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Abstract—A normal vibration mode stability in conservative non-linear systems is investigated. The
algebraization by Ince (transition from linear equations with periodic coefficients to equations with
singular points) is used. The normal mode stability in homogeneous systems, whose potential is an
even homogeneous function of the variables and systems close to the homogeneous one, is
investigated. Eigenvalues and eigenfunctions are obtained. Conditions when a number of instability
zones in a non-linear system parameters space are finite (finite zoning or finite-gap conditions) are
also obtained. € 1997 Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

Normal (principal) vibration modes can be used to construct a general solution in the linear
theory. In non-linear systems the “normal vibration modes” (or “normal vibrations”) are
defined as such free motions where all coordinates of the system vary equiperiodically,
reaching the extreme equipotential surface simultaneously [1-4]. All position coordinates
can be well defined from any one of them by

i =pilxy) ((=2,3,...)

pi(x) being analytical functions.

Rosenberg [1,2] gets credit for being the first to introduce broad classes of essentially
non-linear (not quasilinear) conservative systems allowing normal vibrations with rectilin-
ear trajectories in a configurational space (similar normal modes). In his and other works,
normal mode stability was computed by linearized, Mathieu-type analysis [1,2,5-7], but it
cannot guarantee good precision.

The stability of the normal vibration modes is studied by deriving an approximation for
the Poincare map by Month and Rand (via Birkhoff~Gustavson canonical transformation)
[&] and Pak [9]. This method is presented as an alternative to the usual linearized stability
on Floquet-Liapunov theory. Some papers [9,10] are based on Synge’s stability in the
kinematico-statical sense. Some examples were considered. In Pecelli and Thomas’s works
{11,12] the Poincaré map, Kolmogorov-Arnold—Moser theorems and Lamé equation
theory were used. The similar normal modes stability was investigated while the linearizing
variational equations represent the Lameé equation; criterions of a stability in the non-linear
sense were obtained. The effect of a normal mode bifurcation is investigated in various
papers, for example, [7,10]. This effect and resonance neighborhood are investigated by
numerical and analytical techniques in [13].

In this work, the algebraization by Ince [14] and transition from linear equations with
periodic coefficients to equations with singular points (Section 2) will be used. The normal
vibration modes stability of conservative homogeneous systems whose potential is an even
homogeneous function of the variables and systems close to the homogeneous one will be
investigated (Section 3). Eigenvalues and eigenfunctions will be obtained. Conditions when
a number of instability zones in a system parameters space are finite (finite zoning or
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finite-gap conditions) will be also obtained (Section 4). Finally, in Section 5, the results
relating to non-linear stability analysis {11] will be reduced.

2. TRANSITION FROM LINEAR EQUATIONS WITH PERIODIC COEFFICIENTS
TO EQUATIONS WITH SINGULAR POINTS

Let us now describe what is called the algebraization by Ince, that is the transfer from
equations with periodic coefficients to equations with singular points, following [14],
together with the relevant change in the stability problem. There are many methods of
algebraization but only one of them is shown in this item. In the analytical treatment of
normal vibrations, the algebraization is performed by choosing a new independent variable
associated with the undisturbed motion. The variable t may be replaced by x, a variable that
defines motion along a rectilinear trajectory, or by the velocity X, or by the kinetic energy
for this solution etc.

We consider now the Hill equation

P+ (09 + 26, co82t + a,cosdt + -+ )y =0
Let us introduce a new independent variable z = cost. We obtain

d?y dy i
—z) =5 -z =+ nly=0.
11—z )dzz Zdz ] Ob,,z y

This equation has regular singularities at z = + 1 (the indices for singular points are 0 and
1/2), and an irregular singular point at infinity.
Two fundamental solutions may be separated for the vicinity of the singular point z =1
[14]:
vl =2y =fill —z); (1 —2) =1 -z2f(1 -2,

where f; and f, are analytical functions that converge within a circle |1 —z| < 2.
Since the equation will not change if z is replaced by — z, the following solutions will be
associated with the singular point z = — I:

yll+2)=fil +25 ¥l +2)=T+2f(1 +2)
Here the analytical functions f; and f, converge within a circle |1 + z| € 2.
Within a common region of the two circles of convergence
=z =ayi(l +2)+ fyall + 2)
ya(l = 2) = yyi (1 + 2} + dya(l + 2),
a, B, y, & are constant.
Replacing z by — z, one obtains
yill +2)=ay (1 = 2) + Byo(1 = 2) = (@ + By)yi (1 + 2) + Bl + 9)ya(1 + 2),
ya(l +2) = yyi(l — 2) + 6y2(1 — 2) = y(a + D)y (1 + 2) + (By + %) ya(l + 2)
It follows that «® + By = By + 6 =1 and B(x + ) = y(x + §) = 0, with only two cases

possible:()a=6= + 1, =7 =0;and (2) 2 = — 8, By = 1 — «?. Let us consider the case
ofa =d6=1,F=7=0. Here

yi(l =2y =y(1 + 2),
ya2(l — z) = ya(l + 2).

The origin of coordinates, z = 0, is, however, a regular point of the equation, therefore no
two independent even solutions can exist that are meaningful in the vicinity of the point
z = 0. It follows that condition (1) must be rejected. The conditiona =6 = — 1, =y =0is
not suitable, since it is associated with two distinct even solutions that are meaningful in the
origin of coordinates. Hence, only condition (2) remains. We shall restrict ourselves to the
cases which will bring us to the n- or 2n-periodic “boundary” solutions that separate the

stability regions from the instability regions of the single equation with periodic coefficients
[15,16].
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(a) Let us assume that x = — 0=+ 1, f=0; y, (1 —z) = + y,(1 + 2).

The solutionis even at @ = [ and odd at « = — 1;itis regular in any finite part of the plane.
Since z = cost, at « = | the solution may be presented as an even power expansion in
cosines that are multiples of t, and « = — 1, in the form of an odd power expansion in

cosines that are multiples of t.

(b) Leta=—-0=+1,7y=0,y,(1 — 2=+ y,(1 +2z)at |1 +z|<2.

The solution is the product of /1 — z* by a regular function that changes its sign upon each
revolution about the singular point z = 1 or z = — 1. The regular function iseven if 6 = 1
and odd if § = — 1. Substituting z = cos , one obtains an even power expansion in sines
that are multiples of t(6 = 1), and an odd power expansion in sines that are multiples of
td=-—1),.

Thus, for the Hill equation in algebraic form, “boundary” solutions of the Hill equation
are obtained that separate the region in which all solutions are bounded from the one in
which all solutions are unbounded.

Let us consider two examples which are special cases of the Hill equation.

Mathieu equation: j + (3 + 2ecos2t)y = 0.
Substituting z = (sin t)?, one obtains an algebraic form of
2

d4y dv

41 -2 4201 -29L 4 6+ 26— dezpy = 0.
dz dz

It has two regular singular points: z = 0 and z = 1 whose indices are 0 and 1/2, and an

essential singular point z = oc. In view of the above, the solutions separating the stability

region from the instability region should be sought in the following form:

e 4]

yW= 3y a4’
k=1,3. ...

2) _ (2) k

y@r =y  a?
k=0,2,4, ...

. e

Y= -2 Y a2

k=1,3, ...

N ETEE I
k=0,2,4, ...

where each series converges in a domain containing both regular singular points. Using
analytical or numerical methods, one can eventually obtain the Ince—Strett diagram.
Lamé equation: § + {h — n(n + 1) [ksn(z, k)]*}y = 0.

Here, a transfer to algebraic forms may be effected by a number of methods [17]. For
example, substituting z = [sn(z, k)]?, one obtains the following equation with three finite
regular singular points:

d?y 1<1 1 1 )dy hk‘zin(nﬁ-l)z'
=2
- _

a2tz "t ey’ =0

z z—1

Algebraic forms of the Lamé equation are used in a number of problems considered in
this article.

3. THE SIMILAR NORMAL MODES STABILITY BY THE FIRST APPROXIMATION OF
HOMOGENEOUS SYSTEMS AND SYSTEMS CLOSE TO THE HOMOGENEOUS ONE

3.1. Splitting of variational equations
Let us consider variational equations for rectilinear vibration modes x; = k;x;

(i=2,3,...,n) in a conservative system of the form
dx; oIl
i'.‘.i HXZO ‘i=_l7 z =™ < s .=1,2,..., [ 1
m;%; + I, (x ar I i n> 0y

whose potential energy I1(x,, x5, ... .Xx,) is analytical.
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Let us rotate the coordinate axes so that the axis x; is aligned with the rectilinear
trajectory, with the remaining axes orthogonal to the trajectory. In the new coordinates, the
trajectory is defined as x; =0 (j = 2,3, ... ,n), x; = x(1).

It was shown in [6] that upon such rotation of the axes in a system with two degrees of
freedom the variational equations always “split”. Denoting the variation along the rectilin-
ear trajectory by u, and the variation in the orthogonal direction by v, we obtain:

d
u+ — I (x,0u =0,
dx

i+ I, . (x, 0)0 = 0.

Let us turn to a system with »n degrees of freedom. Introducing a vector of variations
U = (uy, uy, ... ,u,)": we obtain a set of variational equations in the matrix form

U+ (@UWVII =0,
or
U+AU=0. (2)
Let us expand the matrix A is a series according to x:
U+Ag+ A x+ A2+ - )U=0,

where A; are symmetric matrices with constant coefficients.

For a homogeneous system whose potential is a homogeneous function of variables to
the power r + 1, equations (2) is “split” by the use of a non-degenerate transformation with
constant coefficients. Indeed, the variational equations then have the form

U+AU=0,

and the symmetric matrix A, can be diagonalized using a non-degenerate orthogonal
transformation [18].
Let us separate out another case:

U+ [A,x" + A, x"]U = 0.

The two symmetric matrices A, and A,, are always diagonalizable through one non-
degenerate transformation [ 18], provided one of them is positively defined; moreover, if the
matrices are commuting, the transformation may be made orthogonal. In the literature [19]
one can find proof of the theorem on the diagonalization in the general system (2) under the
conditions that all matrices A; commute between them and also have non-multiple proper
values.

Let the set of variational equations decompose into n independent equations. One of
these will govern the variations along the rectilinear trajectory, and the remaining equations
will refer to the orthogonal directions. It is with the variations in the orthogonal directions
that the orbital stability of normal vibrations is associated.

Let us introduce a new independent variable x. Every variational equation then will have
the following form where the primes refer to the derivation with respect to x:

25y + 8V + G(x)y =0, S=(a—x)(b—x)R (3)

Here R is an analytical function that has no real roots whose moduli are smaller than a or b.
As shown in the previous section, the problem of defining z- and 2z-periodic solutions of the
variational equations (t is the period of the coefficients in the equations) that separate the
regions of stability and instability is reduced to solving Sturm-Liouville problems for
functions that are regular at x = a and x = b or have a singularity of the form ./a — x or
/b — x at these points,

If the potential energy I1 is an even analytical function, the coefficients of the variational
equations have a period which is twice as short as that of the normal vibrations. The kinetic
energy is proportional to # — IT and is an even function of x too. However, S in (3) is
proportional to the kinetic energy, therefore here b = — a. Without loss of generality, one
thus can select a scale such that S = (1 — x%)R. The problem of defining the boundaries of
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the stability and instability regions by the first approximation is now decomposed into four
Sturm-Liouville problems for even and odd functions that are regular at x = + 1 or have
a singularity of the form /1 — x? at these points.

3.2. Homogeneous systems
Let us consider variational equations for homogeneous systems with the potential energy

gy = Oy
H = _ xx' Xiz . xl,. (4)
1,+1~+.Z‘:n:r+l r+1 t !
% =012, . .r+1
Upon the diagonalization of the matrix A each of the equations can be written in the form
#+gx""'v=0 (gq=const) (%)

Here

r+1
= — Q2 x2:2<h—92x )
r+1

QZ =7'E(1,k2, e ,kn).
Let us replace t by a new independent variable x. We obtain, instead of (5),
X+ Ui+ g e =0

or

r+1
2[‘”<h —0? :C+ 1) O3 + quA Lhy=0

Let us introduce another variable z = Q*x"*!/(r + 1). We then have

r 3r+1
1__ ). - ) A’:O 6
z( z)Lb,+[r+1 0t 1)2} v, + AV , (6)
where
P B
TO2(r + DO

Relationship (6) is a hypergeometric equation with regular singular points z = 0 (the indices
equal 0 and 1/(r + 1)) and z = 1 (the indices equal 0 and 1/2). The problem of stability and
branching, as suggested above, is now much simpler. It essentially reduces to finding the
values of the parameter 4 such that, on having traversed a closed contour containing
singular points 0 and 1, a solution is multiplied by + 1 or by - 1 (Section 2). Such
solutions are named degenerate solutions of the hypergeometric equation and are given in
[20]. Their form is

v=2(1 = 2Py,
where ¢,(z) is a polynome, p can take values of 0 and 1/(r + 1), u, can take values of 0 and
1/2.

Let us further denote the period of solution x(r) as T. By analogy with the Mathieu
equation, let us denote the proper functions that are Gegenbauer polynomes as Cg4;(z) (the
even T/2-periodic solution), Cy;,(z) (the odd T-periodic solution), S4;+,(2) (the even
T-periodic solution), and S,;+ 3(z) (the odd T/2-periodic solution). In the linear case, the

trajectories of these solutions are the well-known Lissajou figures. We write the eigenvalues
of these problems in the same order as above [21]:

Aay = jL2Z + D+ 1) = 2],
Aajer =2+ DLjlr + 1) + 1],
laj-2 =+ DL+ Yr+ 1 —1],
lajra=0U+ DI+ Dr+1H+2] (j=0,1,2,...)
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Note that so simple a form for the spectrum of a stability problem is not very often
obtainable for the non-linear case.

3.3. Homogeneous chain system
For the sake of definiteness, let us consider a homogeneous chain system with two degrees
of freedom:

miXy + ay1x] + a2(xy — x3) =0,
MaXy 4+ ayX5 4 a;(x; — x) = 0. (7

An equation to determine the vibration forms is

__ ok [ G2 42 M2 X2 (8)
H—(l — kY (1 + k) _011"u—011’ m,’ Xy

An examination of this relationship shows [3,21] that for positive values of the constraint
parameter y there always exists one inphase vibration mode and one, two or three antiphase
modes whose number depends on ¢ and the homogeneity index r. For negative values of the
constraint parameter g at any value of r there exists one antiphase and one or three inphase
vibration modes.

For the system in question the eigenvalue 4 of the hypergeometric equation (6)

. (1 4 k) (ak” — k)
T ol —k)(ak” + 1)

The plots of § = 4n 'arctg(u- 2"/(r — 1)) and & = arctg k shown in Fig. 1 allow one to
find the relation between the number of vibration modes and the parameters of the chain
system. Curve (a) corresponds to the case of r =3, a = 1;(b) r=7,2=1;(c) r=3, 0 =0;
{(d) r =3, « = 1, 2 (the value of ¥ = 1). Each first point of stability shift for r = 3 is marked
with a circle ©. and for r = 7, with a cross x. A figure shown near a point corresponds to
the number of the eigenvalue 4;. The ranges in which vibration modes are unstable lie
between the points whose numbers are from 4j + 1 to 4/ + 2 and from 4j + 3 and 4j + 4
(j=0,1,2, ... ). In the asymmetrical case (1 # 1) some points of branching turn into limit
points.

Figure 2 shows plots of u versus arctg k for other values of the system parameters. Curve
(e) corresponds to the limiting case r=0, x=1, a=1; ) r=1/3, »x=1, a=1;
@0<r<l,x>ax" >0 0<r<l, x<a x <a These plots give an idea of how
great the number of vibration modes is at various r, a, x.

Fig. 1. The dependence between the number of vibration modes and the parameters of the system
(7). Curves correspond to the cases r = 3, 7;j = 0, 1, 2. Points of stability shift are marked by circles
and crosses. Numbers of the eigenvalue 4; are shown near the points.
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Fig.2. The dependence between the number of vibration modes and the parameters of the system (7)
correspond to * < 1 and various values of other system parameters.

In order to find those periodic solution branching points that do not affect the stability of
normal vibrations, let us write a general solution of the variational equation (6}):

v=Cu(z) + Coz"" " Voyg(z)
(in the vicinity of the singular point z = 0),
v=Du,(1 —2z)+ Dz\/l_f_z-u(,(l —2)
(in the vicinity of the singular point z = 1),

C,,C,,D,, D, being arbitrary constants, u,(z), u,(l — z), us(z), ue(l — z) known hyper-
geometric functions [20]. Let us denote the matrix that relates C,, C, to D, D, as N:

Cy
C;

D,
D,

=N

One can formulate denumerably many boundary problems

NNy =I(p=12,..), I:HI OH

0 -1

in order to define the branching periodic solutions traversing the singular points z = 0 and
z=1 p times.

For the eigenvalue 4 = (r — 1)/r such a branching periodic solution may be written in the
explicit form:

v=Cy(1 +1—2)" + Cpz(1 + /1= 2")" 1",

3.4. Systems approaching homogeneity

The results can be used for systems close to homogeneous ones. The periodic solutions
separating the regions of stability and instability should be sought for the variational
equations by perturbation theory. In the zeroth approximation these solutions are de-
scribed by the eigenfunctions of a hypergeometric equation that correspond to the generat-
ing homogeneous system. From the conditions of the solutions periodicity, the stability shift
points are determined in the further approximations.

In this section, however, only an example is given. Let us consider a symmetrical chain
system whose potential contains x; and x; to the second and fourth power:

mE; + ay1Xy 4 a;3x3 + ax(X; — X2) + a23(x; — x2)* =0,

m¥; + ay1X; + a33X3 + az1(x; — x1) + axs(x; — x)* =0 9
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The equation that governs the anti-phase vibration mode x, = — x; and the variational
equation that permits a judgement about the orbital stability of this vibration form are as
follows:

X+ x(y + 2px?) =0,

i+ vl + Bx?) =0,

ayy + 2a;; a3 + 8a,; ary _3ags
'y:_—_———’ p=-_’ U:_—’ ﬁ— 2
m m m m

X1 — X3 5x1+5x2
X =———, D=——2’—‘,

2
or, with the primes denote the derivation with respect to u,
V(1 — x?) + p(1 — x%)] — v'(vx + 2px3) + v(o + Bx?) = 0. (10)

This is the Lamé equation. Let us use the perturbation theory in order to find the first two
points of stability shift (corresponding to the branching of normal vibrations and periodic
solutions with the period of the generating solution but displaced in phase by half-period).

Let the system be quasilinear. We assume that p and B are small. Let us introduce
a formal small parameter ¢ and multiply the non-linear terms by &

v Iy(1 — x3) + ep(l — xH] — v'(3x + 2epx?) + v(o + efx?) = 0.
We use the following expansions:
t=vp+&t;+ -+, y=%+&)+ -, O=00+&0, + -,
p=epy+epr+ -, B=efi+Pr+ o,
In the zeroth approximation with respect to ¢, one obtains
vvo(l — x%) ~ thyex + vooe = 0.

In the first stability shift point, normal vibrations branch: v, = kx (here x = cos wt) and
Yo = 6¢. Therefore, in the zeroth approximation the linear system is uncoupled, that is
a>; = 0. We may readily check that it is at this point that the periodic solutions with the
period of the generating solution which are displaced in phase by a half-period branch too:
vo = kX (here X = sinwt, Xo = \/1 — x?). Consequently, in the zeroth approximation the
equality 7o = 0, holds for the second stability shift point as well.

Let us write the first approximation with respect to &

vivo(l — x%) — vhyax + 0100 — v6(71x + 2p1X3) + voloy + pix*) =0
{for the first point), or
volvi(l — x%) — vix + v, ] = k(31 — o)x + (2py — B1)x*].

The periodicity conditions are the conditions of orthogonality of the right-hand side with
respect to the periodic solution of the homogeneous equation. Denoting a line integral
along a closed contour (along the period) by §, one obtains for the first stability shift point

%[(?’1 —o)x* + (2py — B)x*]dt =0

or

x?dx x*dx
(71 — 01)§’T——2 +(2p1 — ﬁl)%"——“‘ =0.
V

—x J1—x2

After simple calculations one finds that

(y1—01) 3

(B1 — 2p1) 4
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For the second stability shift point, the periodicity condition is

§[UE)(”/1X + 2p1x%) — voloy + f1xH)]xdt =0

Here vy = CX = Csinwt, x = cos wt. After simple rearrangements one obtains

(y1—oy) 1

(By —6p1) 4

Let us now consider a quasihomogeneous system. Assume that y and ¢ are small. We
introduce a formal small parameter ¢ before each linear term:

vley(1 — x?) + p(1 — x%)] = v'(eyx + 2px3) + v(eo + fx?) =0.
We use the following expansions:
v=vp+evy+ -, y=¢)+ -, =606+ -,
p=potepi+ -, B=Po+ebi+ -
In the zeroth approximation with respect to ¢
vgpo(l — x*) — vy - 2px3 + vo- Bx2 = 0.

The branching of normal vibrations (the first stability shift point) v, = Cx provided that
Bo = 2po. For the second point, that is the branching point of solutions vy = Cx the
conditions will be f, = 6py.

In the first approximation with respect to ¢ we write

v1po(l — x*) — vipex® + v fx? — vg[p1 (1 — x*) + v, (1 — x?)]
= 09(2p1%* + 71%) + vo(f1X% + 0,) = 0.
From the periodicity conditions for the first and second points of stability shift we obtain,

respectively:

%[)C(Zplx3 + 71x) — x(B1x* + 0,)x]dt = 0.

§[3&(2p1x3 + 71x) — X(B1x? + 0,)%]dt = 0.

Upon rearrangement we have

Gi-o) 1 [r<1/4>

2
= | 20729
(f1 =20 12 F(3/4)}

for the first point and

(Br—6p) 5
for the second point, of stability shift.

(11 —a1) 12 [F(3/4)

2
= l"(1/4):| ~ 0.274

4. FINITE ZONING CONDITIONS FOR A STABILITY PROBLEM
BY THE FIRST APPROXIMATION

4.1. Finite number of orbital stability zones

Let us consider a situation when the number of orbital stability zones of normal vibration
modes is finite (it is about a first approximation of stability and instability). Then all other
instability zones are contracted to lines (“collapse™). This situation may be realized under
certain conditions imposed upon the systems parameters. If these conditions are not
satisfied, the number of instability zones will obviously be infinite (e.g. as on the well known
Ince-Strutt diagram for the Mathieu equation). However, the importance of finite zoning
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conditions (or finite-gap conditions) depends on the fact that all the instability zones, except
a finite number of them, are “narrow” if the values of the parameters are “close” to values
which guarantee a realization of the finite zoning conditions when these zones are contrac-
ted to lines. It is interesting that sometimes the first parametric resonance zone may be
“narrow” in this sense though it is usually considered as wide (e.g. for the Mathieu
equation). Moreover, the finite zoning conditions are of interest for the problem of solitons
in non-linear wave systems,

So, let us consider a conservative system having two degrees of freedom, which may be
described by the following equations

w+ Mo =12 (11)

Py

CX;

where I1 is the analytically positively determined potential energy.

One may assume the system to permit rectilinear normal vibration modes x, = kx;. Let
us separate one of the modes and reduce it to x, = 0 by rotation of the coordinate axes.
Then

m m-2
Mxy, x)= Y axi +x3 Y exy +
= = .

1 t 1

X534i(X1), (12)
=3

where g;(x,) are analytical functions. The condition of existence of the solution x, = 0 is
obviously satisfied.

In the normal vibration mode the system behaves like a system with one degree of
freedom

X+ 0L (x.00=0 (x=x) (13)
with the energy integral
5+ %0 = h. (14)

The orbital stability of normal mode x, = 0 is related to y variations orthogonal to the
trajectory. The variational equation is:

§ 4+ ¥, (x, 0) = 0. (15)

The function I, . (x(t), 0) is polynomial with respect to x and periodical with respect to t.
The finite zoning criterion for equations as (15) was given in [22,23] by Novikov.
Namely, periodic potentials u(r) of the Schridinger equation

Y+ [e —uy =0 (16)
may have just n finite restricted zones (instability zones) if the equation
i % —x*=u-—ce
admits of a solution
D —(1/2)2
= 17"

where z is a polynomial in e of degree n with variable factors (z = Y., 4,(t)e"), D being
a constant. Then the equation for the z polynomial may be written down as:
Z—4u—ey —2uz=0. 17

Comparing (15) and (16) one may conclude that u —e = —I1, ,,(x, 0). Taking into
consideration the initial expression (12) for potential energy I1(x,, x,), we have e = 2e,.

4.2. Finite zoning conditions
Let us consider an algebraic form of the equation (17) (algebraization in the Ince sense
[14]) to obtain finite zoning conditions as some conditions imposed on factors of potential



Stability of non-linear normal vibration modes 403

energy IT(x,, x,) expansion. Namely, let us introduce a new independent variable x instead
of z. Taking the following equalities into account

d_d, & & 24y ¢ & x3+3d—2x5c‘+—5é’
& dx” d2 42t Tax T df - de dx? dx
¥ =2h—T(x0), %= —I(x0), = —(x0%

[the last three equalities were obtained from (13) and (14)]. One may have an equation with
regular singularities instead of equation (17) with periodic coefficients:

22" (h — TI(x, 0)) + 3z"( — T4(x, 0)) + z'[ — My(x, 0) + 411, ,,(x, 0)]
+ 2z i [M,,.,(x,00] =0 (18)
0x

where a prime symbol denotes differentiation with respect to x.
Then the r-zoning condition means the solution of equation (18) to be a polynomial in e,
the coeflicients being functions of x:

z= ) og(x)e" (19)
k=0
Substituting (19) into (18) and grouping the terms with equal powers of e, one may have
a problem in the eigenvalues q;, e;.

4.3. Characteristic classes of analytical potential

This problem is absolutely boundless in general, so let us describe results for three
characteristic classes of analytical potentials. Moreover, we should confine ourselves to the
valuesn =0,1,2.

431, a; #0,as #0, eq #0, e, # 0, the rest of the factors in (12) being zero. Note, that
equation (11) in this case has linear and cubic terms with respect to xy, X,.

Grouping the terms with identical powers of e, then grouping the terms with identical
powers of x, we may obtain the finite zoning condition:

ez = (n+ 1)na,. (20)

As shown in this section, the equation in variations is reduced to the Lamé equation in
this case, and the finite zoning conditions are known [11, 17]. Hence, let us discuss other
potentials for which finite zoning conditions were determined for the first time in [24].

432 a, #0,a, #0,a6 #£0,eq #0, e, # 0, e4 # 0, the rest of the factors in (12) being zero.
Equation (11) in this case contains the terms of the first, third and fifth powers of x;, x,.

Grouping the terms with identical powers of e, then grouping the terms with identical
powers of x, we may obtain the finite zoning conditions:

es = 4(n + Dnag; e, =2(n + Dnay; 4aasaq — al + 8haZ =0 21

433. a, #0,a3 #0,a4 #0,e0 # 0, e, # 0, e, # 0, the rest of the factors in (12) being zero.
Equation (11) in this case contains the terms of the first, second and third powers of x,, x,.

Grouping the terms with identical powers of e, then grouping the terms with identical
powers of x, we may obtain the finite zoning conditions:

e;=(n+ Dnay; e =3+ Vnay; 4aya, = a3. (22)

The finite zoning conditions (20) for case 4.3.1 is valid for any positive integer n, but
conditions (21) for the case 4.3.2 and (22) for the case 4.3.3 were obtained only forn =0, 1, 2.
One may repeat all the calculations for n > 2 selecting the terms with senior powers of x to
realize that the first two equations in (21) and (22) are valid again.



404 Yu. V. Mikhlin and A. L. Zhupiev

4.4. Eigenfunctions and eigenvalues
Now let us discuss the calculation of eigenfunctions and eigenvalues for a finite zoning
case. At the same time conditions (20)—(22) will be obtained in another way for any n.
Let us transform the variational equation (15) to an algebraic form introducing a new
independent variable x instead of t. Then equation (15) will be

2y"(h — T(x, 0)) + '( = Ti(x, 0)) + Il 4, (x, 0) = 0.

This is an equation of Fuchs class for the polynomial potentials given above, whose
exponents of the finite singularities equal 0 or 1/2 (the singularities here are zeros of the
expression i — I1(x, 0) and x = oc). Hence, one may search all the eigenfunctions as (the
number of the eigenfunctions are 2n + 1 for the case of n-zoning):

v=p(x) or y=/x—R(x)

where p(x) and R(x) are analytical functions and x = ¢ is a singular point of the equation.
Indeed, that way one may find all the eigenfunctions and eigenvalues for the potentials I, II,
IIT whenn =20,1,2.

Let us consider another approach. First, let us write down the variational equations in
the algebraic form for the three types of potentials:

L 2y"(h — axx? — ayx®) + v’ (= 2a,x — 4asx®) + yie + 2e,x2) =0 (23)
I 2y"(h — a,x* — asx®* — aex®) + y'( — 2a,x — dasx® — 6agx>)
+ yle + 2e,x% + 2e4x*) =0 (24)
NI 2y"(h — a;x? — asx® — agx®) + y'{ — 2a,x — 3a3x? — dasx3)
+ y(e + 2e,x + 2e,x%) =0 (25)
Then let us write the known Lamé equation in an algebraic form
(22 —a?) (2t — b +y'z(22 —a? — b)) — y[n(n + 1)z2? — 4] =0 (26)

(finite zoning for n =0,1,2,3, ... ).
Equation (26) coincides with (23) if

x=1z hja,= —a’b? ayja,= —a* —b% epla,= — i eylas=nn+1)

(the last equality is the finite zoning condition for n = 0, 1,2, ... ). Connecting (26) and (23),
one may note that the coefficient of y” in (26) has the meaning of the kinetic energy
(h — I1(x, 0)) for periodic motion x{t). Kinetic energy vanishes twice per period at the
amplitude values. Without loss of generality one may assume x = + a. Then one may
assume a > 0, | z| < a and either b* < 0 or b* > a?.

All the eigenfunctions and eigenvalues of the Lamé equation for n = 0, 1,2 may be easily
found by substitution into (26) of polynomials or polynomials multiplied by /a* — z?,
V22 —b* or \/b? — 2% Exactly such functions have time period T and T/2 (T being
a period of a function z = x(1)) and define the bounds of stability or instability zones
according to the Floques—Lyapunov theory. The following eigenfunctions y and eigen-
values 4 may be obtained (eigenfunctions being written down in succession according to
increase of the number of zeros; C being an arbitrary constant):

n=0:
Yo = C, /:v[) - O,
n=1(H><0)

t

vo=Cz2 —b% iy=d%
Vi :CZ., ).1 :a2+b2,

I
v, =Cya* -z, i, =07
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n=1(b*>a?:
yo=C/b* — 22, Ao =a?
y, = C/a* — 22, i, =b?%
v, = Cz, sp=a’ + b2,
n=2(b><0)

2a%b*
o)

y1:CZ /zz—bz’ ;~1=402+b2,
y, = C\/z2 — bz\/a2 —z2,  Ay=a*+ b

yy = Cz./a® — 22, Ay = a® + 4b?,

2a%b?
=Cl 22— s
Ya (Z 1 )

n=2(b*>a%:

o = 2[@ + b + /(@® + b»)* — 3a’b?],

Ay = 2[a* + b — J(a* + b?)? — 3a’b?]

Ao = 2[a® + b — \/(a® + b?)? — 3a%b?]

yi=Cyb* -2 Ja* — 2% i =a’+ b

y, = Cz/a* —z*, l, =4a* + b2,
yy = Cz/a* —z?%, Ay = a® + 4b%,

Ay = 2[a® + b? + /(a® + b?)? — 3a%b?].

The following intervals of the A axis correspond to instability zones: (—o0, Aol,
[A1, 221, [43, A4]. Figures 3 and 4 present a stability chart of the Lamé equation for n = 3
and n # 3 but “close” to 3.

Other variational equations may be also be reduced to the Lamé equation (26). Equation
(25) may be reduced to the Lamé equation by shifting along the real axis (the number of
singularities being constant and their symmetry about the origin of coordinates being

restored)
z=x+pu where y= im,
if hfag =4(a® — b}, ayjay =2(a® +b%), asfas =4u,
eg/as= — A+ pin(n+ 1), e jay=2unin+1), ey/a,=n(n+ 1)

/
b

n? :
stab. '
7
4

7
insxab?’
| ‘
! %
1

1ZI1

Fig. 3. Stability chart of the Lamé equation for n = 3 (finite zoning case).
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Fig. 4. Stability chart of the Lamé equation if the parameter values close to values which guarantee
a realization of the finite zoning conditions.

Fig. 5. Eigenfunctions of the variational equation (24) corresponding to the boundaries of the finite
zone of instability (n = 1, b*> < 0).

Note, that the finite zoning conditions (22) for any positive integer n are the consequences of
these expressions. This shift makes it possible to find all eigenfunctions and eigenvalues for
the equation (25) from the functions obtained for the Lamé equation.

Equation (24) may be reduced to the Lamé equation by a quadratic law transformation
z = x”a if (then the number of singularities being changed)

hiae = 2a(a® — b%), a,jae = 5a* — b?, asjas = — 4a,
ee/ag = 4[a’*n(n + 1) — 1], eyjae= — 8an(n + 1), esjae = 4n(n + 1).

Hence the finite zoning conditions (21) for any positive integer n may be obtained. The
eigenfunctions and eigenvalues are transformed accordingly.

It is remarkable that the first zone of parametric resonance is being contracted to a line in
the case Il when the finite zoning conditions are valid. Indeed, the eigenfunctions of
equation (24) corresponding to the boundaries of the finite zone of instability, e.g. for n = 1
(b? < 0), are (Fig. 5)

y1=C(x*—a), y,=Ca*—(x*—ap

For a periodic mode: — 2a < x < 2a. But the functions y,(x) and y,(x) turn to zero
within the interval of [ — 2a, 2a], i.e. their period with respect to t is T/2 (T being the period
of x(r), x being changed within these limit (on a half of the period). Functions corresponding
to the first zone of parametric resonance should have the period of T).

If conditions (20)(22) are not strictly met, the number of instability zones will be infinite.
However all of them are “narrow” in the sense mentioned except the selected n zones, since
the zones are contracted to lines when the finite zoning conditions are valid. This is also true
for the first zone of parametric resonance which is usually assumed to be “wide”.

Note once again that we will obtain the finite zoning conditions (20)—(22) for an arbitrary
positive integer n transforming the Lamé equation into variational equations as mentioned
above (parameters being changed continuously).

4.5. Pendulum systems
Let us consider another class of non-linear systems—pendulum systems with the poten-
tial

V= —acosx, + xi(b +dcosx) + x3g(xy, x3).
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Linearization around the normal mode of vibration x, = 0, x; = x(¢) (the equation of motion
X + asinx = 0) gives the variational equation y + 2(b + d cos x) y = 0. In this case a solution
x(¢) may be either periodic or aperiodic (oscillations and rotation of the pendulum). Introduc-
ing a new independent variable z = x%%/2, one may transform the variational equation to:

—2b— 2 z—h
ot 1 N a =0 (27)
PP T s T i—h—a| TR -G+ allz - (h— a]
being the Lamé equation [17]. Here the finite zoning conditions are:
g;—i=n(n+1) (n=0,1,2,...) (28)

{(n being a number of finite zones of instability within the space of system parameters).

4.6. General procedure of transformation

Let us describe the general procedure of transformation from the finite zoning Lameé
equation (26) to the variational equation (15) in an algebraic form. One should multiply (26)
by an arbitrary function g(z) and perform the transformation z = f(x). Comparing the
equation obtained with equation (15), one should have the following conditions:

2(h — IN(x, ON(f")* = (f> — a®)(f* — bDq([),
2(h — I(x, 0) f" — Ix, O)f ' = f(2f* — a® — b?)q(f),
I, (x0=—[nn+1)f-21q(f) n=0,1,2 ...).

I, ., (x,0)
A—nn+1)f%

2(h — T (x, D[4 — n(n + Df?1(f) = e, (6, O(f* — a®)(f2 - b?),
[2(h — IT(x, 0) /" — Tx(x, 0)f 1[4 — n(n + 1) f*] = f(2f? — a® — b*) U1, (x, 0).

These equations may be used to solve the following problem. Let us assume the transforma-
tion z = f(x). Then one should select the value of potential energy IT(x,, x,) to satisfy the
equalities. The conditions imposed upon the coefficients of potential energy are the finite
zoning conditions for a positive integer n.

Note that stability of some modes of oscillations has been investigated in [12] for
a particle on a plane. In many cases the stability problem may be reduced to analysis of the
finite zoning Lamé equation.

The results presented in this paragraph are not obvious. Suffice it to mention the
possibility of the first zone of parametric resonance being contracted to a line.

Excluding the function g(f) = one would have

5. NON-LINEAR STABILITY OF NORMAL VIBRATIONS

A problem of non-linear stability of normal vibrations in conservative systems may be
solved only after the corresponding linear problem has been solved. The non-linear analysis
is applicable to a system class, such that the variational equations are reduced to hyper-
geometric equations or Lamé equations, etc. The problem of non-linear stability of normal
vibrations was also discussed by Pecelli and Thomas [11,12] (using an approach first
published by Arnol'd and Mozer) for a system with two degrees of freedom and a
Hamiltonian

H 2%())% +Y%) + H(xl,x2)3

X1, X, being positional variables, y,, y, the corresponding impulses. Assume that the system
allows the normal form of vibrations x, = y, = 0.

What we have in view is the isoenergetic stability of the vibration form. Introducing,
following [11], the variables R, 7, x, y by a substitution

y1=+/2Rsint, x; =./2Rcost, X=X, y,=7}, (29)
one obtains R(x, y) from the equation H = h.
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If 7 is a new independent variable, one obtains [25]

d«x @R dy R

— 30
dr ¢y’ dt 0x G0
Setting x#(0) = »,, y(0) = x,, expansions
x= Y a@xing, y= Y by@)rid, (31)
i,j=0 i,j=0

may be constructed. On substituting these series into (30-), one is able to find the co-
efficients a;;(7), b;;(7). In this case, a0, a1, b1o, bo; are solutions of the linear variational
equation

7 =AZ, (32)
wherein
z=|"
y

The series (31) define the solution P(z) of (30). What is known as Poincareé transformation
is P(2r). Thus comparison is made between the values of x(0), y(0) and x(2x), y(2n). Stability
is ensured when the linearized Poincaré transformation P,(2r) defined by the coefficients
10, do1, b1o. boy has eigenvalues 2 . with a modulus equal to unity and when the condition
% #1 holds for k =1, 2, 3, 4 [26,27].

The eigenvalue problem

a;o(2m) — 4 ag((27) -0
b1o(2m) bo1(27m) — 4

implies that 2 = A + /A? — 4/2, where A = (a,0(27) + bo1(27)). It is assumed here that the
solutions of the homogeneous equations (32) are so normalized that aq,(2m)b,¢(2n) = 1.

The above limitations on the eigenvalues are satisfied with A? < 4, A # 0, — 1. Under
these conditions, a change of variable (x, y) = S(¢, #) is possible that reduces the Poincare
transformation to what is known as the Birkhoff normal form [26,27], N = S'PS. By
introducing the complex variable { = ¢ + i, one obtains, instead of P(2x), the transforma-
tion ¢’ = Ale"""* + O, where O, refers to the terms of the fourth-order with respect to
{and C.

If we now consider normal vibrations that are stable in the first approximation (which
implies that A? < 4, for in this case the eigenvalues of the linearized transformation have
moduli equal to unity) and assume A #0, — 1 and y # 0, it follows from the Arnold-
Mozer—Ruisman theorem [26, 27] that the normal form of vibrations possesses orbital
stability in a 2n-dimensional phase space. It is evident that in the system parameter space,
the stability regions A = 0,A = — 1 and y = 0 have a smaller dimension than the instability
region A? > 4,

Once again it is highlighted that it is only the knowledge of the solution of the linearized
variational equation that is necessary to calculate the values of A and y that define the
instability regions obtained when taking into account non-linear terms.

This section deals with isoenergetic stability (for fixed values of the energy k) of normal
vibrations; however, it was shown [26] that complete stability takes place when R = ®(x, y)
1s continuously dependent on the energy h.

More detailed analysis to a specific Hamiltonian of the type

r 1 b b
H = 5()’7 +)3) — ayxi Xy + 5(01 + ) (X7 + x3) + Zl (xT +x3) + 2% (x; — x2)*
is given in [11].

The problem of non-linear stability of normal vibrations was also discussed by Month
and Rand [8].
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