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To analyze the state of injected carrier streams of different electron sources, we propose to use
correlation measurements at a quantum point contact with the different sources connected via chiral
edge states to the two inputs. In particular we consider the case of an on-demand single-electron
emitter correlated with the carriers incident from a biased normal reservoir, a contact subject to
an alternating voltage and a stochastic single electron emitter. The correlation can be viewed as a
spectroscopic tool to compare the states of injected particles of different sources. If at the quantum
point contact the amplitude profiles of electrons overlap, the noise correlation is suppressed. In the
absence of an overlap the noise is roughly the sum of the noise powers due to the electron streams
in each input. We show that the electron state emitted from a (dc or ac) biased metallic contact
is different from a Lorentzian amplitude electron state emitted by the single electron emitter (a
quantum capacitor driven with slow harmonic potential), since with these inputs the noise correlation
is not suppressed. In contrast, if quantized voltage pulses are applied to a metallic contact instead
of a dc (ac) bias then the noise can be suppressed. We find a noise suppression for multi-electron
pulses and for the case of stochastic electron emitters for which the appearance of an electron at
the quantum point contact is probabilistic.

PACS numbers: 73.23.-b, 72.10.-d, 73.50.Td

I. INTRODUCTION

The experimental realization1 of an on-demand, high-
frequency, single-electron source (SES) makes it possi-
ble to inject into a solid state circuit single particles,
electrons and holes, in a controllable way. Using sev-
eral uncorrelated single-electron sources mesoscopic cir-
cuits were proposed which permit to vary the amount
of fermionic-correlations2 and to produce controllably
orbitally entangled pair of particles3. Similar high-
frequency sources of single electrons were realized us-
ing dynamical quantum dots without4 or with a per-
pendicular magnetic field5. The principal advantage of
on-demand, single-electron sources over the usually used
metallic contacts (MCs) as electron sources is the pos-
sibility, in the former case, to switch on and off quan-
tum correlations between particles initially emitted from
uncorrelated sources. An example of correlations gen-
erated by normal metallic contacts is the two-particle
Aharonov-Bohm effect in the solid state Hanbury Brown-
Twiss interferometer discussed theoretically6–8 and found
experimentally9. In contrast, with single-electron sources
the two-particle interferometer, as it is discussed in
Ref. 3, can show or not show the Aharonov-Bohm effect
depending on whether sources are driven in synchronism
or not.
The appearance of quantum correlations (fermionic, in

the case of electrons) between initially uncorrelated par-
ticles is due to the overlap of wave-packets on the wave
splitter. For electrons in solid state circuits the split-
ter is a quantum point contact (QPC), (see Fig. 1, the
QPC labeled C). Such correlations are well known in
optics, see, e.g., Ref. 10. The overlap of fermions was dis-
cussed in Ref. 11 and in Ref. 12. The overlap depends on

the spatial extend of wave-packets and also on the times
when they arrive at the wave splitter. Thus the resulting
correlations can be used to access information about the
space-time extend of quantum states. For MCs work-
ing as electron sources such information is rather hidden
since the mentioned correlations are always present. In
contrast with on-demand single-electron sources control
of the emission time can be achieved, i.e. the appear-
ance or disappearance of correlations can be controlled.
Thus with such sources the space time extend of quantum
states becomes accessible.

In mesoscopics physics shot noise12 is the natural quan-
tity that can be used to find information on two-particle
correlations.13–15 The shot noise of carriers emitted by
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FIG. 1: (color online) A mesoscopic electron collider circuit
with a single-electron source S, a circular edge state, and a
metallic contact source biased with a voltage V . At the quan-
tum point contact C the particles emitted by the two sources
can collide if the times of emission are adjusted properly. Solid
blue lines are edge states with direction of movement indi-
cated by arrows. Short dashed red lines are quantum point
contacts connecting different parts of a circuit. Black rectan-
gles are metallic contacts.
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two SES’s is suppressed if the wave-packets overlap at
the QPC connecting edge states in which emitted par-
ticles propagate.2 If two sources are identical and they
emit particles at the same time, the emitted particles are
in identical quantum states and the shot noise is sup-
pressed down to zero. This effect is similar to the Hong-
Ou-Mandel effect in optics16 with the evident difference
that electrons are rather forced go into different output
channels while photons are bunched into the same output
channel.
The aim of this paper is to use the shot noise suppres-

sion as a spectroscopic tool allowing comparison of the
quantum states emitted by the different electron sources.
As the test state we will use the one emitted by the SES.
The SES is made of a quantum capacitor1 in the quan-
tum Hall effect regime. The SES is connected to one of
the arms of the mesoscopic electron collider, Fig. 1. Un-
der the action of a potential U(t) = U cos(Ωt) periodic
in time the SES emits a sequence of alternating electrons
and holes.17 In a certain range of amplitudes, in the quan-
tized emission regime, the SES emits one electron and one
hole. At low driving frequency, in the adiabatic regime,
the emitted state by the SES is close to the state gen-
erated by voltage pulses of Lorentzian form with a time
integral equal to a flux quantum: such a quantized volt-
age pulse produces a single-particle state on top of the
Fermi sea.18–20. In the second arm we put the source of
interest and investigate the resulting shot noise.
The paper is organized as follows: In Sec. II we calcu-

late the zero-frequency cross-correlator of currents flow-
ing into two outputs in the collider circuit with a SES in
one input and a biased metallic contact in other one. In
Sec. III we address the effect of stochastic single-particle
emitters which emit or do not emit a particle in a given
period that arrives at the QPC.We demonstrate the irrel-
evance of such stochastic emission to the shot noise sup-
pression effect. In Sec. IV the shot noise suppression ef-
fect is found for colliding single- and two-electron pulses.
A discussion of our results is given in Sec. V. Much of
the analysis is grouped into three Appendices. In Ap-
pendixA we present a detailed model of a single electron
source. In Appendix B we calculate a current correlation
function for a periodically driven mesoscopic scatterer
connected to reservoirs biased with periodic voltages. In
Appendix C the zero-frequency cross-correlation function
for a circuit with two SESs is expressed it terms of single-
and two-particle probabilities.

II. SINGLE ELECTRON EMITTER AND

BIASED METALLIC CONTACT AS AN

ELECTRON SOURCE

We consider an electron collider with a SES in one
branch and a MC with a potential V

(∼)
2 (t) = V

(∼)
2 (t+T )

periodic in time in another branch, see, Fig. 1. The po-

tential U(t) driving the SES and V
(∼)
2 (t) have the same

period, T = 2π/Ω, which is assumed to be large enough

to consider adiabatic transport and neglect relaxation
and decoherence processes21,22 relevant for high-energy
excitations. In addition the MC is biased with a constant
potential V2 with respect to the other contacts which all
have the same chemical potential µ. The temperature is
taken to be zero.
We utilize the scattering matrix approach23 to trans-

port in mesoscopic systems and describe this circuit with
the help of the frozen scattering matrix

Ŝ(t) =





eikL1SSSES(t)rC eikL1V tC

eikL2SSSES(t)tC eikL2V rC



 , (1)

with SSES(t) the scattering amplitude of the SES, see
Appendix A, Eq. (A5), rC/tC the reflection/transmission
amplitude for the central quantum point contact C, and
LjX the length from the SES (X = S) or the MC
(X = V ) to the contact j = 1, 2 where the corresponding
current Ij(t) is measured. At zero temperature we need
all quantities at the Fermi energy µ only.
We are interested in the zero-frequency correlation

function12 P12 of the currents I1(t) and I2(t) flowing into
the contacts 1 and 2, see Fig. 1. The corresponding cal-
culations are presented in Appendix B. In the adiabatic

regime and at zero temperature we have, P12 ≡ P(sh,ad)
12 ,

Eq. (B26):

P12 = −P0

∞
∑

q=−∞

∣

∣

∣

{

SSESΥ∗
2

}

q

∣

∣

∣

2
∣

∣

∣

∣

eV2

~Ω
− q

∣

∣

∣

∣

, (2)

where P0 = e2RCTC/T is the shot noise2 produced by
one particle (either an electron or a hole) emitted by the
SES during the period T . The oscillating potential at
contact 2 appears in the form of a phase factor

Υ2(t) = e
− i e

~

t∫
−∞

dt′ V
(∼)
2 (t′)

, (3)

which multiplies the scattering amplitude of the SES.
The symbol {..}q indicates the q-th Fourier component
(in time) of these two amplitudes. Eq. (2) illustrates
that the correlation tests the coherence properties of the
two sources.
Note the decoherence processes, which we neglect in

the present work, can lead to suppression of coherence

A. Quantized voltage pulse

With a voltage pulse of Lorentzian shape and a time
integral quantized to a single flux quantum18,19 one can
excite an electron from a Fermi sea without any other dis-
turbance to the Fermi sea. The state for an excited elec-
tron has a Lorentzian density profile (the time-dependent
current is a Lorentzian pulse) which is similar to the one2



3

emitted by the SES in the adiabatic regime. Thus we can
expect a shot noise suppression effect if an electron ex-
cited out of a metallic contact with a quantized voltage
pulse and an electron emitted by the SES collide at the
central QPC. Below we show that this is really the case.
Thus let us assume that a periodic pulsed potential is

applied to the MC,

eV2(t) =
2~Γ

(t− t0)
2 + Γ2

, 0 < t ≤ T , (4)

where Γ ≪ T is the half-width of the pulse, and t0 is the
time when the electron is excited. Such a pulse excites
one electron during the period T .
The potential V2(t), Eq. (4), has a dc component,

eV2 = h/T , and a component which is periodic in time,

eV
(∼)
2 (t) =

2~Γ

(t− t0)
2
+ Γ2

− h

T , 0 < t ≤ T . (5)

The corresponding phase factor Υ2(t), Eq. (3), (for 0 <
t ≤ T ),

Υ2(t) = ei{Ωt−2(arctan t−t0
Γ +arctan

t0
Γ )} . (6)

The result of a numerical evaluation of the shot noise
based on Eq. (2), as a function of the time t0 is given in
Fig. 2. For almost all times t0 the noise is −3P0 and only
at a very special co-incidence time is there a sharp reduc-
tion of the noise. The noise, −3P0, is produced by three
uncorrelated particles emitted during a period: One elec-
tron is emitted by the metallic contact and two particles,
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FIG. 2: Main: The noise P12, Eq. (2), as a function of the time
t0 when an electron is excited out of the metallic contact by
the voltage pulse V2(t). The plot assumes that the half-width
of the voltage pulse at the MC and the pulse of the SES are
the same (Γ = Γ0 ). The parameters of the SES, Eq. (A1),
are: T = 0.1, U0 = 0.25, U1 = 0.5. Inset: The noise at the
minimum as a function of Γ.

an electron and a hole, are emitted by the SES. However,
if the MC and the SES emit electrons at the same time,

t0 = t
(−)
0 , then after colliding at the central QPC these

electrons become correlated and do not contribute effec-
tively to the shot noise. The remaining value, −P0, is
due to the hole emitted by the SES.
The shot noise suppression (ShNS) effect depends on

the overlap of wave-packets in time (hence the times of
emission should be the same) and in space (hence the
width of wave-packets should be the same). If the wave
packets have different width, see inset to Fig. 2, there is
some extra noise. Therefore, the ShNS effect provides a
direct tool to compare the states of particles emitted from
the sources of different types, not only from the similar
sources. The ShNS of two SES’s was already discussed
in Ref. 2.
The most used source of electrons in mesoscopics is a

biased (with dc or ac voltage) metallic contact. Now we
show that the electron collider circuit with SES and a
biased MC as an electron source does not show what we
call the shot noise suppression effect. Therefore, the state
of electrons emanating from a biased MC is different from
the state of an electron emitted by the SES.

B. DC bias

If no ac bias is applied, V
(∼)
2 (t) = 0, the phase factor is

|Υ2(t)|2 = 1 and only the Fourier coefficients
∣

∣SSES
q

∣

∣

2
=

4Ω2Γ2
0 exp(−2ΩΓ0|q|) enter Eq. (2). We recall that we

assume an adiabatic limit ΩΓ0 ≪ 1, where 2Γ0 is the
time during which an electron (a hole) is emitted by the

SES. Since |Sq|2 = |S−q|2, we conclude from Eq. (2) that
in this case the shot noise is independent of the sign of
the voltage. Therefore, the result will be the same no
matter whether the MC emits electrons, eV > 0, or holes,
eV < 0. For definiteness we will use eV2 > 0.
Evaluation of the cross-correlator gives

P12 = −P0

{

eV2

~Ω
+ 2e−2ΩΓ0[ eV2

~Ω ]
(

1 + 2ΩΓ0

[

eV2

~Ω

])}

.

(7)

where we have introduced the integer part [eV2/(~Ω)].
This correlator has the following asymptotics,

P12 =







− 2P0 , eV2 ≪ ~Ω ,

− (e3V2/h)RCTC , eV2 ≫ ~Γ−1
0 .

(8)

Here the first line is the shot-noise due to the SES emit-
ting one electron and one hole during the period. The
second line is the shot noise due to a dc biased metallic
contact alone.12 The latter noise is due to scattering at
the quantum point contact C of extra electrons flowing
out of a biased contact above the Fermi sea with chem-
ical potential µ. These electrons are emitted with rate
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eV2/h. Therefore, one could naively expect that if the
rate of emission of electrons from the SES and from the
MC is the same, ~Ω = eV2, then each emitted electron
will collide at the central QPC with an electron propa-
gating within another edge state and the shot noise gets
suppressed.
This is not the case! As follows from Eq. (7), the shot

noise has no strong feature at eV2 ∼ ~Ω. The shot noise
is a monotonous function of the dc bias V2. A possible
reason for this is that the states of electrons emitted from
the SES and from the dc biased MC are quite different:
The electrons emitted from the SES can be thought as
wave-packets with spatial extend proportional to the du-
ration of emission Γ0. In contrast the electrons emitted
by the metallic contact are rather plane-wave like ex-
tended along the whole edge state. Thus their overlap at
the central QPC is minute hence they do not acquire any
significant correlations. The shot noise remains roughly
the sum of the noises produced independently be the SES
and by the dc biased MC.
Next we show that the noise suppression effect is also

absent if the metallic contact is driven by an ac bias.

C. AC bias

Consider next the case of a metallic contact with an
ac bias, V

(∼)
2 (t) = V

(∼)
2 cos(Ωt), V2 = 0. In this case

the metallic contact emits both electrons and holes. The
cross-correlator, Eq. (2), as a function of amplitude V

(∼)
2

is given in Fig. 3. There is a small feature at eV
(∼)
2 = ~Ω

visible in Fig. 3 but this feature is minute compared to
the huge dip of interest in this work. Therefore, there is

no indication of a shot noise suppression at eV
(∼)
2 ∼ ~Ω

when the rate of emission of particles from the SES and
from the MC is the same.
This is in contrast to the case when sinusoidal voltages

0 5 10 15 20
−15

−10

−5

0

eV
(∼)
2 (~Ω)

P
1
2
(P

0
)

FIG. 3: The noise P12, Eq. (2), as a function of the amplitude

eV
(∼)
2 of the ac potential applied to the metallic contact. The

parameters of the single electron source in Eq. (A1), are:
T = 0.1, U0 = 0.25, U1 = 0.5.

are applied to both inputs24. Then the discussion can
best be cast into excitations of electron-hole pairs25 which
create a shot noise which has been measured26 . For
two oscillating voltages theory predicts significant two-
particle correlations due to the Hanbury Brown-Twiss
effect which depend on the phase delay of the two oscil-
lating voltages24.
One can wonder whether the absence of the shot noise

suppression effect is possibly due to fluctuations in emis-
sion of electrons from the biased metallic contact. Our
expectation is that neither fluctuations nor a possible
presence of multi-electron (multi-hole) states play a cru-
cial role. To show it we consider next two circuits.

III. SHOT-NOISE SUPPRESSION EFFECT

WITH STOCHASTIC SINGLE-ELECTRON

SOURCES

In Fig. 4 we show a circuit with two single-electron
sources, SL and SR each emitting one electron and one
hole per period T . Initially the particle stream is reg-
ular. However, say for particles emitted by the source
SL, at the quantum point contact L an electron (a hole)
can be either reflected to the metallic collector 3 or be
transmitted to the central part of a circuit. Thus, the
single-electron source Sj together with a corresponding
quantum point contact j = L,R comprise a stochastic
single-electron source which can either inject into the cen-
tral part of a collider one electron (hole) during a given
period or not.

2

SL

1I (t)

C
L

R
SR

I (t)

21

4

3

FIG. 4: (color online) A mesoscopic electron collider circuit
with two stochastic single-particle streams originated from the
quantum point contacts L and R. In the case two particles
enter the central part of a circuit they can collide at the quan-
tum point contact C if the times of emission by the sources
SL and SR were adjusted properly. Solid blue lines are edge
states with direction of movement indicated by arrows. Short
dashed red lines are quantum point contacts connecting dif-
ferent parts of the circuit. Black rectangles numbered by 1 to
4 are metallic contacts.
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We assume that all the metallic contacts are grounded
and calculate the zero temperature cross-correlator

P12 ≡ P(sh,ad)
12 , Eq. (B26),

P12 =
e2Ω

4π

∞
∑

q=−∞

|q|
4

∑

γ,δ=1

{S1γ S
∗
1δ}q {S2γ S

∗
2δ}∗q . (9)

Since there is no bias all the phase factors are Υδ = 1
in Eq. (B25) and Vγδ = 0 in Eq. (B26). The elements
of the frozen scattering matrix are expressed in terms
of the transmission/reflection amplitudes ti/ri for the
quantum point contacts i = L,R,C, time-dependent
amplitudes SSES

j (t) for sources Sj , j = L,R, and cor-

responding phase factors eikLαβ with Lαβ a length be-
tween metallic contacts α and β. For instance, S13(t) =
eikL13SSES

L (t)tLrC . For SSES
j (t) we use Eq. (A5) with

emission times t
(±)
0 and a pulse half-width Γ0 replaced

by t
(±)
j and Γj . respectively. Then we find:

P12 = −2P0

{

(TL − TR)
2

(10)

+TLTR

[

γ
(

∆t(−)
)

+ γ
(

∆t(+)
)]

}

,

where ∆t(±) = t
(±)
L − t

(±)
R with t

(±)
j (j = L,R) the time

of an electron (−)/hole (+) emission by the SES j, and
the suppression function

γ (∆t) =
(∆t)2 + (ΓL − ΓR)

2

(∆t)
2
+ (ΓL + ΓR)

2 , (11)

If the single electron sources emit particles at different
times, ∆t(±) ≫ ΓL,ΓR, then the correlation is,

P12 = −2P0

{

T 2
L + T 2

R

}

. (12)

This expression is due to the shot noise produced by
the four uncorrelated particles (two electrons and two
holes) emitted by the two sources during the period T .
Apparently the single-particle contribution (to the cross-
correlator) is negative. We call this regime classical, since
the shot noise can be explained in terms of single-particle
probabilities only, see Appendix C..
On the other hand, if the pulses of the same width,

ΓL = ΓR, are emitted at the same time, t
(−)
L = t

(−)
R (for

electrons) and t
(+)
L = t

(+)
R (for holes), then the cross-

correlator is suppressed:

P12 = −2P0 (TL − TR)
2
. (13)

If in addition the circuit is symmetric, TL = TR, then the
cross-correlator is suppressed down to zero.
This suppression is due to a positive two-particle con-

tribution arising (in addition to negative single-particle
contributions which are also present) when particles (ei-
ther two electrons or two holes) collide at the quantum
point contact C. Due to such collisions each of the par-
ticles loses information about its origin (i.e., about the
source that emitted it) and the pair of particles prop-
agating to contacts 1 and 2 in Fig. 4 becomes orbitally
entangled.3 We call this regime a quantum regime, since
to describe a shot noise we additionally need to take
into account the existence of both direct and exchange
two-particle quantum mechanical amplitudes for collid-
ing particles, see Appendix C, Eq. (C6).
Thus with this circuit we showed that the shot noise

suppression effect is sensitive to a space-time confinement
of electron states rather than to a regularity in appear-
ance of electrons at the place (the QPC C) where they
can overlap.

IV. SHOT-NOISE SUPPRESSION EFFECT

WITH SINGLE- AND TWO-PARTICLE SOURCES

Now we consider a circuit (see Fig. 5) which contains
both a single particle emitter S and a two-particle emit-
ter S2. As a two-particle source we use two single-
electron sources placed close to each other and emitting
in synchronism.27 In the adiabatic case of interest here
the scattering amplitude STES(t) is the product of scat-
tering amplitudes of single-electron sources comprising
a two-particle source. For simplicity we assume both
sources to be identical. Then STES is the square of the

amplitude given by Eq. (A5) with t
(±)
0 and Γ0 replaced

with t
(±)
2 and Γ2, respectively. At the time t

(−)
2 (t

(+)
2 )

S

2

I (t)1
I (t)2

C

S

FIG. 5: (color online) A mesoscopic electron collider circuit
with a single-electron source S and a two-particle source S2.
At the quantum point contact C the particles emitted by
different sources can collide if the times of emission were ad-
justed properly. Solid blue lines are edge states with direction
of movement indicated by arrows. Short dashed red lines are
quantum point contacts connecting different parts of a circuit.
Black rectangles are metallic contacts.
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the pair of electrons (holes) is emitted by the source S2.
The cross-correlator P12, Eq. (B26), reads

P12 = −P0

∞
∑

q=−∞

|q|
∣

∣

∣

∣

{

SSES
(

STES
)∗
}

q

∣

∣

∣

∣

2

, (14)

where SSES(t) is the scattering amplitude, Eq. (A5), for
a single-electron source S and STES(t) is the scattering
amplitude for the two-electron (two-particle) source S2

shown in Fig. 5.
Simple calculations yield:

P12 = −P0

{

γ2
(

∆t(−)
)

+ 2γ
(

∆t(−)
)

+ χ
(

∆t(−)
)

(15)

+γ2
(

∆t(+)
)

+ 2γ
(

∆t(+)
)

+ χ
(

∆t(+)
)

}

.

where ∆t(±) = t
(±)
0 − t

(±)
2 . The function χ(∆t) is,

χ(∆t) =
16Γ2

2Γ
2
0

(

(∆t)2 + (Γ2 + Γ0)
2
)2 , (16)

and the suppression function γ(∆t) is given in Eq. (11)
with ΓL and ΓR replaced by Γ0 (for a SES) and Γ2 (for
a two-particle source), respectively.
If all the particles are emitted at different times,

∆t(±) ≫ Γ0,Γ2, the cross-correlator, P12 = −6P0, is
due to contributions of six uncorrelated particles (three
electrons and three holes) emitted during the period T .
While for simultaneous emission, ∆t(∓) = 0, the cross-
correlator is partially suppressed. If Γ2 = Γ0, the cross-
correlator is suppressed down to the level due to two-
particles, P12 = −2P0. So when the two-electron wave-
packet collides with a single-electron wave-packet, two
colliding electrons, one from each side, produce no noise
while the remaining electron produces noise as if it prop-
agated alone through the QPC. The same holds for hole
wave-packets.

V. CONCLUSION

A method to compare quantum states of initially un-
correlated electrons in mesoscopic circuits was proposed.
The electron streams should be directed onto a quantum
point contact from different sides and the cross-correlator
of currents flowing out of the QPC should be measured.
In general two uncorrelated streams produce additive
noises. However, if the particles overlap at the QPC
they become correlated and the noise gets suppressed.
The closer the quantum states of particles resemble each
other the better the overlap that can be achieved, hence
the noise is suppressed more strongly.

We considered several sources of electrons, in particu-
lar, (i) a metallic contact, emitting a rather continuous
stream of electrons with a rate proportional to the bias,
and (ii) a periodically driven quantum capacitor, a single-
electron source, emitting traveling wave-packets of elec-
trons which are rather localized in space and alternate
with wave packet of holes. We found that the streams
produced by the MC biased with a dc (ac) voltage and
by the SES remain almost uncorrelated after passing the
QPC even if the electrons are emitted with the same
rate. Therefore, we conclude that the electrons of these
streams are in quite different quantum states. On the
other hand, if the periodic sequence of quantized voltage
pulses is applied to an MC, then the resulting electron
stream can be easily correlated with a stream emitted by
the SES resulting in a complete suppression of the shot
noise. From this we can conclude that the electrons of
these streams are in the same quantum states
If the streams are fluctuating then the shot noise can

be suppressed by the amount proportional to the aver-
age number of particles overlapping at the QPC. We also
found a partial suppression of the shot noise in the case
of pulses carrying different number of particles. Basi-
cally the remaining noise is due to the difference of the
numbers of particles carried by the colliding pulses.
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Appendix A: Scattering amplitude and current of a

SES

As a single-electron source we use a quantum
capacitor28,29,1,30 described by a model in which a sin-
gle circular edge state of circumference L in a cavity is
coupled via a quantum point contact (QPC) with trans-
mission probability T to a linear edge state (see the
left upper corner of the Fig. 1). A potential U(t) =
U0+U1 cos(Ωt+ϕ) periodic in time is induced uniformly
over the cavity with the help of a top gate. In the case of
a slow potential, Ωτ ≪ T , where τ is the time of one turn
around the cavity, the (frozen31 ) scattering amplitude of
a capacitor for an electron with incident energy E and
propagating in the linear edge state at time t is:

SSES(t, E) = eiθr
√
1− T − eiφ(t,E)

1−
√
1− Teiφ(t,E)

. (A1)

Here θr is the phase of the reflection amplitude r =
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√
1− T eiθr of the QPC connecting the circular edge

state in the cavity to the linear edge state. φ(t, E) =
θr + φ(E) − 2πeU(t)/∆ is the phase accumulated by
an electron with energy E during one trip along the
cavity and ∆ is the level spacing in the cavity. The
phase φ(E) = kFL + (E − µ)L/(~vD) with kF a con-
stant and vD a drift velocity can be taken to depend
linearly on the energy. In the following, we consider
the scattering amplitude for electrons with Fermi energy,
SSES(t) ≡ SSES(t, µ). We are interested in the limit
of a small transparency, T → 0, when the width of the
levels in the cavity is much smaller than the level spac-
ing ∆. The amplitude U1 of the oscillating potential is
chosen in such a way that during a period only one level
of the cavity crosses the Fermi level µ in the linear edge
state. The time of crossing t0 is defined by the condition
φ(t0, µ) = 0 mod 2π. Introducing the deviation of the
phase from its resonance value, δφ(t) = φ(t, µ)−φ(t0, µ),
we obtain the scattering amplitude,

SSES(t) = −eiθr
T + 2iδφ(t)

T − 2iδφ(t)
+O(T 2) . (A2)

We keep only terms to leading order in T ≪ 1.

There are two time moments when resonance condi-
tions occur (two times of crossing). The first crossing
time is the instant when the level rises above the Fermi
level and the second crossing time is when the level sinks

below the Fermi level. We denote these times t
(−)
0 and

t
(+)
0 , respectively. At the time t

(−)
0 one electron is emit-

ted by the cavity into the linear edge state, while at the

time t
(+)
0 one electron enters the cavity, a hole is emitted.

We suppose that the constant part of the potential U0

accounts for a detuning of the nearest electron level En in
the SES from the Fermi level. Then the resonance times
can be found from the following equation:

En+eU
(

t
(∓)
0

)

= µ0 ⇒ U0+U1 cos
(

Ωt
(∓)
0 + ϕ

)

= 0 .

(A3)

For |eU0| < ∆/2 and |eU0| < |eU1| < ∆− |eU0| we find,

t
(∓)
0 = ∓t

(0)
0 − ϕ

Ω
, t

(0)
0 =

1

Ω
arccos

(

−U0

U1

)

. (A4)

The deviation from the resonance time, δt(∓) = t− t
(∓)
0 ,

can be related to the deviation from the resonance phase,
δφ(∓) = ∓MΩδt(∓), where ∓M = dφ/dt|

t=t
(∓)
0

/Ω =

∓2π|e|∆−1
√

U2
1 − U2

0 . With these definitions we can
rewrite Eq. (A2) as follows:

SSES(t) = eiθr















































t− t
(+)
0 − iΓ0

t− t
(+)
0 + iΓ0

,
∣

∣

∣t− t
(+)
0

∣

∣

∣ . Γ0 ,

t− t
(−)
0 + iΓ0

t− t
(−)
0 − iΓ0

,
∣

∣

∣t− t
(−)
0

∣

∣

∣ . Γ0 ,

1 ,
∣

∣

∣t− t
(∓)
0

∣

∣

∣ ≫ Γ0 .

(A5)

Here Γ0 is (half of) the time during which the level rises
above or sink below the Fermi level:

ΩΓ0 =
T∆

4π|e|
√

U2
1 − U2

0

. (A6)

Eq. (A5) assumes that the overlap between the reso-
nances is small,

∣

∣

∣t
(+)
0 − t

(−)
0

∣

∣

∣ ≫ Γ0 . (A7)

The basic equation for the time-dependent current is
(see, e.g., Ref. 32),

I(t) = − ie

2π

∫

dE

(

− ∂f0
∂E

)

SSES ∂
(

SSES
)∗

∂t
. (A8)

Using Eq. (A5), we find the adiabatic current at zero tem-
perature (for 0 < t < T ):

I(t) =
e

π











Γ0
(

t− t
(−)
0

)2

+ Γ2
0

− Γ0
(

t− t
(+)
0

)2

+ Γ2
0











.

(A9)

In each time interval 2π/Ω the current, shown in Fig. 6,
consists of two pulses of Lorentzian shape with half-width
Γ0. The pulses correspond to the emission of an electron
and a hole. Integrating over time it is easy to check that
the first pulse carries a charge e while the second pulse
carries a charge −e.

Appendix B: Current correlation function

1. General formalism

Let the scatterer be connected via one-channel leads
to reservoirs having different potentials,

Vα(t) = Vα + V (∼)
α (t) . (B1)
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FIG. 6: The time-dependent current, Eq. (A8), generated by
the single-electron source at zero temperature. The posi-
tive (negative) peak corresponds to emission of an electron
(a hole). The parameters of the single electron source de-
scribed by , Eq. (A1), are: T = 0.1, U0 = 0.25∆, U1 = 0.5∆,
ϕ = 0.

Following the approach developed in Refs. 33,34, we in-

clude the potential V
(∼)
α (t) = V

(∼)
α (t + T ), T = 2π/Ω,

oscillating with frequency Ω into the phase of the wave
function for electrons injected into the circuit from reser-
voir α. The constant part of the potential changes the
Fermi distribution function in contact α,

fα(E) =
1

1 + exp
E − µα

kBTα

, µα = µ0 + eVα . (B2)

We introduce the second quantization operator â′α(E)
annihilating an electron in the state with energy E carry-
ing a unit flux35 in reservoir α. Then the corresponding
distribution function is,

〈

a′†α (E)a′α(E
′)
〉

= fα(E)δ (E − E′) . (B3)

If the reservoir α is subject to a periodic in time potential

V
(∼)
α (t), then the wave function for particles described by

the operators â′α is a Floquet type function having side-
bands with energies En = E + n~Ω, n = 0,±1,±2, . . .
The amplitudes of side-bands are,

Υα,n =

T
∫

0

dt

T einΩt Υα(t) , (B4)

Υα(t) = e
− i e

~

t∫
−∞

dt′ V (∼)
α (t′)

.

We suppose that there is no oscillating potential in the
leads connecting the reservoirs to the scatterer. Then the
operator for particles in lead α is,34

âα(E) =

∞
∑

n=−∞

Υα,n â
′
α(E−n) . (B5)

If the scatterer is driven periodically then it is char-
acterized by the Floquet scattering matrix ŜF .

36 We as-
sume that the scatterer is driven with the same period
T as the reservoirs. The element SF,αβ(En, E) is a cur-
rent scattering amplitude35 for an electron incoming from
the lead β with energy E to be scattered with energy
En = E + n~Ω into the lead α. With these amplitudes
we find the operators for scattered particles,31

b̂α(E) =
∑

β

∞
∑

m=−∞

SF,αβ(E,Em)âβ(Em) (B6)

=
∑

β

∞
∑

m=−∞

∞
∑

n=−∞

SF,αβ(E,Em)Υβ,nâ
′
β(Em−n) .

Now we calculate the symmetrized current correlation
function in frequency representation,

Pαβ(ω1, ω2) =
1

2

〈

∆Îα(ω1)∆Îβ(ω2) + ∆Îβ(ω2)∆Îα(ω1)
〉

,

(B7)

where 〈· · · 〉 stands for quantum-statistical averaging over

the (equilibrium) state of reservoirs, ∆Îα(ω) = Îα(ω) −
〈

Îα(ω)
〉

, and Îα(ω) is the operator for the current in lead
α,

Îα(ω) = e

∞
∫

0

dE
{

b̂†α(E)b̂α(E + ~ω)− â†α(E)aα(E + ~ω)
}

.

(B8)

Using Eqs. (B3), (B5) – (B8) we find
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Pαβ(ω1, ω2) =
∞
∑

l=−∞

2π δ(ω1 + ω2 − lΩ)Pαβ,l(ω1) ,

(B9)

Pαβ,l(ω1) =
e2

h

∫

dE

{

δαβ fαα(E,E + ~ω1)

−fαα(E,E + ~ω1)
∑

n

∑

p,q

SF,βα (El+n , Ep)Υα,p S
∗
F,βα (En + ~ω1 , Eq + ~ω1)Υ

∗
α,q

−fββ(E,E + ~ω2)
∑

n

∑

p,q

SF,αβ (El+n , Ep)Υβ,p S
∗
F,αβ (En + ~ω2 , Eq + ~ω2)Υ

∗
α,q

+
∑

γ,δ

∑

n.m.s

∑

p,q,p1,q1

fγδ (En , Em + ~ω1) SF,βγ (El+s, En+q)Υγ,q S
∗
F,αγ (E,En+p)Υ

∗
γ,p

×SF,αδ (E + ~ω1, Em+q1 + ~ω1) Υδ,q1S
∗
F,βδ (Es + ~ω1, Em+p1 + ~ω1)Υ

∗
δ,p1

}

.

Here

fαβ(E1, E2) =
1

2

{

fα(E1) [1− fβ(E2)] + fβ(E2) [1− fα(E1)]
}

. (B10)

We are interested in the zero-frequency limit of the equation given above, when the noise can be conveniently

represented as the sum of the thermal noise P(th)
αβ (vanishing at kBTα = 0, ∀α) and the shot noise P(sh)

αβ (vanishing at

Ω = 0 and eVα = eV0, ∀α).

2. Zero frequency noise power

At l = 0 and ω1 = ω2 = 0 equation (B9) can be represented as follows:

Pαβ =
e2

h

∫

dE
{

P(th)
αβ (E) + P(sh)

αβ (E)
}

, (B11a)

P(th)
αβ (E) = δαβ

{

fαα(E,E) +
∑

γ

Fαγ(E)

}

− Fαβ(E)− Fβα(E) ,

(B11b)

with Fαγ(E) = fγγ(E,E)
∑

n,p,q

SF,αγ (En, Eq)Υγ,qS
∗
F,αγ (En, Ep)Υ

∗
γ,p ,

P(sh)
αβ (E) =

1

2

∑

γ,δ

∑

n.m.s

∑

p,q,p1,q1

{

fγ (En)− fδ (Em)
}2

(B11c)

×SF,βγ (Es, En+q) Υγ,q S
∗
F,αγ (E,En+p)Υ

∗
γ,p SF,αδ (E,Em+q1)Υδ,q1S

∗
F,βδ (Es, Em+p1)Υ

∗
δ,p1

.

Now we show how Eq. (B9) was obtained.
3. Derivation of the current correlation function

To make the calculations more transparent it is con-
venient to represent the current as a sum, Îα(ω) =
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Î
(out)
α (ω) + Î

(in)
α (ω), of a current I

(out)
α carried by the

scattered particles and a current I
(in)
α carried by the in-

cident particles:

Î(out)α (ω) = e

∞
∫

0

dE b̂†α(E)b̂α(E + ~ω) ,

(B12)

Î(in)α (ω) = − e

∞
∫

0

dE â†α(E)âα(E + ~ω) .

Then Pαβ(ω1, ω2), Eq. (B7), can be represented as the
sum of four terms,

Pαβ(ω1, ω2) =
∑

i,j=in,out

P
(i,j)
αβ (ω1, ω2) , (B13)

P
(i,j)
αβ =

1

2

〈

∆Î(i)α (ω1)∆Î
(j)
β (ω2) + ∆Î

(j)
β (ω2)∆Î(i)α (ω1)

〉

.

We evaluate each of these four contributions separately.

a. Correlator for incoming currents

The first term in Eq. (B13) reads,

P
(in,in)
αβ (ω1, ω2) = e2

∞
∫∫

0

dE1 dE2

J
(in,in)
αβ + J

(in,in)
βα

2
,

(B14)
where

J
(in,in)
αβ =

〈{

â†α(E1) âα(E1 + ~ω1)

−
〈

â†α(E1) âα(E1 + ~ω1)
〉}

×
{

â†β(E2) âβ(E2 + ~ω2)

−
〈

â†β(E2) âβ(E2 + ~ω2)
〉}〉

.

In the correlation J
(in,in)
βα with the indices interchanged,

the order of operators in each of the products contribut-

ing to J
(in,in)
βα is interchanged. Using Wick’s theorem, we

represent the average of the product of four operators via
the average of pair products and find,

J
(in,in)
αβ = Π

(in,in)
αβ Ξ

(in,in)
αβ ,

(B15)

Π
(in,in)
αβ =

〈

â†α(E1) âβ(E2 + ~ω2)
〉

,

Ξ
(in,in)
αβ =

〈

âα(E1 + ~ω1) â
†
β(E2)

〉

.

Then using Eq. (B5) we obtain after straightforward but
a little bit lengthy calculations,

P
(in,in)
αβ (ω1, ω2) = 2π δ (ω1 + ω2) P(in,in)

αβ (ω1) ,

(B16)

P(in,in)
αβ (ω1) = δαβ

e2

h

∫

dE1fαα (E1 , E1 + ~ω1) .

This is exactly what could be expected for equilibrium
electrons. Therefore, uniform oscillating potentials at the
reservoirs in themselves do not produce additional noise.

b. Correlator between incoming and outgoing currents

The next term in Eq. (B13) is,

P
(in,out)
αβ = −e2

∞
∫∫

0

dE1 dE2

J
(in,out‘)
αβ + J

(out,in)
βα

2
,

(B17)

where

J
(in,out)
αβ = Π

(in,out)
αβ Ξ

(in,out)
αβ ,

(B18)

Π
(in,out)
αβ =

〈

â†α(E1) b̂β(E2 + ~ω2)
〉

,

Ξ
(in,out)
αβ =

〈

âα(E1 + ~ω1) b̂
†
β(E2)

〉

.

In the correlation J
(out,in)
βα the order of operators in the

averages of pairs is interchanged. Using Eqs. (B5) and
(B6) we find,

Π
(in,out)
αβ =

∑

n,m,p

Υ∗
α,nSF,βα (E2 + ~ω2 , E2,m + ~ω2)

×Υα,pfα(E1,−n)δ (E1,−n − E2,m−p − ~ω2) ,

Ξ
(in,out)
αβ =

∑

n1,m1,p1

Υα,n1Υ
∗
α,p1

[1− fα (E1,−n1 + ~ω1)]

×S∗
F,βα (E2 , E2,m1) δ (E1,−n1 − E2,m1−p1 + ~ω1) .

Next we integrate over energy E2 using the Dirac delta-

function in Π
(in,out)
αβ . In the reminder we use E2,m−p =

E1,−n − ~ω2 and find,
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P
(in,out)
αβ = − e2

~

∫

dE1

∑

n,m,p

∑

n1,m1,p1

×fαα (E1,−n , E1,−n1 + ~ω1)Υ
∗
α,nΥα,pΥα,n1Υ

∗
α,p1

×δ (ω1 + ω2 − Ω [p− n−m− p1 + n1 +m1])

×SF,βα (E1,p−n−m , E1,p−n)

×S∗
F,βα (E1,p1−n1−m1 + ~ω1 , E1,p1−n1 + ~ω1) .

We shift (under the integral over E1): E1 → E1 + n~Ω.
Then we introduce w = n − n1 instead of n1. The sum
overw gives us δw0. Then we introduce l = p−m−p1+m1

instead of m and r = p1 −m1 instead of m1. Finally we
get,

P
(in,out)
αβ (ω1, ω2) =

∞
∑

l=−∞

2π δ (ω1 + ω2 − lΩ) P(in,out)
αβ,l ,

(B19)

P(in,out)
αβ,l (ω1) = − e2

h

∫

dE1fαα (E1 , E1 + ~ω1)

×
∑

r,p,p1

SF,βα (E1,l+r , E1,p)Υα,p

×S∗
F,βα (E1,r + ~ω1 , E1,p1 + ~ω1) Υ

∗
α,p1

.

With similar steps we find that P
(out,in)
αβ can be ob-

tained from P
(in,out)
αβ if one replaces: α ↔ β, E1 ↔ E2,

and ω1 ↔ ω2. Therefore, from Eq. (B19) we immediately
obtain,

P
(out,in)
αβ (ω1, ω2) =

∞
∑

l=−∞

2π δ (ω1 + ω2 − lΩ) P(out,in)
αβ,l ,

(B20)

P(out,in)
αβ,l (ω2) = − e2

h

∫

dE2fββ (E2 , E2 + ~ω2)

×
∑

r,p,p1

SF,αβ (E2,l+r , E2,p)Υβ,p

×S∗
F,αβ (E2,r + ~ω2 , E2,p1 + ~ω2) Υ

∗
β,p1

.

To compare subsequently Eqs. (B19) and (B20) with
Eq. (B9) we need additionally to redefine: r → n and
p1 → q.

c. Correlator between outgoing currents

The last term in Eq. (B13) reads,

P
(out,out)
αβ = −e2

∞
∫∫

0

dE1 dE2

J
(out,out)
αβ + J

(out,out)
βα

2
,

(B21)

where

J
(out,out)
αβ = Π

(out,out)
αβ Ξ

(out,out)
αβ ,

Π
(out,out)
αβ =

〈

b̂†α(E1) b̂β(E2 + ~ω2)
〉

,

Ξ
(out,out)
αβ =

〈

b̂α(E1 + ~ω1) b̂
†
β(E2)

〉

.

In the correlation J
(out,out)
βα the order of operators in the

pair averages is interchanged.
Using Eqs. (B5) and (B6) we calculate,

Π
(out,out)
αβ =

∑

γ

∑

n,m,p,q

δ (E1,n−p − E2,m−q − ~ω2)

×fγ (E1,n−p)S
∗
F,αγ (E1 , E1,n)

×Υ∗
γ,pSF,βγ (E2 + ~ω2 , E2,m + ~ω2)Υγ,q ,

Ξ
(out,out)
αβ =

∑

γ1

∑

n1,m1,p1,q1

δ (E1,n1−p1 + ~ω1 − E2,m1−q1)

× [1− fγ1 (E1,n1−p1 + ~ω1)]S
∗
F,βγ1

(E2 , E2,m1)

×Υ∗
γ1,q1

SF,αγ1 (E1 + ~ω1 , E1,n1 + ~ω1)Υγ1,p1 .

Then we integrate over energy E2 using the Dirac

delta-function in Π
(out,out)
αβ . In the rest we use E2 =

E1,n−p−m+q − ~ω2 = E1,n1+q1−p1−m1 + ~ω1 and find,

P
(out,out)
αβ =

e2

~

∫

dE1

∑

γ,γ1

∑

n,m,p,q

∑

n1,m1,p1,q1

×fγγ1 (E1,n−p , E1,n1−p1 + ~ω1)

×δ (ω1 + ω2 − Ω [n+ q − p−m− n1 − q1 + p1 +m1])

×S∗
F,αγ (E1 , E1,n)Υ

∗
γ,pSF,βγ (E1,n−p−m+q , E1,n−p+q)

×S∗
F,βγ1

(E1,n1+q1−p1−m1 + ~ω1 , E1,n1+q1−p1 + ~ω1)

×Υγ,qΥ
∗
γ1,q1

SF,αγ1 (E1 + ~ω1 , E1,n1 + ~ω1)Υγ1,p1 .

To simplify we introduce t = n − p instead of n, w =
n1−p1 instead of n1, l = n+q−p−m−n1−q1+p1+m1

instead of m, and s = n1 + q1 − p1 −m1 instead of m1.
Then we get,
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P
(out,out)
αβ (ω1, ω2) =

∞
∑

l=−∞

2π δ (ω1 + ω2 − lΩ) P(out,out)
αβ,l ,

(B22)

P(out,out)
αβ,l (ω1) =

e2

h

∫

dE1

∑

γ,γ1

∑

s,t,w

∑

p,q,p1,q1

×fγγ1 (E1,t , E1,w + ~ω1)

×S∗
F,αγ (E1 , E1,t+p)Υ

∗
γ,pSF,βγ (E1,l+s , E1,t+q)Υγ,q

×S∗
F,βγ1

(E1,s + ~ω1 , E1,w+q1 + ~ω1)Υ
∗
γ1,q1

×SF,αγ1 (E1 + ~ω1 , E1,w+p1 + ~ω1) Υγ1,p1 .

To compare subsequently with Eq. (B9) we need addi-
tionally to redefine: t → n, w → m, p1 ↔ q1, and γ1 → δ.
Collecting together equations (B16), (B19), (B20), and

(B22) we arrive at Eq. (B9).

4. Adiabatic regime

In the adiabatic regime the Floquet scattering matrix
elements to leading order in Ω → 0 are the Fourier coef-
ficients for the frozen scattering matrix Ŝ(t, E),36

SF,αβ (En, Em) = Sαβ,n−m (E) . (B23)

Within this approximation we find from Eqs. (B11b),
(B11c) the following,

P(th,ad)
αβ (E) = −fαα(E,E)|Sβα(E)|2

−fββ(E,E)|Sαβ(E)|2

+δαβ

{

fαα(E,E) +
∑

γ

fγγ(E,E)|Sαγ(E)|2
}

,

(B24a)

P(sh,ad)
αβ (E) =

1

2

∑

γ,δ

∞
∑

q=−∞

{fγ(Eq)− fδ(E)}2

×Φ(γδ)
α,q Φ

(γδ) ∗
β,q , (B24b)

where Φα,q is a Fourier transform of

Φ(γδ)
α (t) = S∗

αγ(t, E)Υ∗
γ(t)Sαδ(t, E)Υδ(t). (B25)

Here the over bar stands for a time average, X =
∫ T

0 dtX(t)/T . Calculating the shot noise we made a shift
of E → E −m~Ω and introduced q = n −m instead of
m.
One can see that the potentials oscillating at reservoirs

have no effect on the thermal noise. Their effect on the
shot noise in the adiabatic regime can be taken into ac-
count formally by changing the phase of the scattering
elements Sϕρ(t, E) by the factor Υρ(t), Eq. (B4).

5. Zero-temperature adiabatic regime

At zero temperatures there is no thermal noise. Cal-
culating the shot noise we take into account that in the
adiabatic regime the frequency Ω is so small that we
can neglect the energy dependence of the scattering ma-
trix elements over the interval of order several ~Ω.36,31

In addition we assume also that all the potential differ-
ences Vαβ = Vα − Vβ are small compared to the sig-
nificant energy scales of the scattering matrix. Then
with Eq. (B24b) the integral over energy in Eq. (B11a)
becomes trivial and we find,

P(sh,ad)
αβ =

e2Ω

4π

∑

γ,δ

∞
∑

q=−∞

∣

∣

∣

∣

eVγδ

~Ω
− q

∣

∣

∣

∣

Φ(γδ)
α,q Φ

(γδ) ∗
β,q .

(B26)

Note the dc bias and ac bias enter this equation in a
strongly non-equivalent way.

Appendix C: Probability description of the current

cross-correlator for a circuit with SESs

The single-electron source emits electrons and holes
which are uncorrelated. Hence electrons (e) and holes

(h) contribute to noise independently, P12 = P(e)
12 +P(h)

12 .
In the adiabatic regime we can neglect the energy de-
pendence of the scattering matrix. Therefore, electrons

and holes contribute to the noise equally, P(e)
12 = P(h)

12 =
0.5P12. Below we restrict ourself to the electron contribu-
tion. We assume that the circuit has two inputs and two
outputs 1 and 2. In each input there is a SES emitting
one electron per period.

1. Classical versus quantum regimes

It was noticed in Ref. 3 that the cross-correlator P(e)
12 is

related to the electron number correlator δN12 as follows,

P(e)
12 =

e2Ω

2π
δN12 , (C1)

where

δN12 = N12 − N1N2 . (C2)

Here N12 is the probability to find one electron in output
1 and one electrons in output 2 during the period T ,
whereasNj is the probability to find an electron in output
j = 1, 2 during the same period.
To determine the probabilities entering Eq. (C2) we

need to consider a specific circuit. We consider the one
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given in Fig. 4. For this circuit the quantum-mechanical
amplitudes Aij for an electron emitted by the source
j = L,R to arrive at the output i = 1, 2 are the fol-
lowing:

A1L = eikFL1L tL rC , A1R = eikFL1R tR tC ,

(C3)

A2L = eikFL2L tL tC , A2R = eikFL2R tR rC .

With these amplitudes we find single-particle probabili-
ties,

N1 = |A1L|2 + |A1R|2 = TL + TC (TR − TL) ,

(C4)

N2 = |A2L|2 + |A2R|2 = TL − TC (TR − TL) .

The calculation of the two-particle probability N12 de-
pends crucially on whether electrons collide at the central
QPC or not.
If electrons pass the QPC C at different times,

∆t(−) ≫ ΓL,ΓR, then there are two independent pro-

cesses contributing to N12 with amplitudes A(2)
I =

A1LA2R and A(2)
II = A1RA2L. Since the two-particle

amplitudes factorize into the product of single-particle
amplitudes, we term this the classical regime. With these
amplitudes we find,

N12 =
∣

∣

∣A(2)
I

∣

∣

∣

2

+
∣

∣

∣A(2)
II

∣

∣

∣

2

= TLTR

(

R2
C + T 2

C

)

.(C5)

Using Eqs. (C4) and (C5) in Eq. (C2) we find the cross-

correlator P(e)
12 , Eq. (C1), to be the same as the one given

in Eq. (12) (times 0.5 to account for the electron contri-
bution).
In contrast, if electrons can collide at the QPC C,

∆t(−) = 0, then the two particle amplitude is given by
the Slater determinant,

A(2) = det

∣

∣

∣

∣

∣

∣

A1L A1R

A2L A2R

∣

∣

∣

∣

∣

∣

. (C6)

This is why we call this regime quantum. Then the two-
particle probability reads,

N12 =
∣

∣

∣A(2)
∣

∣

∣

2

= TLTR . (C7)

Note this equation is independent of the parameters of
the central QPC, that can be used as an indication of
a quantum regime. We emphasize that in the quantum
regime the two-particle probability becomes the Glauber
joint detection probability37, since electrons after colli-
sion of the QPC C arrive at the outputs 1 an 2 simultane-
ously (disregarding a possible difference in arrival times
due to the different distances). With Eqs. (C7), (C4),
(C2), and (C1) we recover the result given in Eq. (13).

2. Positive two-particle correlations in quantum

regime

Let us show that in the quantum regime colliding elec-
trons are positively correlated. To this end we represent
the single-particle probabilities as the sum of contribu-

tions due to each of sources, Ni = N (L)
i + N (R)

i with

N (j)
i = |Aij |2 , i = 1, 2, j = L,R. Then we split the

particle number correlator δN12, Eq. (C2), into the sum
of three contributions,

δN12 = δN (LL)
12 + δN (RR)

12 + δN (L̂R)
12 . (C8)

Here the first two terms are contributions due to either
source alone, δN (jj)

12 = −N (j)
1 N (j)

2 , j = L,R. Since
the source emits single particles this contribution to the
cross-correlator δN12 is definitely negative. The third
contribution is due to a joint action of both sources,

δN (L̂R)
12 = N12 −N (L)

1 N (R)
2 −N (R)

1 N (L)
2 . (C9)

In the classical regime we use Eq. (C5) and find,

δN (L̂R)
12 = 0, i.e., the particles emitted by different

sources remain uncorrelated. In contrast in the quantum
regime, using Eq. (C7), we get,

δN (L̂R)
12 = 2TLTRRCTC . (C10)

Therefore, in this regime the particles emitted by two
sources and colliding at the central QPC C, see Fig. 4,
become positively correlated. We stress the total overall
correlation N12 remains negative.
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Rev. Lett. 92, 026805 (2004).

8 P. Samuelsson, I. Neder, and M. Büttiker, Phys. Rev. Lett.
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