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The effect of both spin-orbit interaction and Zeeman interaction on a thermodynamic equilibrium
(persistent) current in a one-dimensional ballistic ring of correlated electrons is considered at
arbitrary temperatures. It is shown that the change of the number of spin excitations in a ring due
to the Zeeman effect affects considerably the persistent current.
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I. INTRODUCTION

The Aharonov-Bohm (AB) effect [1] ensures a possi-
bility for the influence on a quantum interference of elec-
trons and it leads to a number of remarkable effects in
mesoscopic physics [2]. So, at low temperatures thermo-
dynamic [3, 4] as well as kinetic [5] properties of doubly
connected mesoscopic samples (rings) oscillate as a func-
tion of an AB magnetic flux Φ with a period of Φ0 = h/e
[6, 7].

One of the such effects is an existence in normal (non-
superconducting) rings of a thermodynamic equilibrium
(persistent) current

I = −∂F/∂Φ (1)

(where F is the free energy for an isolated ring or the
thermodynamic potential for a ring coupled to a reser-
voir), which was theoretically predicted in Refs.[8, 9] and
was observed experimentally in Ref.[10]. The theoretical
consideration [11] has shown that the properties of per-
sistent currents considerably depend on the properties of
an electron system in a ring as well as on the interac-
tion with an environment (with a reservoir) that allows
to study fundamental problems of quantum physics.

The parity effect [12]-[24] (i.e., the dependence of per-
sistent current properties on the parity of the number Ne
of spinless electrons or on Ne = Ne↑ +Ne↓ modulo 4 for
spinfull electrons in a ring) is one of the most important
properties of persistent currents. This effect takes place
as in isolated rings as in rings coupled to an electron
reservoir [18, 25, 26]. In particular, for the even number
N0 of electrons with spin in the ground state the period
of AB oscillations equals to Φ0 whereas if N0 is odd then
the period is Φ0/2 [17].

Though the AB magnetic flux affects only the charge
degrees of freedom of an electron system the spin sub-
system influences on AB oscillations also, that is due to
the parity effect and it especially displays for interacting
electrons (e.g.,see Ref.[4]). For instance, such an effect
leads to an existence of fractional AB oscillations with a
period of Φ0/N0 in isolated rings with a small number of
electrons [20, 23, 27]. In systems with a large number of
particles in the common case the fractional oscillations

do not appear [23], however the effect of a spin subsys-
tem may reduce the period of AB oscillations by a factor
of two or four [26].

Thus, if we affect the spin subsystem we may change
the persistent current. For example, the spin-orbit (SO)
interaction results in an effective spin-dependent mag-
netic flux [28], that may change both the current am-
plitude and the period of oscillations. As was pointed
out in Ref.[29], the effect of SO interaction is the man-
ifestation of the Aharonov-Casher effect [30] which can
produce persistent currents like the Aharonov-Bohm ef-
fect [31, 32]. Besides, in an inhomogeneous magnetic field
the electron wave function acquires an additional phase
(over a pure orbital phase) [33]. The existence of such a
geometric phase in adiabatic cyclic evolution of a quan-
tum particle with a spin, which was firstly predicted by
Berry [34], affects the quantum interference also and it
changes the persistent current.

Another effect due to an electron spin is the Zeeman
splitting of electron levels in a magnetic field. This effect
influences on persistent currents in rings without a spin
polarization (namely such a case is considered below). In
the present paper we consider the effect of both the SO
interaction and the Zeeman interaction on the persistent
current. The SO interaction affects the current in an iso-
lated ring as well as in the ring coupled to a reservoir.
In the former case if the number of electrons is odd then
the SO interactions results in a persistent current even
without an AB magnetic flux. If the number of electrons
is even such a current (i.e., at Φ = 0) is absent. The
Zeeman splitting in a transversal homogeneous magnetic
field does not affect the current in an isolated ring. How-
ever, in the case of a ring coupled to a reservoir such a
splitting may lead to a change of the number of spin ex-
citations in a ring that results in a change of a current
magnitude and/or of a current period. Moreover, the
persistent current depends on the number of spin excita-
tions modulo 4.

II. THE MODEL AND MAIN EQUATIONS

Let us consider a one-dimensional impurity-free ring of
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length L in an homogeneous transversal magnetic field
H which produces the magnetic flux Φ = HL2/(4π)
through the ring opening. We assume, that the inelas-
tic mean free path Lϕ(T ) and the spin-flip length Ls(T )
are large compared to the ring circumference L. In such
a case the motion of electrons in the ring is ballistic.
The part of the one-electron Hamiltonian ∆Ĥs including
the Zeeman interaction in the magnetic field (which is
applied along the axis z of a ring) and the spin-orbit in-
teraction (in the particular case when it is proportional
to the spin projection on z) is

∆Ĥs = σz (~β(p̂− eA)ϕ − gµBH) , (2)

where σz is the Pauli matrix; β is the spin-orbit split-
ting coefficient; p̂ϕ is the angular momentum operator;
Aϕ = Φ/L is the tangential component of the vector po-
tential; µB = e~/(2m0) is the Bohr magneton. Note,
that such a form of SO interaction may be caused by the
Aharonov-Casher effect in a cylindrically symmetric elec-
tric field lying in the plain of a ring [35]. In particular,
such an electric field may be due to the potential which
confines the electrons to the ring (e.g., for rings formed in
a semiconductor heterostructure) if the crystallographic
orientation is appropriately chosen [36].

However, the Eq.(2) may be used as an effective (phe-
nomenological) Hamiltonian for calculating a charge cur-
rent when the spectrum of free electrons in the ring of a
radius R = L/(2π) has a form

εnσ =
~2

2m∗R2
(n+ ϕAB + σϕSO)2 − σgµBH, (3)

where m∗ is an electron effective mass; n is an integer;
ϕAB = Φ/Φ0 mod1; ϕSO = m∗βR mod1; σ = ±1. In
particular, the spectrum (3) takes place for the adiabatic
motion of electrons in an inhomogeneous magnetic field
(a texture) [33].

Let us estimate the quantity ϕSO. For example, for the
mesoscopic InAs ring with R ∼ 1µm and with a width of
15nm (m∗ = 0.02m0; ~2β = 3.5×10−10eV cm) [37] we get
ϕSO ∼ 0.9. Thus, the SO interaction can considerably
change the effective magnetic flux Φeff = Φ + σϕSOΦ0

piercing the ring.
We will consider the ring with a large number Ne of

electrons. In this case we can linearize the electron spec-
trum near the Fermi points and will describe the corre-
lated electrons as a Luttinger liquid [38]. For electrons
with spin the Lagrangian LLL in a bosonic form is [39, 40]

LLL =
~vρ
2gρ

{
1

v2ρ

(
∂θρ
∂t

)2

−
(
∂θρ
∂x

)2}
(4)

+
~vσ
2gσ

{
1

v2σ

(
∂θσ
∂t

)2

−
(
∂θσ
∂x

)2}
,

where x is the coordinate along the ring; vi, gi (i = ρ, σ)
are Haldane’s parameters. The subscripts ρ, σ denote

quantities describing the charge and spin degrees of free-
dom, respectively. For noninteracting electrons we have
gρ(σ) = 2, vρ(σ) = vF (where vF is the Fermi velocity)
[39, 40].

The Lagrangian corresponding to the Hamiltonian (2)
is

Ls =
2~
L
π1/2ϕSO

∂θσ
∂t

+
gµBH

L
Nσ, (5)

where Nσ = 1
π1/2

∫ L
0
dx∇θσ +N0σ is the number of spin

excitations in a ring; N0σ = N0↑−N0↓ is the ground state
number of spin excitations.

The Aharonov-Bohm interaction of electrons with the
magnetic flux Φ with respect to the parity effect is de-
scribed as follows [18, 21]

LAB =
2~
L
π1/2

{[
kjρ
4

+ ϕAB

]
∂θρ
∂t

+
kjσ
4

∂θσ
∂t

}
, (6)

where kjρ = kj↑ + kj↓; kjσ = kj↑ − kj↓; kj↑, kj↓ are the
topological numbers which subject to the parity depen-
dent constraints [18, 38]: kjs = 0 (1), if Nes is odd (even),
where s=↑, ↓.

We consider both the case of an isolated ring (N0 =
const) and the case of a ring weakly coupled to an
electron reservoir (which fixes the chemical potential
µ = const of electrons in the ring). In the latter case
the transfer of charge (and of spin) between a ring and
a reservoir is allowed. Therefore, we must take into
account a charging energy Ec = e2/(2C) (associated
with the transfer of an elementary charge between a
ring and a reservoir) which is due to a geometrical ca-
pacitance C of a ring (see Fig. 1). At low tempera-
tures (T ≤ 1K at C ≤ 10−15F ) the charging energy

FIG. 1: One-dimensional ring of length L in a homogeneous
transversal magnetic field H weakly coupled to an electron
reservoir with the chemical potential µ and the temperature
T . C and Vg are the geometrical capacitance and the potential
difference between a ring and a reservoir, respectively.
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Ec strongly suppresses the charge transfer (the Coulomb
blockade regime [41]) that considerably affects the persis-
tent current [25, 26, 42, 43]. We assume that the chemi-
cal potential µ does not depend on spin. In such a case
the Lagrangian describing the particle exchange with a
reservoir is

Lex =
µ

π1/2

∂θρ
∂x
− Ec

L
(Ne −N(Vg))

2
. (7)

Here Ne = 1
π1/2

∫ L
0
dx∇θρ + N0 is the number of elec-

trons in a ring; N(Vg) = C(Vg − Vg0)/e, where Vg is the
potential difference between a ring and a reservoir (see
Fig.1). We assume that at T = 0 and Vg = 0 the ring is
electrically neutral.

The partition function Z may be presented in the form
of a path integral over the fields θρ and θσ

Z =

∫
DθρDθσ exp(−SE/~) (8)

with the Euclidean action

SE = −
∫ L

0

dx

∫ ~/T

0

dτL(x, τ), (9)

where τ = it is an imaginary time. The Lagrangian
L(x, τ) is a sum of parts (4)-(6) for the isolated ring or a
sum of parts (4)-(7) for the ring coupled to a reservoir.

The fields θρ and θσ obey twisted boundary conditions
[18]

θρ(x+ k1L, τ + k2
~
T

) = θρ(x, τ)

+k1π
1/2(2mρ + kMρ

) + k2π
1/2nρ,

(10)

θσ(x+k1L, τ+k2
~
T

) = θσ(x, τ)

+k1π
1/2(2mσ+kMσ )+k2π

1/2nσ,

where k1,k2,nρ(σ),mρ(σ) are integers; kMρ
= kM↑ + kM↓ ,

kMσ
= kM↑ − kM↓ , where kMs

(s =↑, ↓) are topological
numbers characterizing the parity of additional numbers
(over the ground state numbers) of electrons with spin
s. Note, that the numbers kjs and kMs depend on the
parity of the number of electrons with spin s N0s in the
ground state [18, 21]: kjs = kMs if N0s is odd; kjs =
(kMs + 1)mod1 if N0s is even. For the case of isolated
ring we have mρ(σ)=kMρ(σ)

=0.
The considered Lagrangian is quadratic in fields θρ(σ),

therefore the extremal trajectories obeying the boundary
conditions (10) and determining the flux-dependent part
of the free energy are linear functions of both x and τ

θρ(σ)(x, τ) = π1/2

(
(2mρ(σ) + kMρ(σ)

)
x

L
+ nρ(σ)

τ

~/T

)
.

(11)
Calculating the Euclidean action SE for the trajecto-

ries (11) and performing the summation over nρ(σ), mρ(σ)

and the topological numbers kjρσ, kMρ(σ)
with respect to

the above parity-dependent constraints we can calculate
the partition function and the free energy F = −T ln(Z).

III. THE FIXED NUMBER OF ELECTRONS

In this case the free energy is

∆F (Φ) = −gµBHN0σ

−T ln
{
θ3
(
2ϕAB + kjρ/2, q

4
ρ

)
× θ3

(
2ϕSO + kjσ/2, q

4
σ

)
+θ2

(
2ϕAB + kjρ/2, q

4
ρ

)
× θ2

(
2ϕSO + kjσ/2, q

4
σ

)}
.(12)

Here θ2(3)(v, q) are the Jacobi theta functions [44];
qρ(σ)=exp(−T/2T ∗ρ(σ)), where T ∗ρ(σ) = ~vρ(σ)gρ(σ)/(πL).

For noninteracting electrons we get T ∗ρ(σ) = T ∗, where

T ∗ = ∆F /(π
2) is the crossover temperature for the per-

sistent current in an isolated ring [18], and ∆F = hvF /L
is the level spacing near the Fermi points at Φ = 0.

It is seen from Eq.(12) that in the common case the
Zeeman splitting (the first term) breaks down the exact
periodic dependence of the free energy on the magnetic
flux. However, calculating the persistent current in a ring
with a large number of electrons (N0 � 1) and without
spin polarization (N0σ ∼ 1) we can neglect this term,
because, the current I= due to this term is less than
the current I0 ∼ evF /L due to the AB effect: I=/I0 ∼
m∗

m0
gN0σ

λF
L � 1, where λF is the Fermi wavelength of an

electron. Note, that we neglect the spin-flip processes in
the ring therefore the number N0σ does not depend on
the magnetic flux.

Neglecting the first term and accounting the periodic-
ity of the theta functions we conclude that in the com-
mon case the free energy (12) is periodic in ϕSO with
a period of 1 and in the AB magnetic flux with a pe-
riod of Φ0. However, at ϕSO = 0,± 1

2 the period of
AB oscillations depends on the parity of the number of
electrons even for noninteracting electrons [17]. At the
same time, at ϕSO = ± 1

4 the period of AB oscillations is
Φ0/2 [21, 28] for the even number of electrons (N0 = 4n,
kjρ = 2,kjσ = 0; N0 = 4n + 2, kjρ(σ) = 0; where n
is an integer) and it is Φ0 for the odd number of elec-
trons (N0↑ = 2n + 1,N0↓ = 2m, kjρ = 1,kjσ = −1;
N0↑ = 2n,N0↓ = 2m + 1, kjρ(σ) = 1). By analogy, at

ϕAB = 0,± 1
2 the period of the dependence of the free

energy on ϕSO is 1 for the even number of electrons and
it is 1/2 for the odd number of particles. Besides, at
ϕAB = ± 1

4 the considered period is 1/2 for the even
number of electrons and it is 1 for the odd number of
electrons.

In rings with an odd number of electrons the spin-
orbit interaction produces the persistent current I even
without an AB magnetic flux. The direct calculation
gives

I(Φ = 0) = ∓ T

Φ0
F (1/4, T/(2T ∗ρ ))

θ2(2ϕSO + 1
2 , q

4
σ)

θ3(2ϕSO + 1
2 , q

4
σ)
,

(13)
where F (v, p)=2π

∑∞
m=1(−1)m sin(2πmv)/ sinh(mp);

the upper (lower) sign is applied to the case when N0↑
is odd (even) and N0↓ is even (odd). At T → 0 the

https://www.researchgate.net/publication/237005586_Higher_Transcendental_Functions_II?el=1_x_8&enrichId=rgreq-7ccb712c4cf4a9c37e1b9452594968f6-XXX&enrichSource=Y292ZXJQYWdlOzIyMzE0NDgwNTtBUzoxMDUxMTY5OTI1NDA2NzNAMTQwMjA3MzI1MjQ4Mw==
https://www.researchgate.net/publication/285478647_Higher_Transcendental_Functions?el=1_x_8&enrichId=rgreq-7ccb712c4cf4a9c37e1b9452594968f6-XXX&enrichSource=Y292ZXJQYWdlOzIyMzE0NDgwNTtBUzoxMDUxMTY5OTI1NDA2NzNAMTQwMjA3MzI1MjQ4Mw==
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current amplitude is I0 = π2T ∗ρ /Φ0 and in the ballistic
case (gρvρ = 2vF ) it does not depend on the strength
of an interelectron interaction [4]. At T � T ∗ρ(σ) we

have I = ∓I0 8T
πT∗ρ

exp
(
− T

2T∗ρ
− T

2T∗σ

)
sin(2πϕSO). The

dependence I(ϕSO) is depicted in Fig. 2.

IV. THE FIXED CHEMICAL POTENTIAL

We assume that the chemical potential µ of a reservoir
does not depend on an electron spin. In this case at H=
0, δc = 0 and ϕSO = 0 the number of electrons in a ring
is even (N0↑ = N0↓) and the number of spin excitation
N0σ = N0↑−N0↓ is equal to zero. Further we consider
the case N0 = 4n+2. Note, that the results for N0 = 4n
can be deduced from that for N0 = 4n+2 by changing
ϕAB → ϕAB + 1

2 . In this case the flux-dependent part
of the thermodynamic potential is ∆Ω(Φ) = −T ln(Zµ)
with

Zµ =

4∑
i=1

θi(2ϕAB , q
4
ρ)θi(2ϕSO, q

4
σ)θi(2δc, q

4
c )θi(2δz, q

4
0σ),

(14)
where θi(v, q) are the Jacobi theta functions [44];

qc(0σ)=exp
(
− π2T

8Tc(0σ)

)
; Tc=T0ρ+2Ec; T0ρ(σ) =

π~vρ(σ)
gρ(σ)L

;

δc =
eVg+µ
4Tc

mod1; δz = gµBH
4T0σ

mod1.

The magnetic field H = 4πΦ/L2 incorporates in ∆Ω in
a twofold way. Firstly, it is through the parameter ϕAB
that causes conventional AB oscillations (which are pe-
riodic in Φ with a period of Φ0). Secondly, it is through

FIG. 2: The dependence of a persistent current I in units
of evF /L on the strength of a spin-orbit interaction (the pa-
rameter ϕSO) for an isolated ring with an odd number of
noninteracting electrons. The parameters are: T/∆F = 0.05;
ϕAB = 0; N0↑ is odd; N0↓ is even.

the parameter δz that also causes oscillations of the ther-
modynamic potential. The latter oscillations are physi-
cally due to as follows. With increasing magnetic field
the Zeeman splitting leads to a monotonous shift of elec-
tron levels in a ring relatively to the chemical potential
µ of an electron reservoir. This leads to an increase of
a number of electrons with spin ”up” in a ring and to
a decrease of a number of electrons with spin ”down”.
Thus, the spin excitations appear in the ring. So, if the
magnetic field is distinct from zero the effect of a reser-
voir leads to an effective spin-flip process in a ring (it is
worth emphasizing that, we neglect direct spin-flip pro-
cesses within the ring Ls(T )� L) when the electron with
spin ”up” passes from the reservoir to the ring and the
electron with spin ”down” passes back. This process re-
sults in new oscillations of the thermodynamic quantities
as a function of the magnetic flux with a period which is
different from the period of AB oscillations. Because the
number N0 ≡ N0ρ of electrons in a ring does not change
these oscillations is not affected by the charging energy
(i.e., by the small capacitance C) in contrast with the os-
cillations of the thermodynamic potential as a function
of the chemical potential µ (or of the gate voltage Vg).

Now we calculate the period of such oscillations. From
the properties of elliptic θ-functions it follows that the
considered oscillations have a period (in a magnetic field)
as follows

∆H =
4T0σ
gµB

. (15)

The quantity T0σ defines the energy necessary for the
increase of the number of spin excitations by 1. For non-
interacting electrons (gρ(σ) = 2; vρ(σ) = vF ) we have
T0σ=∆F /4. Thus, with respect to chiral and spin de-
generation the period of oscillations (15) corresponds
to a change of the number of spin excitations by 4.
Let us estimate ∆H for the one-dimensional mesoscopic
ring formed in a semiconductor heterostructure. Tak-
ing L ∼ 10µm, vF ∼ 2 × 105ms−1, and g ∼ 20 we get
∆H ∼ 700G for noninteracting electrons. Note, that the
period of AB oscillations is ∆HAB ∼ 5G at these param-
eters.

Further we calculate the persistent current I =
−∂Ω/∂Φ. When we differentiate we consider the param-
eter δz as a constant, because the corresponding period
∆H (see Eq.(15)) is large in comparison with the period
of AB oscillations ∆HAB . Thus, the Zeeman effect does
not cancel out the AB oscillations, but it leads to a pe-
riodic change of an amplitude of such oscillations with
increasing magnetic field.

In the common case the dependence of a persistent
current amplitude on the magnetic field is complicated
and depends on both the spin-orbit interaction and Vg.
Making the effect of Zeeman splitting on the persistent
current more transparent we consider the case of ϕSO =
0. In this case we write down the expression for the
quantity I1 ≡ I(ϕAB = 1

4 ) which is a sum of amplitudes
of all the odd harmonics (note, that at T � T ∗ρ I1 is an

https://www.researchgate.net/publication/285478647_Higher_Transcendental_Functions?el=1_x_8&enrichId=rgreq-7ccb712c4cf4a9c37e1b9452594968f6-XXX&enrichSource=Y292ZXJQYWdlOzIyMzE0NDgwNTtBUzoxMDUxMTY5OTI1NDA2NzNAMTQwMjA3MzI1MjQ4Mw==
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amplitude of the first harmonic of a current)

I1 =
T

Φ0

F
(

1
4 ,

T
2T∗ρ

)
Zµ(ϕAB = 1

4 )
θ3

(
1

2
, q4ρ

)
θ2
(
0, q4σ

)
(16)

×θ2
(
2δc, q

4
c

)
θ2
(
2δz, q

4
0σ

)
,

where the function F (v, p) was defined after Eq.(13), and
Zµ was defined in Eq.(14).

As it follows from above expression, at δz = ±1/4 the
quantity I1 vanishes and the period of AB oscillations
halves. This is due to a change of the number of spin ex-
citations by 1. In this case the numbers of electrons with
spin ”up” and spin ”down” have a different parity, that
results in a period halving [4, 17, 26]. At the same time,
at δz = 1/2 the sign of I1 changes by an opposite one,
that is due to a change of the number of spin excitations
in a ring by 2. The dependence of I1 on the magnetic
field (the parameter δz) is depicted in Fig. 3 (the curve
1). The curve 2 is a dependence of a sum of amplitudes of
all the even harmonics I2= 1

2

{
I(ϕAB= 1

8 )−I(ϕAB= 3
8 )
}

on the magnetic field. Note, that with increasing temper-
ature T�T0σ, when the discreteness of the spectrum of
a spin subsystem is irrelevant, the considered oscillations
vanish.

Now we shortly consider the case of ϕSO 6= 0. As it
follows from Eq.(14), if any two of the three parameters
pi ∈ {ϕSO,δc,δz} (where i = 1, 2, 3) are equal to p1 = n

2 ;

p2 = 1
4 + n

2 (where n is an integer) then the period of AB
oscillations halves (and it is equal to Φ0/2). In addition,
at some values of the third parameter p3 the period of
oscillations reduces to four times (and it is equal to Φ0/4).

FIG. 3: The dependences of both the first harmonic am-
plitude I1 (1) and the second harmonic amplitude I2 (2) of
a persistent current in units of evF /L on the magnetic field
(the parameter δz) for the ring with noninteracting electrons
coupled to a reservoir. The parameters are: T/∆F = 0.01;
Ec = 0; ϕSO = 0; δc = 0.

For noninteracting electrons (gρ(σ) = 2; vρ(σ) = vF ; Ec =

0) this occurs at p3 = 1
8 + n

4 . The persistent current in
this case is

I(Φ) =
4T

Φ0
F
(
4ϕAB , 8T/T

∗
ρ

)
(17)

Note, that for correlated electrons the necessary value of
p3 depends on both the temperature and the strength
of an interelectron interaction. For example, at T �
T0σ and p1 ≡ ϕSO = 0, p2 ≡ δc = 1

4 we have p3 ≡
δz=±

(
1
8 + T

4T0σ
ln
(
θ3(0,q

4
σ)θ3(

1
2 ,q

4
c)

θ3(
1
2 ,q

4
σ)θ3(0,q

4
c)

))
+ n

2 , where n is an

integer.

V. CONCLUSION

In the present paper the effect of both the spin-orbit
interaction and the Zeeman interaction on the persistent
current in a one-dimensional ballistic ring with correlated
electrons has considered at nonzero temperatures. An
isolated ring with a fixed number of electrons (the canon-
ical case) as well as a ring coupled to an electron reservoir
(the grand canonical case) are considered. In the last case
the effect of a charging energy due to a small geometrical
capacitance between a ring and a reservoir is taken into
account. Interelectron interactions in a ring are described
within the framework of the Luttinger liquid model.

It is shown that in the canonical case the Zeeman ef-
fect in a homogeneous transversal magnetic field does
not affect the persistent current. At the same time, the
spin-orbit interaction is important. In particular, such
an interaction produces the persistent current without
an Aharonov-Bohm magnetic flux in rings with an odd
number of particles. This current, in fact, is a quantum
mechanical current of an additional electron (N0↑ 6= N0↓)
in an effective magnetic flux [28]. In rings with an even
number of spinfull electrons (N0↑ = N0↓) the persistent
current without an AB magnetic flux vanishes, because,
the spin-orbit interaction does not remove the degen-
eracy between states which correspond to a clockwise
movement of an electron with spin ”up” and a counter-
clockwise movement of an electron with spin ”down”
which carry opposite currents. At Φ 6= 0 such a degener-
acy is removed and the persistent current appears. Note,
that in an inhomogeneous magnetic field the Zeeman in-
teraction causes an effective spin-orbit coupling [33] and
it affects the persistent current in the canonical case.

For the grand canonical case (the ring coupled to a
reservoir) the Zeeman splitting may lead to a change
of the number of spin excitations in a ring that affects
considerably the persistent current. This effect does
not cancel out the Aharonov-Bohm oscillations but
it leads to a periodic change of a current amplitude
with the period which is large compared to Φ0. As
a result the phase of AB oscillations may change by
π or the period of oscillations may halve. Moreover,
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at definite values of parameters (i.e., the spin-orbit
coupling; the difference of potential between a ring
and a reservoir; and the magnetic field) the period of
AB oscillations may be reduced to four times. For
noninteracting electrons such a set of parameters does

not depend on the temperature. Whereas for corre-
lated electrons it is not true and the change of a period
of AB oscillations with the temperature may be observed.
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M.Büttiker, J.Phys.:Condens.Matter 10 (1998) 3985. 3

[43] M.V.Moskalets, Physica B 252 (1998) 244. 3
[44] H.Bateman, Higher transcendental functions. Ed. by
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