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M. Moskalets
1,2

and M. Büttiker
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Using multi-particle distribution functions we calculate the correlations produced by a periodi-
cally driven scatterer in a system of noninteracting electrons at zero temperature. The multi-particle
correlations due to a quantum exchange effect are expressed in terms of photon-assisted scattering
amplitudes. The results we obtain are valid for slow but arbitrary in strength driving. We show
that even for large amplitude pumps the zero-frequency noise power is related to two-particle corre-
lations. In addition to two-particle correlations a large amplitude pump can generate multi-particle
correlations.
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I. INTRODUCTION

In recent papers1,2 it was shown that a periodically
driven unbiased scatterer, a quantum pump3,4,5,6,7, can gen-
erate entanglement in a system of noninteracting fermions.
Entanglement8,9,10,11 is a property of quantum objects which
has a powerful potential for applications in information
processing.12 The main resource for quantum computation
are specific correlations between different parts of a quantum
system. These correlations reflect the fact that some quan-
tum states of a whole system can not be represented as a
product of states corresponding to its different parts. Such
states are called non-separable. For them the joint probabil-
ity to find the system’s parts in some states does not factorize
into the product of probabilities to find any of the parts in
a corresponding state. Thus the joint probability consists of
two terms: the first one is a product of probabilities for single
parts, and the second one depends on correlations between
the system’s parts. The last term in itself can be used as an
entanglement measure (see, e.g., Refs. 13,14). Such a measure
is especially appropriate for systems of non-interacting par-
ticles where there are no other sources of correlations except
the quantum-statistical interactions due to the Pauli exclu-
sion principle.

In open (i.e., coupled to external reservoirs) solid state sys-
tems it is more appropriate to discuss the properties of states
rather then the properties of separate individual particles.
The occupation of a single-particle state is given by the single
particle distribution function which is a probability to find
the particle in a state under consideration. By analogy, for a
system of noninteracting particles, one can consider the prob-
ability to find several particles in some given (single-particle)
states. This probability is a multi-particle distribution func-
tion. which is a diagonal element of a corresponding multi-
particle density matrix. If the particles are correlated (i.e.,
if the multi-particle state is not-separable) then the multi-
particle distribution function does not factorize into a product
of single-particle distribution functions.

In this paper we calculate the multi-particle distribution
functions for particle flows generated by a periodically driven
scatterer and relate them to the noise power which can be

measured in solid state structures. We consider a mesoscopic
scatterer coupled to Nr stationary reservoirs of noninteracting
electrons via single channel leads. We will number electron
states in leads with Greek letters, α, β, . . . , which include both
the orbital (a lead number) and the spin indices. We suppose
that all the reservoirs are at zero temperature and have the
same Fermi energy µ. The electrons in different reservoirs are
uncorrelated. Therefore, the multi-particle incoming state is
pure and separable. After scattering by the pump the state
remains pure.2 However it becomes correlated and thus non-
separable.1,2 Correlations between the out-going particles ap-
pear as a result of an interplay of two factors, the Pauli ex-
clusion principle and photon-assisted scattering at a working
pump.

Below, we consider, first, the effect of photon-assisted scat-
tering which appears already in single-particle scattering.
Then, in a second step, we analyze two- and multi-particle
correlations.

The paper is organized as follows. In Sec.II we discuss the
approximations made and analyze the single-particle distribu-
tion function for electrons scattered by the pump. In the next
section, Sec.III, we calculate the two-particle correlations and
their relation to the zero-frequency noise power in the case of
large amplitude pumps. Then, in Sec.IV we consider multi-
particle correlations produced by the pump. We conclude in
Sec.V.

II. SINGLE-PARTICLE SCATTERING

In the presence of a scatterer oscillating with frequency Ω,
particles absorb or emit energy quanta while traversing the
pump. In contrast, while in the leads, they are described by
the stationary Schrödinger equation. Thus one can classify
the states of electrons (both out-going and incoming) in the
leads according to a particle energy E like in the stationary
case. Therefore, we will use the second quantization operators
corresponding to states of particles with definite energy. We
denote the annihilation operator for incoming states âα(E)

and the one for scattered electrons b̂α(E). These operators are
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related to each other through the Floquet scattering matrix
ŜF of a periodically driven scatterer.15,16,17

A. Adiabatic approximation

If the pump oscillates slowly, Ω → 0, then the Floquet scat-
tering matrix can be expressed in terms of the Fourier coef-
ficients Ŝm(E) of the stationary scattering matrix Ŝ(E, {pi})
with time dependent parameters pi(t + T ) = pi(t), where
T = 2π/Ω, as follows:18

ŜF (E, Em) = Ŝ−m(E) + O(Ω). (1)

Here Em = E + mh̄Ω; m is an integer. We ignore terms of
order Ω and higher. The Floquet scattering matrix couples
electron states at energies shifted by one or several quanta
h̄Ω. In what follows, we will consider only electrons with
energy close to the Fermi energy µ. Thus it is convenient to
introduce the following notation for energy variables: E ≡
ǫn = ǫ + nh̄Ω, where the Floquet energy ǫ lies within the
interval, µ < ǫ < µ+ h̄Ω. As a consequence, the operators for
out-going particles relate to the ones for incoming particles
through:

b̂α(ǫn) =
∑

β

∑

m

Sαβ,n−mâβ(ǫm), (2)

We evaluate the stationary scattering matrix at the Fermi en-
ergy. Current conservation forces the Floquet scattering ma-
trix to be unitary. In the adiabatic approximation of Eq.(1)
the unitarity reads:

∑

γ

∞
∑

m=−∞

S∗
γα,mSγβ,m+l =

∑

γ

∞
∑

m=−∞

S∗
αγ,mSβγ,m+l = δl0δαβ ,

(3)
This follows directly from the fact that the stationary scat-
tering matrix is unitary: Ŝ†Ŝ = ŜŜ† = Î. Here Î is a unit
matrix.

At zero temperature all incoming states with ǫm < µ
(m ≤ −1) are filled while the ones with ǫm > µ (m ≥ 0) are
empty. The corresponding single-particle distribution func-

tion f
(in)
α (ǫm) = 〈â†

α(ǫm)âα(ǫm)〉 is the Fermi distribution
function which is the Heaviside step function at zero temper-
ature.

B. Non-equilibrium out-going particles

The situation is different for out-going particles. Due to
interaction with an oscillating scatterer an electron can gain
or lose some energy quanta h̄Ω. Therefore, some out-going
states with ǫn > µ can be partially occupied while the ones
with ǫn < µ become partially emptied. The probability to
find an out-going particle in the state with energy ǫn in lead
α is given by the single-particle distribution function:18

f (out)
α (ǫn) = 〈b̂†α(ǫn)b̂α(ǫn)〉 =

∑

γ

−∞
∑

m=−1

|Sαγ,n−m|2 . (4)

Here 〈· · · 〉 denotes a quantum-statistical average. Since the

b̂-operators are expressed in terms of â-operators [see, Eq.(2)]

we, in fact, average over (the product of) the equilibrium
states of reservoirs.

To assess f (out) at energies far from the Fermi energy we
take into account the following. For each particular pump,
there exists nmax such that Ŝ±n ≈ 0 for |n| ≥ nmax. Then far
below (above) the Fermi energy, n ≤ −nmax (n ≥ +nmax), all
the relevant incoming states are filled (empty). Therefore, the
out-going state is filled (empty) with a unit probability. For
n ≤ −nmax this follows directly from the unitarity condition
Eq.(3) taken at l = 0 and α = β.

In contrast, in the vicinity of the Fermi energy, ǫn ≈ µ (with
|n| ≤ nmax), the distribution function Eq.(4) describes par-
tially occupied states above and below µ (see Fig.1). Since
for these energies not all the relevant [i.e., the states with
energy ǫm for which −nmax ≤ n − m ≤ +nmax] incoming
states are filled (empty). The incoming states correspond-
ing to n − nmax ≤ m ≤ −1 are filled while those with
0 ≤ m ≤ n + nmax are empty. Close to the Fermi en-
ergy particles in nmaxNr incoming channels are scattered into
2nmaxNr available out-going channels. Since the number of
available out-going channels is larger then the number of in-
coming channels, the appearance of a particle in some out-
going state is a random process. This results in a partial oc-
cupation of the corresponding single-particle states and leads
to the appearance of particle-particle correlations.

Notice, the pump is able to correlate only those out-going
particles which have energies shifted by one or several quanta
h̄Ω. While the particles having different Floquet energies,
ǫ 6= ǫ′, remain uncorrelated like the incoming particles.

To investigate the correlations we calculate the joint prob-
ability to find several out-going channels occupied and com-
pare it to the product of occupation probabilities of individ-
ual channels. The single-channel occupation probability is
the one-particle distribution function. In analogy we calcu-
late multichannel occupation probabilities which are multi-
particle distribution functions. First we consider the two-
particle probability.

n=0

n=1

n=−1

n=−2

n=−3

n=2

h Ω

µ

incoming out−going

(β)(α)

FIG. 1: Occupation of single particle states ǫn = ǫ + nh̄Ω
in incoming channels (α) and in out-going channels (β) of a
working pump at zero temperature. The filled box area is
proportional to the occupation probability. The case shown
corresponds to nmax = 3, i.e. Sβα,±|n| ≈ 0, for n ≥ 4. µ is
the Fermi energy; Ω is a driving frequency.
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III. TWO-PARTICLE SCATTERING

To calculate the joint probability to register one out-going
particle with energy ǫn at lead α and other one with energy
ǫm at lead β we introduce the two-particle distribution func-

tion f
(out)
α,β (ǫn, ǫm) for out-going particles. This distribution

function is the quantum-statistical average

f
(out)
α,β (ǫn, ǫm) = 〈B̂†

ǫn,ǫm
(ǫn, ǫm)B̂α,β(ǫn, ǫm)〉, (5)

of the two-particle operator

B̂α,β(ǫn, ǫm) = b̂α(ǫn)b̂β(ǫm). (6)

Using Eqs.(2) and (4) the distribution function can be ex-
pressed as a sum of two contributions,

f
(out)
α,β (ǫn, ǫm) = f (out)

α (ǫn)f
(out)
β (ǫm) + δf

(out)
α,β (ǫn, ǫm), (7)

one which factorizes and an irreducible part, a two-particle
correlation function,

δf
(out)
α,β (ǫn, ǫm) = − |Kαβ(ǫn, ǫm)|2 ,

Kαβ(ǫn, ǫm) =
∑

γ

−∞
∑

p=−1

Sαγ,n−pS∗
βγ,m−p,

(8)

where Kαβ(ǫn, ǫm) = 〈b̂†β(ǫm)b̂α(ǫn)〉 is a matrix element of

the pair correlator.2

If Kαβ(ǫn, ǫm) is non-vanishing the two-particle probability
does not factorize into the product of single-particle ones and
we conclude that the particles are correlated.

The electron-electron correlation function δf
(out)
α,β (ǫn, ǫm)

characterizes correlations between the out-going particles.

Since δf
(out)
α,β is the (negative of a) square of some quantity

we can interpret it as a probability of some scattering process
which is responsible for two-particle correlations. This pro-
cess consists of the creation and scattering of electron-hole
pairs.

A. Two-particle correlations: an electron-hole pair

view

The matrix element Kαβ(ǫn, ǫm) of a pair correlator is a
sum of particular amplitudes

A
(γ;p)
α,β (ǫn, ǫm) = Sαγ,n−pS∗

βγ,m−p, (9)

which can be related to the excitation of an electron-hole
pair from the filled state with energy ǫp incident from reser-
voir γ. Formally one can consider the hole (an empty state)
as a particle with corresponding second quantized operators
â(h) = â†, b̂(h) = b̂†. Therefore, scattering of holes is described
by the adjoint scattering matrix Ŝ†. We define holes for any
energies, above and below the Fermi energy. The hole can be
scattered by the pump like an electron. Both electron and
hole can emit/absorb some energy quanta h̄Ω. Therefore, the
amplitude Eq.(9) corresponds to the process with a final state
in which an electron with energy nh̄Ω is scattered into lead
α and a hole with energy mh̄Ω is scattered into lead β. To
get the whole amplitude Kαβ(ǫn, ǫm) it is necessary to sum
over all the indistinguishable processes leading to a given final
state. Different processes are possible due to the presence of

many leads (index γ) from which the pair is born and due to
different filled energy channels (index p). Alternatively the

quantity
(

A
(γ;p)
α,β (ǫn, ǫm)

)∗

is an amplitude for electron and

hole to be scattered to leads β and α, respectively. Therefore,

the two-particle correlation function δf
(out)
α,β (ǫn, ǫm), Eq.(8), is

the probability to create an electron-hole pair and to emit its
constituents (an electron and a hole) into two chosen states.
Notice, the shot noise generated by the pump is due to the
same processes.19

We remark that the electron-hole pair shot noise generated
by a microwave field applied to the contacts of the sample
has recently been measured.20 In this experiment there is no
applied dc-voltage and hence no dc-current. Refs. 21 and
22 propose experiments with multiple microwave fields of the
same frequency but with possible phase-lags applied to dif-
ferent contacts of the sample. In contrast to the discussion
provided here, since the microwave fields are applied to the
contacts, the scattering matrix is (apart from self-consistent
effects22) stationary.

One can ask why the correlations between two electrons de-
pend on processes involving electron-hole pairs. That is due
to the fact that in each state the (operators for the) numbers
of electrons and holes sum up to unity. Therefore, the fluctua-
tion of the number of electrons and holes are not independent
from each other. As a result the various two-particle correla-
tion functions involving electrons and/or holes are related to
each other in a simple way:

δf
(out)
α,β (ǫn, ǫm) = −δf

(out)
α,β (0ǫn , ǫm)

= −δf
(out)
α,β (ǫn, 0ǫm ) = δf

(out)
α,β (0ǫn , 0ǫm).

(10)

Here 0ǫn means that there is no particle (there is a hole) in
the state ǫn. Note, we define an electron-hole distribution

function, say f
(out)
α,β (ǫn, 0ǫm), by Eq.(5) with an electron op-

erator b̂β(ǫm) being replaced by the corresponding hole oper-

ator b̂
(h)
β (ǫm) = b̂†β(ǫm). The various two-particle distribution

functions sum up to unity

f
(out)
α,β (ǫn, ǫm) + f

(out)
α,β (0ǫn , ǫm)

+f
(out)
α,β (ǫn, 0ǫm ) + f

(out)
α,β (0ǫn , 0ǫm) = 1.

(11)

This normalization condition justifies the point of view that

f
(out)
α,β is a two-particle joint probability. In addition Eq.(11)

shows that the electron-hole processes affect the electron-
electron probability.

Note, that the whole electron-hole scattering amplitude
Kαβ(ǫn, ǫm) is a sum of a number of two-particle (electron-

hole) photon-assisted scattering amplitudes A
(γ;p)
α,β (ǫn, ǫm)

which interfere between themselves. When all the relevant
incoming states are filled then owing to current conserva-
tion [i.e., to a unitarity of scattering, Eq.(3)] the electron-hole
amplitudes cancel each other and the correlations disappear.
This holds for particles with energies far below the Fermi en-
ergy. That is quite similar to the stationary case when the
unitary scattering process does not produce additional corre-
lations if incoming states are not correlated.23,24 In contrast
for the particles with energies close to the Fermi energy not
all the relevant incoming state are filled and the correlations
appear.



4

B. Pauli exclusion principle and two-particle joint

probability

The correlations under consideration are quantum-
mechanical because they originate from the Pauli exclusion
principle. According to this principle two particles can not
be simultaneously scattered into the same out-going state,
and any incoming state can not be a source for two parti-
cles. Formally the Pauli principle leads to the existence of
two amplitudes (direct and exchange) describing scattering
of two fermions. In our case this becomes evident if we ex-
press the two-particle distribution function in terms of Slater
determinants:

f
(out)
α,β (ǫn, ǫm) = 1

2

∑

γ

∑

δ

−∞
∑

p=−1

−∞
∑

q=−1

∣

∣

∣
detM̂ (2)

∣

∣

∣

2

,

M̂ (2) =

(

Sαγ,n−p Sαδ,n−q

Sβγ,m−p Sβδ,m−q

)

.

(12)

Thus, the joint probability to measure two particles in some
given out-going states |α; ǫn〉 and |β; ǫm〉 is a sum of various
probabilities describing photon-assisted scattering of two elec-
trons. Each such scattering is described by the Slater determi-
nant whose elements are photon-assisted single-particle scat-
tering amplitudes. The sum of squared direct/exchange two-
particle amplitudes gives the product of two single-particle

distribution functions f
(out)
α (ǫn)f

(out)
β (ǫm) (it is a joint prob-

ability for uncorrelated particles). While the interference
between direct and exchange amplitudes is responsible for
electron-electron correlations.

C. Current noise and two-particle correlations

The quantity δf
(out)
α,β (ǫn, ǫm) characterizes how much two

particles in the states |α; ǫn〉 and |β; ǫm〉 are correlated be-
tween themselves. To measure these correlations (as well as
to measure single-particle distribution functions) one needs to
use energy filters with resolution better then h̄Ω. Apparently
this is a challenge for an experimental realization especially
in the adiabatic regime, Ω → 0. Therefore, it is useful to
relate what we calculated to what can be easier measured ex-
perimentally. In mesoscopic systems the zero frequency noise
power is an observable which characterizes the correlations
between the particles.25,26,27

The zero frequency noise power,

Pαβ =
1

2

T
∫

0

dt

T

∞
∫

−∞

dτ 〈∆Îα(t)∆Îβ(t + τ )+ ∆Îβ(t+ τ )∆Îα(t)〉,

(13)

produced by the pump was calculated in Ref. 19. Here Îα(t) is

the current operator in lead α and ∆Îα(t) = Îα(t)−〈Îα(t)〉. In

terms of δf
(out)
α,β (ǫn, ǫm) the zero-temperature current-current

cross-correlator (α 6= β) reads

Pαβ = e2 Ω

2π

∞
∑

n=−∞

∞
∑

m=−∞

δf
(out)
α,β (ǫn, ǫm), α 6= β. (14)

The auto-correlator Pαα can be calculated using the conser-
vation law

∑

α Pαβ = 0. Notice the factor Ω/2π counts all

the statistically independent sets of states corresponding to
the different Floquet energies 0 < ǫ − µ < h̄Ω.

We see that the zero-frequency noise power depends on
pair correlations between the out-going particles in different
energy channels exiting the pump through two chosen leads
α and β. Therefore, it can be used as a measure of two-
particle correlations produced by the pump. That agrees with
conclusions made in Ref. 1. However the pump produces the
multi-particle correlations as well.

IV. MULTI-PARTICLE SCATTERING

To show this we introduce an N-particle operator

B̂α1,··· ,αN (ǫn1
, · · · , ǫnN ) =

N
∏

j=1

b̂αj (ǫnj ), (15)

and the corresponding N-particle distribution function

f
(out)
α1,··· ,αN

= 〈B†
α1,··· ,αN

Bα1,··· ,αN 〉, which can be represented
in terms of N × N Slater determinants

f
(out)
α1,··· ,αN

(ǫn1
, · · · , ǫnN ) = 1

N!

∑

γ1...γN

−∞
∑

p1...pN=−1

∣

∣

∣
detM̂ (N)

∣

∣

∣

2

,

M
(N)
ij = Sαiγj ,ni−pj , i, j = 1, · · · , N.

(16)
The N-particle correlations can be defined as follows. Let
us subtract from the N-particle distribution function var-
ious products of distribution functions and correlations
functions corresponding to a smaller number of parti-
cles. Then the remaining N-particle correlation function

δf
(out)
α1,··· ,αN

(ǫn1
, · · · , ǫnN ) will describe the correlations shared

by N scattered particles. In terms of elements of the pair
correlator it reads as follows:

δf
(out)
α1,··· ,αN

(ǫn1
, · · · , ǫnN ) = (−1)N−1 ∑

P ′

N

×Kαr1
αrN

(ǫnr1
, ǫnrN

)
N−1
∏

j=1

Kαrj+1
αrj

(ǫnrj+1
, ǫnrj

).
(17)

Here the sum runs over the set of all non-equivalent permu-
tations P ′

N = (r1, r2, · · · , rN) of integers from 1 to N . Non-
equivalent permutations of integers are those that can not be
obtained via a cyclic permutation of each other.

Notice, the multi-particle correlation function, Eq.(17), for
N > 2 can be either positive or negative unlike the two-
particle correlation function, Eq.(8), which is definitely nega-
tive.

A. Three-particle correlations

As an example we consider the three-particle distribution
function in detail (for brevity we suppressed corresponding
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FIG. 2: Three-particle correlation function

δf
(out)
L,L,R(ǫn0

, ǫn1
, ǫn−1

) as a function of the phase
lag ϕ. The scattering potential is: V (x, t) =
δ(x+a/2)[V0 +2V1 cos(Ωt)]+ δ(x−a/2)[V0 +2V1 cos(Ωt+ϕ)]
The parameters are: a = 100π; V0 = 20; V1 = 10; and the
Fermi energy µ = 1.0197. We use the units 2me = h̄ = e = 1,
where me is the mass of an electron.

energy arguments):

f
(out)
α,β,γ = f

(out)
α f

(out)
β f

(out)
γ + f

(out)
α δf

(out)
β,γ

+f
(out)
β δf

(out)
α,γ + f

(out)
γ δf

(out)
α,β + δf

(out)
α,β,γ ,

δf
(out)
α,β,γ(ǫnα , ǫnβ

, ǫnγ ) = 2Re

[

∑

χ

−∞
∑

r=−1

Sαχ,nα−rS
∗
γχ,nγ−r

×
∑

δ

−∞
∑

p=−1

Sβδ,nβ−pS∗
αδ,nα−p

∑

ϕ

−∞
∑

q=−1

Sγϕ,nγ−qS
∗
βϕ,nβ−q

]

,

(18)

where the single-particle distribution function f
(out)
α and

the two-particle correlation function δf
(out)
α,β are defined

in Eq.(4) and Eq.(8), respectively. In the station-
ary case a three-particle correlation function is positive,

δf
(out)
α,β,γ(ǫnα , ǫnβ

, ǫnγ ) = 2δα,βδβ,γδnα,nβ
δnβ ,nγ . In contrast

in the driven case the sign can be either positive or negative.

In Fig.2 we give the three-particle correlation function

δf
(out)
L,L,R(ǫn0

, ǫn1
, ǫn−1

) for a two-terminal 1D scatterer com-
posed by two oscillating δ-function potentials placed a dis-
tance a from one another. The indices L and R stand for the
left and right terminals, respectively. The variation of the
phase lag ϕ between oscillating potentials changes the value
and the sign of the three-particle correlation function.

B. Generating function

Formally one can represent the N-particle correlation func-
tion, Eq.(17), as the N-th order derivative of some generat-

ing function dependent on the pair correlator K̂. To this
end we introduce a diagonal matrix Λ̂ = diag(λρ) of aux-
iliary fields λρ., where ρ = 1, 2, · · · , Nmax with Nmax =
(2nmax + 1)Nr . The index ρ ≡ (α, n) includes both the
lead index α = 1, 2, · · · , Nr and the energy channel index
n = 0,±1, · · · ,±nmax. Then the N-particle correlation func-
tion can be calculated as

δf (out)
ρ1,··· ,ρN

=
∂NTr ln

(

Î + Λ̂K̂
)

∂λρ1
· · · ∂λρN

∣

∣

∣

∣

∣

∣

λρ=0

. (19)

Here Î is a unit matrix of dimension Nmax×Nmax. For N = 1
we obtain the single-particle distribution function, Eq.(4).

To prove that Eq.(19) leads to Eq.(17) it is necessary to

use the Taylor expansion of Eq.(19) in powers of Λ̂. Only the
N-th term of this expansion does contribute to the quantity
of interest.

We emphasize that Eq.(19) determines a multi-particle cor-
relation function which is a different quantity then transferred
charge which is usually discussed.28 The important difference
is that here we are interesting in energy-resolved correlation
characteristics of pumped particles rather then in statistical
properties of the whole current carried by the particles at all
the energies.

C. Higher order current cumulants

The multi-particle correlations generated by the pump can
be related to higher order current cumulants in full analogy
with how the two-particle correlations are related to the zero-
frequency noise power, Eq.(14).

We consider the zero-frequency Fourier transform of the
Nth-order current correlation function symmetrized in lead
indices

Pα1···αN =
1

N !

T
∫

0

dt

T

∞
∫

−∞

dτ2 · · · dτN

∑

PN

〈
N
∏

i=1

∆Îαri
(t + τri)〉.

(20)
Here the sum runs over the set of all the permutations PN =
(r1, · · · , rN ) of integers from 1 to N. We suppose τ1 = 0.

At zero temperature the current cross-correlator (α1 6=
· · · 6= αN ) can be expressed in terms of the N-particle cor-
relation functions for outgoing particles as follows:

Pα1···αN =
eNΩ

2π

∞
∑

n1=−∞

· · ·

∞
∑

nN=−∞

δf (out)
α1,··· ,αN

(ǫn1
, · · · , ǫnN )

(21)
Such a relation follows straightforwardly from two observa-
tions. First, at zero temperature only the currents carried by
the outgoing particles contribute to the current correlation
function. And, second, the operators for outgoing particles in
the expression for the current cross-correlation function can
be arranged into the same order as in the expression for the
N-particle correlation function.
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Therefore, the N-particle correlations generated by the
pump can be experimentally probed via the Nth-order cross-
correlator of currents flowing into the leads attached to the
pump.

V. DISCUSSION AND CONCLUSION

We have shown that an adiabatic quantum pump gener-
ates multi-particle correlations which originate from the Pauli
exclusion principle and appear in photon-assisted scattering
channels. Formally the pump produces multi-particle corre-
lations up to an infinite order (N → ∞). This is because the
pump can excite all the incoming particles. In fact, as we
mentioned already, this number can be bounded by nmaxNr.

The multi-particle correlations of all orders are important
to characterize the whole outgoing state produced by the
pump. For instance, one projects the whole state onto a
state with an exact number of excited particles. Such a pro-
jected state is a multi-particle state, therefore, its statistical-
correlation properties depend on multi-particle correlations
as well. In Ref. 2 the projected electron-hole pair state pro-
duced by the pump was considered and the electron-hole en-
tanglement entropy was calculated. Since the entanglement
entropy depends on multi-particle correlations, it, in a gen-
eral case, can not be related to charge noise representing only
two-particle correlations, Eq.(14). However in some particular
cases the pump produces effectively only two-particle correla-

tions. This is the case for a weak amplitude (nmax = 1), spin-
independent pump with two single-channel leads (Nr = 2).
In this case entanglement entropy can be related to charge
noise.1,2

The multi-particle correlations Eq.(17), produced by the
pump depend on the elements of the Floquet scattering ma-
trix. These elements are amplitudes of scattering with ab-
sorption or emission of one or several modulation quanta
h̄Ω. The maximum number nmax of energy quanta which can
be absorbed/emitted during the scattering process define the
maximum order of multi-particle correlations produced by the
pump. The number nmax depends strongly on the strength
of driving. At weak driving nmax = 1 while at strong driving
nmax ≫ 1. On the other hand the value of a multi-particle
correlation function can be changed by changing the parame-
ters of driving, for instance, the phase difference between two
driving parameters. Therefore, the order and the amount of
correlations generated by a pump can be simply manipulated
by changing the parameters of a drive.
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