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Heat production and current noise for single- and double-cavity quantum capacitors
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We analyze the frequency-dependent noise and the heat production rate for a dynamical quantum
capacitor in the regime in which it emits single particles, electrons and holes. At low temperature
and slow driving the relaxation resistance quantum, Rq = h/(2e2), defines the heat production rate
in both the linear and non-linear response regimes. If a double-cavity capacitor emits particles in
pairs, the noise is enhanced. In contrast the energy dissipated is suppressed or enhanced depending
on whether an electron-hole pair or an electron-electron (a hole-hole) pair is emitted.

PACS numbers: 73.23.-b, 72.10.-d, 73.50.Td

Introduction.– Recent experiments demonstrate1,2 that
a quantum capacitor3 in a two-dimensional electron gas
in the integer quantum Hall effect regime is a promis-
ing device for the realization of a sub-nanosecond, few-
electron, coherent quantum electronics. The capacitor,
shown in the inset of Fig. 1, serves as an RC circuit
with a quantized charge-relaxation resistance1,3,4. This
quantization suggests a high-frequency charge detector
with near quantum limited efficiency.5 The quantum ca-
pacitor can also be used as a single-particle emitter.2

Using capacitors as emitters, several effects were pre-
dicted including shot noise plateaus6, particle emission
and reabsorption7, and a tunable two-particle Aharonov-
Bohm effect8. With increasing frequency the quantum
capacitor can exhibit an inductive-like response.9,10

One of the questions important for any electronic de-
vice is how noisy it is and how much energy is dissi-
pated while it is working. Answering these questions
we also get more insight into relevant physical processes.
Our aim is to explore the electrical noise and the en-
ergy loss of the capacitor driven by a periodical po-
tential. Note that the capacitor by itself can not pro-
duce a zero-frequency noise11, therefore, the noise, we
are interested in, is a frequency-dependent one. In con-
trast, the dissipated energy can be characterized with
the help of a rate IE , i.e, the energy flow averaged over
the period of a drive T . In the linear response regime,
in accordance with the standard fluctuation-dissipation
theorem12, both the frequency-dependent noise and the
heat production rate are governed by the same quantity,
the real part of an admittance, which, for a single-channel
capacitor at zero temperature and for slow driving, is a
universal quantity, Rq = h/(2e2), independent of param-
eters of the capacitor, as it was predicted theoretically3

and revealed experimentally1. However, for the non-
linear response regime in which a single-particle emission
can be achieved2, such a simple relation is not applicable.
This regime is of our prime interest here.

The response of a cavity, driven by a potential U(t)
with large frequency Ω, to an additional small ampli-
tude excitation with smaller frequency was addressed in
Ref. 13. In contrast, we are interested in both the noise
measured at frequency ω and the steady heat production

rate solely due to the potential U(t).
The model and the quantities of interest.– We con-

sider a capacitor consisting of a single cavity (see inset
of Fig. 1) or several cavities (see inset of Fig. 2) placed
in series and coupled to the same edge state. The cav-
ity consists of a circular edge state coupled via a quan-
tum point contact (QPC) with reflection/transmission
probability r/t̃ to an edge state which in turn is con-
nected to a metallic reservoir with equilibrium electrons
described by the Fermi distribution function f0(E) with
chemical potential µ and temperature kBθ.1,2,14,15 The
potential varying in time with period T = 2π/Ω changes
the position of quantum levels in the cavity vis a vis
the Fermi level. Scattering of electrons propagating in
the linear edge state past a periodically driven capacitor
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FIG. 1: (color online) Inset: The cavity with level spacing ∆,
driven by the potential U(t) = U cos(Ωt) is coupled to a lin-
ear edge state by the QPC with transmission T . Main: The
normalized noise to dissipation ratio ξ at zero temperature is
shown as a function of the amplitude U .The quantity ξ ≡ ξ(U)
is defined as, U2

P0(ω)/IE = ξ(U)(2h̄ω3/Ω2) coth (h̄ω/2kBθ).
The curves differ in transmission of the QPC: T = 0.5 (black
solid), 0.4 (red dashed), 0.3 (green dot-dashed), 0.2 (blue
short-dashed). The charge Q (dotted line) emitted during
half of a period indicates the quantized emission regime at
eU >

∼ 0.2∆. The linear response regime is at U → 0.
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is described by the Floquet amplitude SF (Em, E) for a
carrier incident with energy E which absorbs an energy
mh̄Ω = Em − E. It is convenient to write this ampli-
tude as the Fourier transformation, SF (E + mh̄Ω, E) =
∫ T

0 (dt/T )eimΩtSin(t, E). Then the symmetrized cur-

rent correlation function11 P (ω, ω′) can be written as
follows16, P (ω, ω′) =

∑∞
l=−∞ 2πδ(ω+ω′− lΩ)Pl(ω) with

Pl(ω) =
e2

2h

∞
∑

n=−∞

∫

dEF (E, En − h̄ω)

×Πn(En − h̄ω, E)Πl−n(E, En − h̄ω) , (1)

where F (E, E′) = f0(E)[1 − f0(E
′)] + f0(E

′)[1− f0(E)].
and Πq(E

′, E) = {S⋆
in (t, E′)Sin(t, E) − 1}q. The lower

index q denotes the Fourier coefficient. The noise power
possesses the following symmetry properties, Pl(ω) =
Pl(lΩ − ω) and Pl(ω) = P−l(−ω).

The corresponding equations for the heat flow IE and
the time-dependent charge current I(t) are,

I(t) =
e

h

∫

dEf0(E)
{

|Sin(t, E)|
2
− 1

}

, (2)

IE = −
i

2π

∫

dE f0(E)

∫ T

0

dt

T
Sin(t, E)

∂S⋆
in(t, E)

∂t
, (3)

All equations (1) - (3) are valid for arbitrary frequency
Ω and arbitrary amplitude of the potential U(t). The
amplitude Sin valid for h̄Ω ≪ µ for a single- and double-
cavity capacitors is given in Refs. 14 and 7, respectively.

In what follows we are interested in the slow frequency
(adiabatic) regime when Sin(t, E) is expressed in terms
of the frozen scattering amplitude S(t, E), see Ref. 17,

Sin(t, E) ≃ S(t, E) +
ih̄

2

∂2S(t, E)

∂t∂E
+ h̄ΩA(t, E) , (4)

with anomalous amplitude A(t, E) satisfying

2h̄Ω Re {S∗A} =
ih̄

2

{

∂S∗

∂t

∂S

∂E
−

∂S∗

∂E

∂S

∂t

}

. (5)

The frozen amplitude is a stationary S-matrix element
calculated for fixed U , with subsequent substitution U →
U(t). For the single-channel capacitor a unitary S re-
quires |S(t, E)|2 = 1, hence, S(t, E) = exp{iϕ(t, E)}.
From Eqs. (4), (5), it follows that the non-adiabatic cor-
rections are small, if the quantum h̄Ω is smaller than
some energy δE characteristic for the stationary scatter-
ing amplitude, h̄Ω ≪ δE.16 For the frequency-dependent
noise, the adiabatic regime implies similarly h̄|ω| ≪ δE.

In the lowest order in Ω the heat flow and the current
are given in terms of the frozen scattering amplitude,16

IE =
h̄

4π

∫

dE

(

−
∂f0

∂E

)

T
∫

0

dt

T

∣

∣

∣

∣

∂S(t, E)

∂t

∣

∣

∣

∣

2

, (6)

I(t) = −
ie

2π

∫

dE

(

−
∂f0

∂E

)

S(t, E)
∂S⋆(t, E)

∂t
. (7)

At low temperatures the heat flow is related to the elec-
tric current, i.e., the measurement of IE can be done
via the measurement of I(t). To show it we consider

the average7,
〈

I2
〉

=
∫ T

0
(dt/T )I2(t). At kBθ ≪ δE

in Eqs. (6), (7) we neglect the energy dependence of the
frozen amplitude and calculate it at the Fermi energy µ.
To simplify

〈

I2
〉

we use, S∂S∗/∂t = −S∗∂S/∂t, follow-
ing from the unitarity condition and finally obtain,

IE = Rq

〈

I2
〉

. (8)

Thus in the adiabatic low-temperature regime the heat
produced by the dynamical capacitor is nothing but the
Joule heat due to the relaxation resistance quantum1,3

Rq = h/(2e2). We are not expecting such a relation at
finite temperatures and/or out of the adiabatic regime.

The noise power calculations are different for the
single-cavity and the double-cavity cases.

The single-cavity capacitor.– If the capacitor comprises
only one cavity with a circular edge state driven by the
uniform potential U(t) = U cos (Ωt), then ϕ(t, E) ≡
ϕ(U(t), E). In this case the right hand side of Eq. (5)
is zero and we conclude that A = 0.

To relate Pl(ω) to IE we express both of them in terms
of the frozen density of states (DOS),

ν(t, E) = (i/2π)S(t, E)∂S∗(t, E)/∂E . (9)

Using Eq. (4) with A = 0 into Eq.(1) and expanding
S(t, En − h̄ω) ≈ S(t, E) + h̄[nΩ − ω] ∂S/∂E we find,

Pl(ω) = ξl(ω)

∞
∑

n=−∞

∫

dEF (E, En − h̄ω) νnνl−n, (10)
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FIG. 2: (color online) Inset: Two cavities with level spac-
ing ∆j (j = 1, 2) are connected to a common edge state
by QPCs with transmission Tj . Main: The heat current
IE,tot in units of π(eU1/∆1)

2h̄Ω2 and the normalized noise
power P0,tot, both at zero temperature, are shown in func-
tion of the phase δ2 of the potential U2(t) in the quantized
emission regime. The quantity P0,tot is defined as follows,
P0,tot(ω) = P0,tot(πe2h̄2ω3/∆2

1) coth (h̄ω/2kBθ). The param-
eters are: Tj = 0.1; eUj = 0.5∆1; ∆2 = ∆1, δ1 = π/2.
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where ξl(ω) = (he2/2)ω(ω − lΩ), and νq is a Fourier co-
efficient for the frozen DOS.

If kBθ ≫ h̄|ω|, h̄Ω we use F (E, En − h̄ω) ≃ −2kBθf ′
0,

where f ′
0 ≡ ∂f0/∂E, and if h̄|ω| ≫ kBθ, h̄Ω we use

F (E, En − h̄ω) ≃ {f0(E) − f0(En − h̄ω)}
2
. Integrating

over energy in Eq. (10) we find for kBθ ≫ h̄Ω or |ω| ≫ Ω:

Pl(ω) = ξl(ω)h̄ω coth

(

h̄ω

2kBθ

) ∫

dE (−f ′
0) {ν

2}l. (11)

If the single uniform potential with amplitude
|eU | ≪ µ acts onto the capacitor, we use, ∂S/∂t =
−(∂S/∂E)edU(t)/dt, to calculate the heat flow IE . From

Eq. (9) we find, |∂S/∂t|
2

= 4π2e2(dU/dt)2ν2(t, E). Us-
ing the latter relation in Eq. (6) we find for the harmonic
potential U(t) = U cos (Ωt),

IE = C

∫

dE (−f ′
0)

(

2
{

ν2
}

0
−

{

ν2
}

2
−

{

ν2
}

−2

)

, (12)

where C = he2U2Ω2/8. Comparing Eq. (12) with
Eq. (11) we find the following relation,

P0(ω) −
P2(ω) + P−2(ω)

2
=

2IE

U2

h̄ω3

Ω2
coth

(

h̄ω

2kBθ

)

.(13)

This relation is independent of the parameters character-
izing a capacitor. It extends the fluctuation - dissipation
theorem12 for the linear response regime to the non-linear
regime of a single-channel capacitor and to measurement
frequencies different from the driving frequency.

Quantized emission regime.– If the amplitude U is
comparable with the level spacing ∆ for electrons in
the cavity, then the regime of quantized emission can be
achieved.2 In this regime one (or several) electron(s) and
hole(s) are emitted.2,14 We assume the transmission of
the QPC connecting the cavity to the linear edge state is
small, T ≡ |̃t|2 ≪ 1, such that the emission of an electron
and a hole is separated in time. Also we assume the tem-
perature is smaller than the inverse of the half-width of
an emitted current pulse, kBθ ≪ h̄/Γ to neglect the tem-
perature averaging. We choose the amplitude U and the
position of some energy level in the cavity ǫk = µ + eU0

such that only this level crosses the Fermi level µ during
the period. Then one electron and one hole are emitted
at times t∓ = ∓t0. The emission times are defined as
follows, ǫk + eU (t∓) = µ, with Ωt0 = arccos (−U0/U).
The corresponding DOS reads for 0 < t ≤ T :

ν(t, µ) = 4Γ2(∆T )−1
∑

α=−,+

{

(t − tα)
2

+ Γ2
}−1

, (14)

where ΩΓ = T∆/(4π|e|
√

U2 − U2
0 ). The emitted elec-

tron and hole are separated in time if t0 ≫ Γ. In this
regime from Eqs. (12) and (14) we calculate the heat flow,

T IE = h̄Γ−1 . (15)

This heat flow is due to energy h̄/(2Γ) carried by both
electrons or holes emitted during the period T = 2π/Ω.

To calculate Pl(ω), Eq. (11), we need the Fourier coef-
ficients for the squared DOS, Eq. (14). We find,

{

ν2
}

n
=

(4ΩΓ/∆2T 2)e−|n|ΩΓ
{

einΩt
− + einΩt+

}

, in leading order
in ΩΓ ≪ 1. Using it in Eq. (11) we calculate the noise
power for h̄/Γ ≫ kBθ ≫ h̄Ω or h̄/Γ ≫ h̄|ω| ≫ h̄Ω:

Pl(ω) = P̄0(ω) (1 − lΩ/ω) (ΩΓ/2)e−|l|ΩΓ cos (lΩt0) , (16)

where P̄0(ω) = 16πe2h̄2ω3/(∆T )2 coth (h̄ω/2kBθ) is the
maximum noise produced by a stationary capacitor. In
the stationary case the noise is maximum if one of the
capacitor’s levels aligns with the Fermi energy, ǫk = µ.
Note that Eqs. (15) and (16) do satisfy Eq. (13).

It is instructive to compare the linear response and the
quantized emission regimes. We choose ǫk = µ to get the
maximum noise in the former case, which is now realized
if κ = |eU |/δE ≪ 1, where δE = ∆T/(2π) is a level
width. In this case IE,lin = (2/π)h̄Ω2κ2 and P0,lin(ω) =
P̄0(ω). In the quantized emission regime we calculate
from Eqs. (15), (16), IE,quan = h̄Ω2κ/π and P0,quan =
P̄0(ω)/(4κ). Comparing these results we find,
{

U2P0(ω)/IE

}

(quan)
= (1/2)

{

U2P0(ω)/IE

}

(lin)
. (17)

In the quantized emission regime, the noise to dissipa-
tion ratio is suppressed compared to the linear response
regime, when the electron-hole pairs are emitted rather
than separate particles, Fig. 1. This ratio is enhanced
in the transition region between plateaus, as it is shown
in Fig. 1 for the transition to the first plateau. In this
case an electron and a hole are emitted nearly simul-
taneously. That suppresses their contribution to both
the charge current and the heat current IE , hence it in-
creases the ratio U2P0(ω)/IE . The suppression of IE due
to electron-hole annihilation will be clarified in the next
section.

The double-cavity capacitor.– The scattering ampli-
tude Sin,tot(t, E) for a capacitor comprising two cavi-
ties connected in series was introduced in Ref. 7. Each
cavity is driven by the corresponding potential Uj(t) =
Uj cos (Ωt + δj), j = 1, 2. The general Eqs. (1) – (3)
and Eqs.(6)–(8) in the adiabatic case, remain valid for a
double-cavity capacitor. In the adiabatic regime the heat
flow in terms of the DOS νj of the cavities reads,

IE,tot =
he2

2

∫

dE (−f ′
0)

∫ T

0

dt

T





2
∑

j=1

νj

dUj

dt





2

. (18)

In the quantized emission regime when each cavity
emits one electron and one hole during a period T , we
use

〈

I2
〉

from Ref. 7, and then from Eq. (8) we find,

IE,tot = Ω
4π

(

h̄
Γ1

+ h̄
Γ2

) {

2 − L
(

∆t
(−+)
1,2

)

−L
(

∆t
(+−)
1,2

)

+ L
(

∆t
(−−)
1,2

)

+ L
(

∆t
(++)
1,2

)}

,

(19)

where Γj is a half-width of a current pulse emitted by the

jth cavity, ∆t
(αβ)
1,2 = t1α−t2β is the difference of emission
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times, and L(X) = 4Γ1Γ2/
(

X2 + (Γ1 + Γ2)
2
)

.

Remarkably, if the capacitor acts as a two-electron

(two-hole) emitter, ∆t
(αα)
1,2 = 0, then the dissipated heat

is enhanced compared to the regime when particles are
emitted at different times. In contrast, if the capacitor

emits electron-hole pairs, t
(−+)
1,2 = 0 and/or t

(+−)
1,2 = 0,

then the generated heat is suppressed. The enhance-
ment of IE,tot can be understood as an additional work
generated by the external potentials Uj(t) to inject two
electrons (holes) above (below) the Fermi see into the
same edge state. Therefore, the emitted pair of electrons
(holes) has an energy larger than two particles emitted
separately. The electron-hole pair emission can be viewed
as an reabsorption by the second cavity of a particle emit-
ted by the first cavity. Therefore, none of the particles
carry energy out of the capacitor, hence IE,tot is sup-
pressed. Within this picture we can also say, that the
power done by the first potential, U1(t), to inject a par-
ticle into the edge state was transferred and used in the
second cavity to work against the second potential, U2(t).
This is a realization of the general idea of work transfer

in a coherent electron system put forward in Ref. 18.
In contrast to the heat flow, the noise does not van-

ish even in the electron-hole emission regime. To cal-
culate the noise power we need to obtain a correspond-
ing adiabatic expansion, by analogy with Eq. (4), for the
scattering amplitude Sin,tot(t, E). The frozen scatter-
ing amplitude Stot(t, E) is a product of frozen ampli-
tudes for cavities, Sj(t, E) = exp {iϕ(Uj(t), E)}, such
that Stot(t, E) = S1(t, E)S2(t, E). For simplicity we ne-
glect the contribution due to the wire connecting the cav-
ities. Expanding Sin,tot(t, E) from Ref. 7 to linear in Ω
terms we find the corresponding anomalous amplitude,

h̄ΩAtot(t, E) =
ih̄

2

{

∂S1

∂t

∂S2

∂E
−

∂S1

∂E

∂S2

∂t

}

, (20)

satisfying Eq. (5) with S is replaced by Stot = S1S2. Sub-
stituting the adiabatic expansion for Sin,tot into Eq. (1)

we find the noise power, Pl,tot(ω), generated by the
driven double-cavity capacitor for kBθ ≫ h̄Ω or |ω| ≫
Ω, given by Eq. (11), where we replace {ν2(E)}l with
{

[ν1(E) + ν2(E)]2
}

l
. Then comparing it with Eq. (18)

we conclude that there is no a simple relation between
IE,tot and Pl,tot(ω) similar to Eq. (13) for a single-cavity.

In the quantized emission regime, ΓjΩ ≪ 1, the quan-
tity Pl,tot(ω) is roughly the sum of the noise powers pro-
duced by each cavity separately, if they emit particles
at different times, |t1α − t2β| ≫ Γ1 + Γ2. Whenever the
two particles are emitted simultaneously, the noise is en-
hanced no matter whether these particles are of the same
kind (two electrons or two holes) or whether they are dif-
ferent (an electron-hole pair). This is in striking contrast
to the heat current, IE,tot, which is enhanced in the for-
mer case and is suppressed in the later case. In Fig. 2
we show both the noise and the heat current produced
by the double-cavity capacitor in the quantized emission
regime, when each cavity emits one electron and one hole
during the period. If we change the phase lag, δ = δ2−δ1,
between U1(t) and U2(t) then the relative time when cav-
ities emit particles changes. The left peak corresponds to
a two-particle emission, while the right peak and dip cor-
respond to an electron-hole pair emission.

Conclusion.– We have explored energetics and correla-
tion properties of a dynamical quantum capacitor func-
tioning as a single- or two-particle emitter. We showed
that at low temperatures the relaxation resistance quan-
tum Rq defines the heat production in both linear and
quantized emission regimes. This allows to estimate heat
flow from purely electrical measurements. We found that
the pair of electrons emitted by the double-cavity capac-
itor carries an energy larger than that of two separately
emitted electrons. This is a general effect inherent to
multi-particle emitters.

We thank J. Splettstoesser for useful discussion. We
acknowledge the support of the Swiss NSF, the program
for MANEP, and the EU project SUBTLE.

1 J. Gabelli et al., Science 313, 499 (2006).
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