
π
l

)4
; c = ES

4µ l

(
π
l

)4
n2;

a = 1
µ

[
EI

(
nπ
l

)4 −
(

nπ
l

)2
Γ
]
; b = ES

4µ l

(
nπ
l

)4
; f = 1

µ
f1.

In the post-buckling dynamics we have Γ > π2EI
l2

, and the coefficient α > 0 too.
If y2 = 0, one obtains a nonautonomous Duffing equation with two potential wells (for a

case α > 0). It was shown [1,2] that as the force amplitude f increases, the behavior of the
system changes. A sequential doubling of the vibration period results, and beginning with
some values of f it is possible to observe irregular, apparently chaotic motions (for example,
if α = 10, β = 100, δ = 1, ω = 3.76, the chaotic vibrations appear if the force amplitude f is
a little greater than 1). Additional analyses (spectral, and also based on Poincare’ mapping)
show that a region of the phase space exhibits the properties of a ”strange attractor”.

Equations which are similar to the system (1) can be obtained also in problem of pre-
buckling or post-buckling nonlinear dynamics of plates or shells.

3 Lyapunov stability definition and its computer real-

ization

One consider a problem of stability of the periodic or chaotic vibration mode y2 = 0 of
the system (1). Instability of the mode means energy “pumping” from one harmonic of the
Fourier series to another.

The variables y2, ẏ2 emerge in the form of variations (or perturbations). Assume first
that values of the variations are significantly smaller than values of the variable y1 (in the
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region of stability of the mode y2 = 0). This corresponds to a conventional formulation of
the problem of local stability in configuration space.

Consider the well-known Lyapunov stability criterion [3,6,19] stating that:
the solution y = 0 is stable if for all ε > 0 there exists a δ > 0 such that for all y0 ∈ Nδ (0)

and t ≥ 0 we have y (t) ∈ Nε (0). Here N
(0)
δ and N (0)

ε mean δ− and ε− neighborhoods of the
mode y = 0. For example, Nγ = {y ∈ Rn |y| ≤ γ } (the neighborhoods could be calculated
differently).

Introduce a relation between the quantity ε and the initial value of the variable y. Let

ε = ρ |y0| ≤ ρδ ( ρ = const) (4)

This means that a value of δ is not arbitrarily small because δ ≥ ε
ρ
. Note that this

assumption does not contradict to the Lyapunov definition meaning because in this definition
the initial values of δ can not tend to zero. One has from (4) that ρ ≥ ε

δ
, that is ρ is a high

limit of the fraction ε
δ
. Besides, one obtains from the Lyapunov stability criterion taking

into account the inequality (4) that |y (t)| ≤ ρ |y0|.
One has from the preceding the following stability test for the system (1):
Instability of the mode y2 = 0 is established if

max
t∈[0,T ]

|y2 (t)| ≥ ρ |y2(0)| (5)

The inequality (5) gives us a possibility to use a computer in the next stability analysis.
It is necessary to choose values of ρ and T . Here a value ρ−1 is a measure of smallness of

initial variations with respect to maximum admissible variations. An increase of the value ρ
means that feasible initial values of variation decrease. There is some arbitrariness in a choice
of the value ρ. In engineering one says that some quantity α is greater than another quantity
β “in order of magnitude” if α

β
≈ 10. We can choose, for example, ρ ≈ 10 which constitutes

as an “engineering test”. The discussion on the choice of the constant ρ is continued in the
Subsection 3.2.

Calculations are conducted as long as boundaries of stability and instability regions (in
a chosen scale) on the system parameter space are variable. This is the principal criterion
for the choice of the calculation time T . Note that all calculations are realized by using the
standard Runge-Kutta procedure. The calculations are made at points on some chosen mesh
of the system parameter space. It is clear that if the mesh widths decrease and the number
of mesh points increases infinitely, the interval of time T tends to infinity.

We now discuss the dependence (or independence) of the stability analysis on the vari-
ations initial conditions. The linear stability results are not dependent on initial conditions,
this is a property of linear variational equations. But it is known [20,21] that additional non-
linear instability regions (obtained if we take into account nonlinear terms) have a smaller
dimension in parameter space than instability regions obtained by the linearized stability
analysis. Examples verify that the stability analysis is independent of initial variations if
the initial variations are small.

3.1 Schiehlen’s analysis of stability

In 1993 W. Schiehlen [7] proposed an approach for the stability assessment of nonlinear
oscillations “from an engineering point of view”. His approach was based on the Lyapunov
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stability definition. Schiehlen introduced the “inverse stability measure”

IS1(x0, t0) =




‖x(t)‖∞
‖x0‖ for x0 �= 0

1 for x0 = 0

(6)

where
‖x(t)‖ = max

1≤i≤n
|xi(t)| ,

‖x(t)‖∞ = lim
T→∞

‖x(t)‖T = lim
T→∞

max
t∈[t0,T ]

‖x(t)‖ .

The measure IS1(x0, t0) “characterizes the ration between a given initial state and the
corresponding maximal displacement of the trajectory”. Here x(t) is the time-dependent
n-state vector.

The inverse stability measure

IS2(r, t0) = max
x0∈{x: ‖x‖=r}

IS1(x0, t0)

”characterizes the maximal displacement of all trajectories starting out of the initial con-
ditions’ subspace which is by definition a hyper-cube with respect to the equilibrium point
x = 0”.

These measures were used in a numerical calculations where the integration interval is
limited, 0 ≤ t ≤ T . So, the measure (4) was replaced by

IS1T (x0, t0) =
‖x(t)‖T

‖x0‖ .

There is a relation between the stability definition and the inverse stability measure. In
the unstable case it is possible to choose the following series of initial conditions: ‖x01‖ >
‖x02‖ > ... > ‖x0n‖. One has lim

n→∞ ‖x0n‖ = 0 and, as an result, the IS1∞(x0n , t0) → ∞. But

if the inverse stability measure is limited for all x0, then ‖x(t)‖∞ ≤ s ‖x0‖. This means
that the system is stable by Lyapunov.

The approach was used by Schiehlen to analyze a stability of the single and double
pendulums. It is possible to select both stability and instability regions in place of the
systems initial values. But it should be noticed that the choice of the calculation time T is
not discussed in paper [7].

3.2 The stability test (4) and Lyapunov exponents

“Lyapunov characteristic exponents” are introduced in some problems of stability or analysis
of the “strange attractors” [2,15,17,22,23]. Positiveness of the exponents means the global
mutual instability of phase trajectories; this is accepted as a criterion of the chaotic behavior
onset in the nonlinear system under consideration. The largest Lyapunov exponent can be
defined, for instance, as the following:

λ = lim
t→∞

1

t
ln

|y(t)|
|y(0)| . (7)
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One has from here

|y(t)|
|y(0)| = e(λ+∆)t, where ∆ → 0 for t → ∞ (8)

Comparing (8) and (5), one obtains the next inequalities

ρ ≤ e(λ+∆)T , T ≥ ln ρ

λ + ∆
(λ > 0), (9)

where T is the maximal calculation time. Thus the constants ρ and T presented in the
criterion (5) are linked by the inequality (9). It is clear that a decrease of the value ρ
gives the corresponding decrease of the calculation time T (it is confirmed by concrete
computations too). Near the boundaries of the stability/instability regions values of the
Lyapunov exponent λ decrease, and the calculation time increase. But the value ρ can not
be chosen very small because near the boundaries values of λ are small, and the calculation
time is depended on the uncertain value ∆. The significant arbitrariness in a choice of the
value ρ will be showed in the next section, too. We note that in the work by Rugonyi and
Bathe [23] the concept of Lyapunov stability is connected with the Lyapunov characteristic
exponents calculation. The effect of velocities (see the next Remark here) in the exponents
calculation is analyzed too. Besides, the procedure proposed in [23] is used in the stability
investigation of some continuous nonlinear systems, namely, the buckled beam and fluid-
structure interaction systems. Additional discussion on the proposed approach and the
Lyapunov exponents calculation approach is contained in the section Discussion.

REMARK. We can use in place of the test (5) the following “energetic” test. Namely,
instability is fixed if

y2
2 (t) + ẏ2

2 (t) ≤ ρ
(
y2

2(0) + ẏ2
2(0)

)
(0 ≤ t ≤ T ) . (10)

It is clear, and checking calculations confirm it, that regions of instability in the system
parameter space, obtained if we use (10) are greater that those obtained if we use test (5).
This follows from the fact that there are regions where the variations y2 (t) are small but the
corresponding velocities ẏ2 (t) are large.

3.3 Example

We show now the significant arbitrariness in a choice of the value ρ. For definiteness we
consider the following system which can be obtained from (1) if we use some values of the
physical and geometrical characteristics of the corresponding elastic system and use some
scale transformations:

..
y1 + δ

.
y1 + [ 1 − q + y2

1 + 4ε y2
2 ] y1 = f cos ωt,

..
y2 + δ

.
y2 + 4 [4 − q + ε y2

1 + 4y2
2 ] y2 = 0. (11)

Consider the stability of the mode y2 = 0, which can be both regular and chaotic. One
selects the following domain of plane of parameters (f, ε): 0 ≤ f ≤ 10, 0 ≤ ε ≤ 20. Here δ=
0.1. Mesh width in the domain was chosen as: ∆f = 1/3, ∆ε = 1.

In the chosen scale of mesh, boundaries of stability and instability regions for the chosen
region of the parameters plane stabilized in the interval 0 ≤ t ≤ T (T ≈ 250).
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Increasing a value of the constant ρ presented in the test (5), we consider results of the
calculations for ρ = 10; 5; 2.5 . It is important that the stability regions are the same for
the different values of ρ and q. Corresponding results are presented in Fig. 1, where q = 0.9.
A smoothing function is used in tracing of the graphic. The results show that for the system
under consideration the localization of the vibration mode is the same as the stability of the
mode.

Figure 1: Stability (S) and instability (U) regions of the mode y = 0 of equations (11),
obtained using the stability test (6). Here q=0.9. Boundaries of stability and instability
regions for the chosen region of parameters plane are stabilized on the interval of calculations,
0 ≤ t ≤ T (T ≈ 250). Results are the same for ρ = 10; 5; 2.5 .

4 Stability of Forced Vibration Modes in Nonlinear

Shells

Consider equations of the nonlinear shallow-shell theory connecting the normal deflection
w(x, y, t) and the stress function Φ(x, y, t) [24-27]:

D

h
∇4w = L (w, Φ) +

1

R

∂2Φ

∂ x2
− ρ

g

∂2 w

∂ t2
+ q,

1

E
∇4Φ = − (1/2) L (w,w) − 1

R

∂2w

∂ x2
, (12)

where x, y are respectively the longitudinal and circumferential coordinates; E is the Joung’s
modulus; the cylindrical stiffness D = Eh3

12(1−ν2)
; ν is the Poisson ratio; h is the shell thickness;

R is the radius of the shell; ρ is the density of the shell; q(x, y, t) is the transversal loading;
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the operator L is the following:

L (u, v) =
∂2u

∂ x2

∂2v

∂ y2
+

∂2u

∂ y2

∂2v

∂x2
− 2

∂2u

∂ x∂ y

∂2v

∂ x∂ y
.

Circular cylindrical shell complete around the circumference is considered here. Let the
shell be compressed along an element of the cylinder by uniformly distributed static axial
forces after the shell has lost stability. One presents here the transverse loading as

q = F cos ωt sin
mπx

l
sin

ny

R
.

It means that the external periodical force excites the primary vibration mode with
respect to the space coordinates (x, y). Vibrations in the mode may be chaotic if we consider
the post-buckling case. Two variants are possible. If the mode is orbitally stable then we
obtain a localization of energy. But If the mode is unstable, the transfer of energy to other
space mode is possible.

4.1 Companion modes in shells: analysis of stability

Let here the deflection w be approximated by the following truncated Fourier series [26-28]:

w = f1 cos sy sin rx + f2 sin sy sin rx +
n2

4R
(f 2

1 + f 2
2 ) sin2 rx, (13)

where s = n
R
, r = mπ

l
; n,m are integer positive numbers; f1, f2 are unknown functions of

time; the transverse loading is chosen of the form q = f cos ωτ cos sy sin rx.
To analyze here a principal problem of the vibration modes energy pumping, we suppose

that an initial deflection w0 of the cylindrical shell is equal to zero. Obtaining the stress
function Φ in the form of truncated Fourier series with respect to the space coordinates and
using the standard Bubnov-Galerkin procedure, we obtain the equations to determine f1(t)
and f2(t) which were exposed, for example, in [26,28].

One analyzes now a stability of the vibration mode f1 = f1(t), f2 = 0. Let us the
variable f2 emerges as a small variation. After a linearization by f2 we can obtain the
following equations:

d2f1

dt2
·
(
1 + 2χf 2

1

)
+ ω2

0f1 + 2χf1

(
df1

dt

)2

+ γ1f
3
1 + gf 5

1 = f cos ωt,

d2f2

dt2
+ f2


ω2

0 + 2χ


(df1

dt

)2

+ f1
d2f1

dt2


+ γ1f

2
1 + gf 4

1


 = 0, (14)

where

ω2
0 =

1

ρ

[
D

h

(
s2 + r2

)2
+

Er4

R2 (s2 + r2)2

]
, 2χ =

2

3

(
n2

2R

)2

,

γ1 =
1

ρ

[
E

16
r4 +

Dn4r4

hR2
− Er4s4

(s2 + r2)2

]
, g =

3E

16ρ
n2r4s6

[
1

(s2 + r2)2 +
1

(s2 + 9r2)2

]
.
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One introduces the following change of variables in equations (14):

x =
f1

h
, y =

f2

h
, τ = ω0t, Ω =

ω

ω0

, F =
f

ω2h
, K = 2χh2, G =

γ1h
2

ω2
0

. (15)

We neglect later the small order terms gf 5
1 and gf 4

1 f2. Besides, we introduce a coefficient
α which is defined by the constant static axial force. In a case of α=0 the force is absent; in
a case of α=1 (this is a critical loading) a trivial equilibrium position becomes unstable; in a
case of α > 1 (this is a post-buckling case) new equilibrium positions appear. Under external
periodic excitation a transfer from periodic motions to irregular, apparently chaotic motions
is possible. Introducing a dissipation, we can obtain, as a result, the following equations
instead of the system (14):

x′′ =
(
F cos Ωτ − (1 − α) x − Kxx′2 − Gx3 − δx′) /

(
1 + Kx2

)
,

y′′ = −y
[
(1 − α) + K

(
x′2 + xx′′)+ Gx2 + δy′] . (16)

The obtained equations (16) permit to investigate a stability both subcritical, and su-
percritical forced vibrations of cylindrical shells under the constant static axial force.

Figure 2: Instability regions of the vibration mode x = x(t), y = 0 of the equations (16) in
the plane F, Ω: 0 ≤ F ≤ 1, 0 ≤ Ω ≤ 2, obtained by using the test (6) (x(0) = 0.5, α =
0.5, δ = 0.1, T = 400).

Next numerical results were obtained for the following values of geometrical and phisical
parameters of shells, and for the following circumferential and axial wavenumbers: m = 1,
n = 6, R = 1, h = 0.001, E = 2 · 1011, ρ = 7.8 · 103, ν = 0.3, l= 10. A coefficient of
dissipation was chosen as δ = 0, 0.05, 1. A coefficient of the static loading was chosen
as α = 0, 0.5, 0.9, 1.1. It was considered the following values of the initial amplitude:
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Figure 3: Instability regions of the vibration mode x = x(t), y = 0 of the equations (16) in
the plane F, Ω: 0 ≤ F ≤ 1, 0 ≤ Ω ≤ 2, obtained by using the test (6) (x(0) = 0.5, α =
0, δ = 0.05, T = 1000).

Figure 4: Instability regions of the vibration mode x = x(t), y = 0 of the equations (16) in
the plane F, Ω: 0 ≤ F ≤ 1, 0 ≤ Ω ≤ 2, obtained by using the test (6) (x(0) = 2, α = 0, δ =
0.05, T = 1000).

x (0) = 0.5, 1, 2; initial perturbations y(0) are the following: y (0) = 0.01 · x(0). It is
accepted that x′(0) = y′(0) = 0.

Calculations which were made by using the test (5) permit to determine stability/
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Figure 5: Instability regions of the vibration mode x = x(t), y = 0 of the equations (16)
in the plane F, Ω: 0 ≤ F ≤ 1, 0 ≤ Ω ≤ 2, obtained by using the test (6) (x(0) = 2, α =
0.5, δ = 0.05, T = 300).

instability regions of the vibration mode x = x(t), y = 0 in the plane F, Ω. One considers
the following domain of the plane F, Ω: 0 ≤ F ≤ 1, 0 ≤ Ω ≤ 2. Mesh width in the domain
was chosen as the following: ∆F =0.05, ∆Ω =0.09.

In Figs. 2-5 a small part of the numerical calculation results is presented. Here points of
the chosen mesh which correspond to the unstable regions, are marked by symbol. Time of
the stability/ instability boundaries stabilization T is pointed out too. In the instability re-
gions only the coupled (f2 �= 0) companion modes (13), which were investigated by Kubenko
et al. [28], are realised.

An increase of dissipation implies a corresponding decrease of the instability regions.
Besides, an increase of the axial static stress coefficient α implies a corresponding increase
of the instability regions. Results are the same for x(0) = 0.5 and x(0) = 1.

In a case of α > 1 a trivial equilibrium position of the shell is unstable, and two new
stable equilibrium positions appear, this is a post-buckling phase of the shell behavior. Under
external periodical excitation chaotic vibrations can be appeared. The stability analysis by
using the test (4) is not depends on the type (regular or chaotic) of the vibration mode
under consideration. It is interesting that for α > 1 both regular or chaotic vibration mode
f1 = f1(t), f2 = 0 is unstable, that is only the coupled companion modes (13) are realised
in this case.

Note that a similar analysis can be realized in a problem of stability of the forced
vibration mode of the sloping arch which dynamics is described within a framework of the
Kirchhoff hypothesis. A boundary of the stability/ instability regions is obtained, and the
corresponding results were presented in paper [29].
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5 Mutual Instability of Phase Trajectories

Consider the well-known nonautonomous Dufffing equation,

ÿ + δ ẏ − α y + β y3 = f cos ω t (17)

where the system parameters are: δ = 1, α = 10, β = 100, ω = 3.76 , and the value of the
amplitude f is variable. Examine the following region of phase plane of the equation (17):
0 ≤ y ≤ 0.66; 0 ≤ ẏ ≤ 0.8. Introduce some mesh in the defined region using the increments:
∆y = 0.02, ∆ẏ = 0.016.

Figure 6: Mutual stability/instability of phase trajectories of the nonautonomous Duffing
equation (17). Corresponding initial values of the trajectories are presented on the following
region of phase place: 0 ≤ y ≤ 0.66; 0 ≤ ẏ ≤ 0.8. The test (18) are used to determine the
mutual stability /instability of trajectories outgoing from the near initial points (the time
of stabilization here, T < 100). Results of the stability analysis are obtained for f = 0.8
(figure a), f = 0.856 (figure b) and f = 0.9 (figure c). The initial points of the chosen mesh
which correspond to unstable trajectories are marked by dark squares.

Points of the mesh Pij(yi0, ẏj0) will be chosen as initial points for the selected phase

trajectories y
(1)
ij (t) of the equation (17). Let us take other initial points near the chosen

initial points Pij, namely, Qij(yi0 + ∆y0, ẏj0 ) where the value ∆y0 is sufficiently small, and

consider the other phase trajectory, y
(2)
ij (t). One compares trajectories outgoing from the

near initial points, using the limited Lyapunov test (5).
Instability of the outgoing trajectory is established if∣∣∣y(1)

ij (t) − y
(2)
ij (t)

∣∣∣ ≥ ρ | ∆y0| (0 ≤ t ≤ T ) . (18)
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We now select ρ = 10. Let ∆y0 = 0.002. Results of the stability analysis (the time
of stabilization here, T < 100) are presented in Fig. 6 (a, b, c) for different values of the
external amplitude: f = 0.8; 0.856; 0.9. In Fig. 6 the initial points of the chosen mesh,
which correspond to unstable trajectories, are marked by dark squares. The calculations (in
the chosen mesh of the equation phase place) show that for f < 0.85 the mutual instability of
phase trajectories can be observed near the separatrix branches. Instability regions begin to
extend if values of the external amplitude f are slightly larger than 0.85, and the enlargement
is very fast. The results generically correspond to known behavior of the nonautonomous
Duffing system [1,2].

Figure 7: Mutual stability/instability of phase trajectories of the pendulum equation. There
−4 ≤ y ≤ 4; −2.4 ≤ ẏ ≤ 2.4. The test (18) are used to determine the mutual stability
/instability of trajectories outgoing from the near initial points (the time of stabilization here,
T = 50). Results of the stability analysis are obtained for a)f = 0.05; b)f = 0.2; c)f =
0.4; d)f = 0.6; e)f = 0.8; f)f = 1. The initial points of the chosen mesh which correspond
to unstable trajectories are marked by dark dots.

In Fig. 7 the results of stability analysis for the equation of the pendulum with excited
point of suspension are presented. The equation of motion is the following:

ÿ + δẏ + (1 + f cos ωt) sin y = 0.

The calculations were made with the friction δ = 0.1, the force frequency w = 2, the time
of calculations T = 50, the widths of the mesh ∆y = 0.1, ∆ẏ = 0.1 and ∆y0 = 0.01. ρ
equals 10. Obtained results correspond to the behavior of this system described in book of
Neymark, Landa [30].
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6 Discussion

It is appropriate to compare the presented approach with the well known methods of the
Lyapunov characteristic exponents calculations. We can note that it is not necessary to
analyze here variational equations and calculate corresponding eigenvalues because only some
direct consequence from the classical Lyapunov stability definition is used in the proposed
approach. The Lyapunov exponents are introduced, for example, in [22, p.67 and further] as
a limit of the eigenvalues when the independent variable tends to infinity. Of course, we can
obtain a smaller information about the system behavior than from the Lyapunov exponents
calculation approach, but we avoid some known computing difficulties [22, p.73 and further].
Note that contemporary procedures to calculate the Lyapunov exponents both in discrete
and continuous nonlinear systems are described in [23].

Next, we think that in numerous works on numerical approaches a problem of choice of
the calculation time is not explained until now, although some discussion about a selection
of the Lyapunov exponents calculation time is presented, for example, in [22, p.81]. Unfor-
tunately, the principle ”to calculate as long as possible” is dominanted in many works. It
seems to us that we proposed a simple test for determination of the calculation time starting
from the real calculations at points on some chosen mesh of the system under consideration
parameter space.

7 Conclusions

We analyzed in this paper the stability of regular or chaotic vibration modes in two-DOF
multistable nonlinear systems. The stability problem for chaotic modes has no analytical
solution because the chaotic motions cannot be described without a computer simulation.
A new stability test is proposed here. The test permits to implement on computer the
classical Lyapunov stability definition for a case when initial variations are not arbitrary
small, that is they are limited below . Note that a realization of this approach is not difficult
because only the standard Runge-Kutta procedure with an additional stability condition is
used. Calculations by computer which correspond to the test are conducted for points of
some chosen mesh of the system parameter space and continued until boundaries of stability
and instability regions (in the mesh scale) are stabilized. This is the principal criterion for
a choice of the calculation time. Stability of regular or chaotic vibration modes of some
nonlinear elastic system is considered.

The methodology presented in this work is sufficiently general to be applicable to sta-
bility problems for vibration modes in different types of nonlinear systems.

The approach of determination of the chaos onset, which is based on the Lyapunov
stability definition, is also proposed. Mutual instability of phase trajectories is used as a
criterion of the chaotic behavior of dynamical system. An effectiveness of this approach is
confirmed by calculations of the chaos onset of the nonautonomous Duffing equation and
pendulum system. The methodology can be considered as an alternative to the well-known
Poincare’ map approach, and can be applicable to a determining of the chaos onset in other
dynamical systems.
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