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Abstract Donnell equations are used to simulate free
nonlinear oscillations of cylindrical shells with imper-
fections. The expansion, which consists of two conju-
gate modes and axisymmetric one, is used to analyze
shell oscillations. Amplitudes of the axisymmetric mo-
tions are assumed significantly smaller, than the con-
jugate modes amplitudes. Nonlinear normal vibrations
mode, which is determined by shell imperfections, is
analyzed. The stability and bifurcations of this mode
are studied by the multiple scales method. It is dis-
covered that stable quasiperiodic motions appear at the
bifurcations points.

The forced oscillations of circular cylindrical shells
in the case of two internal resonances and the prin-
ciple resonance are analyzed too. The multiple scales
method is used to obtain the system of six modulation
equations. The method for stability analysis of standing
waves is suggested. The continuation algorithm is used
to analyze fixed points of the system of the modulation
equations.
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1. Introduction

Cylindrical shells are widely used in aerospace, me-
chanical and civil engineering. Therefore, many efforts
were made to study nonlinear oscillations of cylindrical
shells. One of the important problems in nonlinear dy-
namics of shells is to choice mode expansions of oscil-
lations. On the one hand, the mode expansion must ap-
proximate adequately the shell oscillations, but on the
other hand, this expansion must contain the minimum
number of degrees-of-freedom. Evensen and Kubenko
[1–3] used the results of the linear analysis and ex-
perimental data of nonlinear vibrations to choice the
best mode expansions. Dowell and Ventress [4] show
that mode expansion must satisfy the periodicity con-
dition of circumference displacements and geometrical
boundary conditions. Evensen [1–2] obtained that the
frequency response is hard without the axisymmetri-
cal part of mode expansion, but it is soft if these mo-
tions are considered. The soft frequency response is in
a good agreement with the experimental data. More-
over, Evensen show that an inextensibility condition of
the middle surface must be taken into account to obtain
the soft frequency response. One and two modes ap-
proximations of plates and shells oscillations are con-
sidered by Vol’mir [5]. Atluri [6] used perturbation
techniques to study dynamical system, which describe
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three mode expansion of the shell oscillations. Hsu [7]
studied parametric oscillations of simply supported and
clamped- free cylindrical shells. Koval [8] considered
the parametric oscillations of cylindrical shells taking
into account both longitudinal and bending motions.
He showed that the first eigenfrequency corresponds to
the significant bending and small longitudinal motions.
Lockhart [9] analyzed the dynamics of geometrically
nonlinear cylindrical shell with imperfections under the
action of impulse longitudinal force. He presented the
dynamic response in the form of power series with re-
spect to small parameter. It is shown in the papers [3, 10]
that imperfections and nonlinear inertia terms affect
significantly on nonlinear oscillations of cylindrical
shell. Nayfeh and Raouf [11] used McIvor’s model
to study forced oscillations of infinitely long cylindri-
cal shell. They considered the saturation phenomenon,
when energy of the axisymmetric mode is pumped over
the asymmetrical motions. Koval’shuk and Podshasov
[12] derived the quasilinear system of ODEs to de-
scribe the traveling waves in cylindrical shells. They
used the average method to study the main resonance.
Raouf and Nayfeh [13] considered the forced oscil-
lations of the infinity long cylindrical shell close to
the principal resonance. They derived the system of
modulation equations and studied periodic solutions,
their bifurcations and chaotic motions. Detailed review
of experimental results of cylindrical shells nonlinear
oscillations is presented in the paper [14], where the
experimental data of bifurcations of traveling waves,
the regions of beating and subharmonic oscillations
are reported. Manevich [15] considered free oscilla-
tions of rings taking into account an energy exchange
between conjugate modes. Two nonlinear partial dif-
ferential equations with respect to radial and circum-
ferential displacements are used to analyze the shell
oscillations by Chin and Nayfeh [16]. They derived
the system of ODEs with inertial and cubic nonlineari-
ties. An orthotropic, geometrically nonlinear cylindri-
cal shell is considered in the paper [17], where it is
assumed, that the amplitudes of axisymmetric breath-
ing are less than the amplitudes of asymmetrical modes.
Ladyguina and Manevich [18] considered the interac-
tion of conjugate modes by the multiple scales method.
Kubenko and Koval’shuk [19] obtained that the travel-
ing waves take place in the narrow resonance domain
and the standing waves occur outside this region. More-
over, they obtained that the frequency response of the
parametrically excited shell is soft-hard in the region of

the main parametric resonance. Four modes expansion
of the shell nonlinear oscillations is considered by Am-
abili, Pellicano and Vakakis [20]. They use the normal
forms method to study the four-degree-of-freedom sys-
tem. Based on experimental data, Amabili, Pellegrini
and Pellicano [21] are made the conclusion, that the soft
frequency response of short shells has larger puling of
frequency, than the long one. Pellicano, Amabili, and
Paidoussis [22] studied the effect of shell parameters
on hardening – softening behavior of the frequency re-
sponses. The interaction of four modes is considered to
study free oscillations of cylindrical shells in the paper
[23]. Pellicano and Avramov [24] considered a nonlin-
ear dynamics of a circular cylindrical shell carrying a
rigid disk.

Recently a lot of papers devoted to many mode
models of nonlinear oscillations of cylindrical shells
appear. These models are studied numerically. An-
other approach for nonlinear oscillations of cylindri-
cal shells based on asymptotic analysis is considered
in this paper. Discrete models with small number of
DOF developed in [1, 3] are used to study nonlin-
ear oscillations analytically here. The results obtained
by these models are in good agreement with the ex-
perimental data. The aim of this paper is to analyze
nonlinear normal modes of free oscillations of cylin-
drical shells and to investigate forced oscillations in
the case of two internal resonances and the principal
resonance.

In this paper the method of nonlinear normal vibra-
tions modes is used to study free oscillations of cylin-
drical shell. It is shown that a single nonlinear normal
mode is mainly determined by imperfections of shell.
Stability and bifurcations of this mode are investigated
by the multiple scales method.

The forced oscillations of cylindrical shells in the
case of two internal resonances are studied analytically
by the multiple scales method. The hard frequency re-
sponses of standing and traveling waves, which are ex-
plained by addition internal resonance of the discrete
model of shell, are obtained. The new method for sta-
bility analysis of standing waves is suggested in this
paper too.

2. Discrete models of oscillations

The nonlinear oscillations of the cylindrical shells
(Fig. 1) with imperfections can be described by the
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Fig. 1 Cylindrical shell principal model

Donnell Equations [25, 26]:

D
h

∇4w1 = L(w1 + w0, �) + 1

R
∂2�

∂x2

−ρ
∂2w1

∂t2
+ q

h
; (1)

1

E
∇4� = −1

2
L(w1 + 2w0, w1) − 1

R
∂2w1

∂x2
;

L(A, B) = ∂2 A
∂x2

∂2 B
∂y2

+ ∂2 A
∂y2

∂2 B
∂x2

− 2
∂2 A
∂x∂y

∂2 B
∂x∂y

,(2)

where D = Eh3

12(1−ν2) ; E is the Young modulus; ν is the
Poisson ratio; ρ is the shell density; R, h are radius
and thickness of the shell; x, y are the longitudinal
and circumference coordinates (Fig. 1); w1 is dynami-
cal deflections; � is the in-plane Airy stress function;
w0(x, y) is initial imperfections; q is external excita-
tion. If free oscillations are considered, then q = 0.

The following expansion of shell oscillations is used
[1]:

w1 = f1(t) cos sy sin r x + f2(t) sin sy sin r x

+ f3(t) sin2 r x, (3)

where s = n
/

R; r = mπ
/

l, n is the number of waves
in the circumference direction; m is the number of half-
wave in the longitudinal direction; l is a length of the
shell. The function sin2 r x of the expansion (3) does not
satisfy the boundary condition for moment at x = 0

and x = l, but as shown in [1, 2] only the boundary
conditions for w1 at x = 0 and x = l can be satisfied.

2.1. Model of free oscillations of shells with
imperfections

It is assumed that the length of the middle surface trans-
verse section is constant during oscillations [1]:∫ 2π R

0
ε22 dy

=
∫ 2π R

0

[
∂V
∂y

− w

R
+ R

2

(
∂w

∂y

)2]
dy = 0, (4)

where V is circumference displacements. The following
equation is derived from (4): f3 = ( f 2

1 + f 2
2 )n2

/
(4R).

Imperfections are considered in the following form:

w0 = f10 cos sy sin r x + f20 sin sy sin r x, (5)

where f10, f20 are constant values. The Equations (3)
(5) are substituted into (2). Then the Equation (2) is
solved analytically and the results are substituted into
(1). Galerkin method is used to Equation (1). As a result
the following dynamical system is derived [3]:

f̈1 + ω2
1 f1 + γ f2 + 2χ f1

(
ḟ 2
1 + f1 f̈1 + ḟ 2

2 + f2 f̈2
)

+ γ1 f1
(

f 2
1 + f 2

2

) + g f1
(

f 2
1 + f 2

2

)2 + α1 f1 f2

+ α2 f 2
1 + α3 f 2

2 = ω2
0 f10; (6)

f̈2 + ω2
2 f2 + γ f1 + 2χ f2

(
ḟ 2
1 + f1 f̈1 + ḟ 2

2 + f2 f̈2
)

+ γ1 f2
(

f 2
1 + f 2

2

) + g f2
(

f 2
1 + f 2

2

)2 + β3 f1 f2

+ β1 f 2
1 + β2 f 2

2 = ω2
0 f20, (7)

where parameters χ, γ, ω2
1, ω

2
2, γ1, g, α1, α2, α3, β1,

β2, β3 are presented in Appendix. Let us introduce the
dimensionless variables and parameters:

t∗ = ω0t ; x∗ = f1h−1; y∗ = f2h−1;

ω∗
1 = ω1ω

−1
0 ; ω∗

2 = ω2ω
−1
0 ; ε2γ ∗ = γω−2

0 ;

χ∗ = χh2; γ ∗
1 = γ1ω

−2
0 h2; g∗ = gω−2

0 h4;

εα∗
1 = α1ω

−2
0 h; εα∗

2 = α2ω
−2
0 h; εα∗

3 = α3ω
−2
0 h;

f ∗
10 = f10h−1; f ∗

20 = f20h−1; εβ∗
1 = β1hω−2

0 ;

εβ∗
2 = β2hω−2

0 ; εβ∗
3 = β3hω−2

0 , (8)
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where ε � 1 is a small parameter. The system (6, 7)
is written with respect to dimensionless variables and
parameters dropping the symbol “∗” in the notations
(8):

ẍ + ω2
1x + ε2γ y + 2χx(ẋ2 + x ẍ + ẏ2 + y ÿ)

+ γ1x(x2 + y2) + gx(x2 + y2)2 + εα1xy + εα2x2

+ εα3 y2 = f10;

ÿ + ω2
2 y + ε2γ x + 2χy(ẏ2 + y ÿ + ẋ2 + x ẍ)

+ γ1 y(x2 + y2) + gy(x2 + y2)2 + εβ1x2 + εβ2 y2

+ εβ3xy = f20. (9)

the parameter ε indicates only the small terms in the
system (9).

2.2. Model of Forced Oscillations

It is assumed that the external excitation corresponds
to the mode cos sy sin r x :

q = E1 cos sy sin r x cos 
t. (10)

The shell deflection is considered in the form (3). The
expansion (3) is substituted into (2). Then the solution
of Equation (2) is

� = �0 cos 2r x + �1 sin r x cos sy + �2 sin r x sin sy

+ �3 cos 2sy + �4 sin 2sy + �5 sin 3r x cos sy

+ �6 sin 3r x sin sy − 0.5K x2, (11)

where �0, �1, . . . , �6 depends on the parameters of
shells. The term −0.5K x2 of (11) describes the mem-
brane stresses of the middle surface. The periodicity
condition of circumference displacements is used to
determine the constant K :∫ 2π R

0

∂V
∂y

dy =
∫ 2π R

0

{
∂2�

∂x2
− ν

∂2�

∂y2
− E

2

(
∂w

∂y

)2

+ Ew

R

}
dy = 0. (12)

Then it is derived:

K = − Es2

8

(
f 2
1 + f 2

2 − 4 f3

Rs2

)
. (13)

The in-plane stress function (11) is substituted into
Equation (1) and the Galerkin method is used. As a
result, the following system of ODEs is obtained:

f̈1 + ω2 f1 + δ1 ḟ1 + γ1 f1 f3 + γ2 f1
(

f 2
1 + f 2

2

)
+ γ3 f1 f 2

3 = α1 cos 
t ;

f̈2 + ω2 f2 + δ2 ḟ2

+ γ1 f2 f3 + γ2 f2
(

f 2
1 + f 2

2

) + γ3 f2 f 2
3 = 0; (14)

f̈3 + ω2
3 f3 + δ3 ḟ3 + γ1

3

(
f 2
1 + f 2

2

)
+ 2

3
γ3 f3

(
f 2
1 + f 2

2

) = 0;

where α1 = E1/ρh; δ1, δ2, δ3 are damping coeffi-
cients; 
 is frequency of excitation, the parameters
ω2, ω2

3, γ1, γ2, γ3are presented in Appendix.
The small parameter μ is introduced: μ = h/R �

1. The dimensionless general coordinates xi =
fi h−1(i = 1, 2, 3) and the dimensionless time τ = ωt
are used. Then the system (14) has the following di-
mensionless form:

ẍ1 + x1 + μ
[
δ̄1 ẋ1 + γ̄1x1x3 + γ̄2x1

(
x2

1 + x2
2

)
+ γ̄3x1x2

3

] = μᾱ1 cos pτ ;

ẍ2 + x2 + μ
[
δ̄2 ẋ2

+ γ̄1x2x3 + γ̄2x2
(
x2

1 + x2
2

) + γ̄3x2x2
3

] = 0;

ẍ3 + ω̄2
3x3 + μ

[
δ̄3 ẋ3 + γ̄1

3

(
x2

1 + x2
2

)
+ 2

3
γ̄3x3

(
x2

1 + x2
2

)] = 0, (15)

where ω̄3 = ω3ω
−1; p = 
ω−1; μγ̄1 = h2γ1ω

−2;
μγ̄2 = h2γ2ω

−2; μγ̄3 = h2γ3ω
−2; μᾱ1 = α1ω

−2h;
μδ̄1 = δ1ω

−1; μδ̄2 = δ2ω
−1; μδ̄3 = δ3ω

−1; the param-
eters γ̄1, γ̄2, γ̄3 are presented in Appendix.

The internal resonance 1:1 is always observed in
the system (15). Moreover, the additional internal res-
onance between the frequencies ω̄1 = 1 and ω̄3 can
take place in the system (15). The system (15) with
such two resonances is considered in this paper. Note
that the dynamical system (15) and the model (9)
have essential distinctions. If the transversal section
of the middle surface is considered inextensible, the
general coordinate f3 is the function of f2 and f1:
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f3 = n2( f 2
1 + f 2

2 )/(4R). That is f3 has the smaller or-
der than f1 and f2: f3 = O( f 2

1 , f 2
2 ). In this case the

shell model (9) has two-degree-of-freedom. As shown
in [3] this model has good agreement with the experi-
mental data. However, this two degree-of-freedom shell
model does not describe the internal resonances ω̄3 ≈ 2
and ω̄3 ≈ 1. As it will be shown in this paper, these
internal resonances are observed in the first approxi-
mation by μ of the system (15). In this case the vari-
able f3 can not be small and oscillation energy of two
conjugate modes pumped into the axisymmetric mo-
tions. This effect can not be observed in two-degree-
of-freedom system (9). Therefore, the model (9) can
not be obtained from the system (15) by using the rela-
tion ᾱ1 = 0. As shown in [3], the results of analytical
analysis of the three-degree-of-freedom system (15) in
the vicinity of the main resonance without the internal
resonances ω̄3 ≈ 2 and ω̄3 ≈ 1 are close to the exper-
imental data. The detailed analysis of the forced os-
cillations with addition internal resonance ω̄3 ≈ 2 is
performed in this paper.

3. Nonlinear normal modes of shells

The nonlinear normal modes (NNMs), which are the
generalization of the normal modes of linear systems,
are considered in [27, 28]. The method of NNMs is an
effective tool to study engineering problems. For exam-
ple, this method was used for the problem of vibrations
absorption [29 – 31]. Here NNMs of cylindrical shell is
considered. If the shell imperfections are equal to zero,
all NNMs trajectories in the configuration space of the
system (9) are rectilinear and they have the following
form:

y = kx . (16)

To study the rectilinear approximation (16) of NNMs,
the following approach is used. The Equation (16) is
substituted into the system (9). The following equations
are derived:

ẍ + 2χ (1 + k2)x(ẋ2 + x ẍ) = −γ1(1 + k2)x3

−(α1k + α2 + α3k2)x2 + ω2
0 f10 − (

ω2
1 + γ k

)
x ;

ẍ + 2χ (1 + k2)x(ẋ2 + x ẍ) = −γ1(1 + k2)x3

−(β1k−1 + β2k + β3)x2 + k−1ω2
0 f20

−(
ω2

2 + γ k−1
)
x,

(17)

where x(t) describes the motion on the NNM (16). Then
the coordinate x is replaced by its amplitude value X.
Now the right-hand parts of (17) are equated and the
following algebraic equation as a condition of compat-
ibility is derived:

X
[
k
(

2

1 − 
2
2

) + γ (k2 − 1)
] + X2

[
k3 β3

2
+ k2(2β1

−β2) + k(α2 − β3) − β1

]
= ω2

0(k f10 − f20), (18)

where α1 = 2β1; β3 = 2α3; 
2
1,2 = ω2

0 − ω2
1,2. The

Equation (18) is cubic with respect to k. This cubic
equation is solved numerically with the different val-
ues of f10, f20,X . The obtained NNMs are verified by
the direct numerical integration of the system (9). As a
result of the calculations, the following conclusion can
be made. In the wide range of the system parameters,
only the single NNM (16) exists with k close to

k = f20/ f10. (19)

Figure 2 shows the results of direct numerical sim-
ulations of NNM (19, 16). The following shell pa-
rameters are used: n = 7; R = 0.2 m; f20 = f10; L =
1.4; f10 = 0.2 × 10−3 m; h = 0.5 × 10−3 m; X = 2 h;
E = 2 × 1011 Pa; ρ = 7800 kg/m3; ν = 0.3. The nu-
merical results are in agreement with the NNM (19, 16).
Fig. 3 shows the trajectory in the configuration space,
which was obtained by direct numerical integration
of the system (9) with the same parameters as at
the Fig. 2 and with the coefficient k = −1.58 of the
Equation (16). As will be shown below, this trajectory
(Fig. 3) corresponds to a case of the NNM instability.

To analyze the NNMs with curvilinear trajectories
in the configuration space, the equation of motion in
configuration space will be derived. The variable x of
the system (9) is used as independent variable instead
of t. Then the solution of the system (9) is considered
in the following form: y(x). The following formulae
are used:

d
dt

= ẋ
d

dx
,

d2

dt2
= ẋ2 d2

dx2
+ ẍ

d
dx

. (20)

The energy integral of the system (9) has the following
form:

T + � = H, (21)
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Fig. 2 The nonlinear
normal vibration mode
trajectory for the following
shell parameters:
h = 0.5 × 10−3 m; X = 2 h;
E = 2 × 1011 Pa;
ρ = 7800 kg/m3; ν = 0.3;
f10 = 0.2 × 10−3 m; k = 1;
L = 1.4. n = 7; R = 0.2 m;
f20 = f10

Fig. 3 The trajectory in the
configuration space for the
following shell parameters:
n = 7; k = −1.58;
h = 0.5 × 10−3 m; X = 2 h;
E = 2 × 1011 Pa;
ρ = 7800 kg/m3; ν = 0.3;
f10 = 0.2 × 10−3 m;
L = 1.4; R = 0.2 m

T = ẋ2

2
+ ẏ2

2
+ T1, T1 = χ (ẋ2x2 + 2xyẋ ẏ + ẏ2 y2);

� = ω2
1

x2

2
+ ω2

2
y2

2
+ γ xy + γ1

(
x4

4
+ y4

4
+ x2 y2

2

)
+g

6
(x2 + y2)3 + α1

x2 y
2

+ α2
x3

3
+ β2

y3

3
+ β3

xy2

2
− ω2

0 f10x − ω2
0 f20 y,

where H is a constant value of energy. It is derived from
(21):

ẋ2 = 2(H − �)

1 + y′2 + 2T1
. (22)

Here the prime means a derivation by x. Using the for-
mulas (9, 21, 22), the equations of motions in configu-
ration space are obtained as

2(H − �)

1 + y′2 + 2T1
y′′ − (2χx P + �′

x )y′ + 2χy P

= −�′
y ; (23)

P = ẋ2 + x ẍ + ẏ2 + y ÿ. (24)

After some algebra with the relations (20–22), the fol-
lowing formula is obtained:

P = ẋ2(1 + y′2 + yy′′) + ẍ(x + yy′).
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Using the Equations (20, 22), it is obtained:

P = 2(H − �) (1 + y′2 + yy′′)
(1 + y′2 + 2T1) [1 + 2χx(x + yy′)]

− (x + yy′)
1 + 2χx(x + yy′)

�′
x . (25)

The Equation (25) is substituted into (23). Then the
equation of motions in the configuration space is de-
rived

2(H − �)

1 + y′2 + 2T1

[
y′′ + 2χ (y − xy′)

1 + y′2 + yy′′

1 + 2χx(x + yy′)

]
−�x

[
y′ + (x + yy′)2χ (y − xy′)

1 + 2χx(x + yy′)

]
= −�y . (26)

The Equation (26) has singularities at the maximal
isoenergetic surface � = H . The analytical continu-
ation of trajectories up to this surface is possible due to
the boundary condition [27]:{

− �x

[
y′ + (x + yy′)2χ (y − xy′)

1 + 2χx(x + yy′)

]
= −�y

}∣∣∣∣
�(X,y(X ))=H

. (27)

This boundary condition is obtained from (26) assum-
ing that � = H . More deep consideration of boundary
conditions for NNMs the reader can find in the book
[27].

Let us assume that imperfections f10, f20 are small.
Then the addition small parameter ε1 � 1 is introduced
and the following estimation is used: ( f10, f20) =
O(ε1). The orders of the dynamical system (9) coef-
ficients with respect to the imperfections are the fol-
lowing:

α1 = O( f20); (α2, α3) = O( f10); β3 = O( f10);

γ = O( f10 f20); (β1, β2) = O ( f20) .

Then the NNM trajectory is represented by the asymp-
totic expansion:

y = kx + ε1 y1(x) + · · · (28)

As ε1 � 1, the NNM (28) is close to rectilinear one.
The expansion (28) is substituted into the Equation (26)

and the terms of order O(ε1) are equated. As a result
it is obtained the next equation of the first order with
respect to ε1:

2y′′
1

H − �0

1 + k2 + 2T 0
1

+4χ
H − �0

1 + k2 + 2T 0
1

1 + k2

1 + 2χ (1 + k2)x2
(y1 − xy′

1)

−�0
x

(1 + k2)2χx2(y1 − xy′
1)

1 + 2χ (1 + k2)x2
= G + �1

x k − �1
y,

(29)

where �0 = �|y=kx,ε=0; G = �0
xyky1 + �0

x y′
1 −

�0
yy y. The Equation (28) is substituted into the

boundary condition (27). Then the boundary condition
of order O(ε1) is derived:[

�0
x

(1 + k2)2χx2(y1 − xy′
1)

1 + 2χ (1 + k2)x2
+ �1

x k − �1
y

]∣∣∣∣H=�

= 0. (30)

The solution of Equation (29) can be presented as power
series [27]:

y1 = a0 + a1x + a2x2 + . . . (31)

The series (31) is substituted into the Equation (29) and
the system of linear algebraic equations with respect to
a1, a2, . . . is derived. The series (31) is substituted into
the boundary condition (30) too and the additional sin-
gle linear algebraic equation is obtained. The obtained
system of linear algebraic equations is not presented
here. As the internal resonance 1:1 is observed in the
system (9) without the initial imperfections, the deter-
minant of the system of linear algebraic equations is
close to zero. Note, that the parameters γ, αi , βi of the
system (9) are smaller by a factor of 30 ÷ 100, than
f10, f20. As a result, it can obtain that the solving con-
dition of the system of linear algebraic equation is the
following:[
ω2

0( f10/ε1)x − ω2
0( f20/ε1)y

] ∣∣y=kx = 0.

Then the value k = f10/ f20 is obtained from the last
equation. Thus, only the single nonlinear normal mode
y ≈ f10x/ f20 close to rectilinear one exists in the case
of small imperfections and this NNM is mainly deter-
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mined by these imperfections. Of course, others NNMs
and others kinds of periodic and nonperiodic motions
can exist in the system (9).

4. Bifurcations and stability of nonlinear

normal mode

In this section the stability and bifurcations of the
NNM (28, 19) is studied. It is important, that if ε =
0, the system (9) is essentially nonlinear. The sys-
tem (9) is rewritten with respect to polar coordinates
r =

√
x2 + y2; tan θ = y

x :

θ̈1r2 + 2rṙ θ̇1 + εr2[εγ cos 2(θ1 + θ∗)

+ε
 cos 2(θ1 + θ∗)] + F0(r − εSr3) sin θ1 = 0;

(1 + 2χr2)r̈ + 2χrṙ2 − θ̇2
1 r + r + γ1r3 + gr5

+εr [εγ sin 2(θ1 + θ∗) − ε
 cos 2(θ1 + θ∗)]

−F0(1 − εS3r2) cos θ1 = 0, (32)

where θ1 = θ − θ∗; cos θ∗ = f10/F0; sin θ∗ = f20/F0;

F0 =
√

f 2
10 + f 2

20; ε2
 = Er4

16ρω2
0
( f 2

10 − f 2
20); εS =

hσ̃ (4ω2
0); σ̃ = Er4s4ρ−1(s2 + r2)−2. Only two param-

eters of the system (32) ε2
 and ε2γ have the second
order with respect to ε. The others parameters have the
orders O(1) and O(ε). Therefore, in the future treat-
ments the terms with parameters ε2
, ε2γ are not con-
sider.

The equation θ1 = 0 determines the NNM of the
system (32), which has the form: y = f20x/ f10 in the
Cartesian coordinates. This NNM is considered in the
previous section.

Let us determine the fixed point of the system (32),
which satisfies the equations: θ̇1 = ṙ = 0. This fixed
point is

r� = r̄0 − ε
r̄0 D + 3F0Sr̄2

0

1 + 3γ1r̄2
0 + 5gr̄4

0

+ O(ε2);

θ1 = 0 + O(ε2), (33)

where D = γ sin (2θ∗) − 
 cos (2θ∗). The parameter
r̄0 satisfies the nonlinear equations:

ψ(r̄0) = F0; ψ(r ) = r + γ1r3 + gr5. (34)

Now stability and bifurcations of the NNM with small
amplitudes are considered close to the fixed point (33).
The following change of variables is used:

r = r� + εR(t); θ1 = εφ(t), (35)

The variables R(t), φ(t) satisfy the following equa-
tions:

R̈ + α2
2 R

= ε

1 + 2r̄2
0 χ

[
G R2 + C + r̄−

0 2r̄0χ Ṙ2 − F2
0

2

]
; (36)

φ̈ + α2
1φ = ε

(
F0

r̄2
0

Rφ − 2

r̄0
Ṙφ̇

)
, (37)

where

G = 4r̄0χψ ′(r̄0)

1 + 2r̄2
0 χ

− ψ ′′(r̄0)

2
;

α2 =
√

ψ ′(r̄0)√
1 + 2r̄2

0 χ

(
1 + εα

(1)
2

)
+ O(ε2);

α1 =
√

F0

r̄0

(
1 − εα

(1)
1

)
+ O(ε2);

α
(1)
1 = 1

2

⎛⎝Sr̄2
0 + 2Dr̄0

F0
− D + F0 S3r̄0

1 + 3γ1r̄2
0 + 5gr̄4

0

⎞⎠;

α
(1)
2 = 1

2ψ ′(r̄0)

⎧⎨⎩3F0 Sr̄0

+ (D + F0 S3r̄0)
[
1 + r̄2

0 (6χ − 3γ1) + r̄4
0 (6γ1χ − 15g) − 10gr̄6

0 χ
](

1 + 3γ1r̄2
0 + 5gr̄4

0

)(
1 + 2r̄2

0 χ
)

⎫⎬⎭.

The multiple scales method [32] is used to study the
bifurcations of the system (36, 37). Then the solutions
are represented by the asymptotic expansion:

R = R0(T0, T1, . . .) + εR1(T0, T1, . . .) + O(ε2);

φ = φ0(T0, T1, . . .)+εφ1(T0, T1, . . .)+O(ε2), (38)

where T0 = t ; T1 = εt ; T2 = ε2t. The following equa-
tions are derived:

∂2 R0

∂T 2
0

+ α2
2 R0 = 0;

∂2φ0

∂T 2
0

+ α2
1φ0 = 0;

∂2φ1

∂T 2
0

+ α2
1φ1
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= −2
∂2φ0

∂T0∂T1
+ F0

r̄2
0

R0φ0 − 2

r̄0

∂ R0

∂T0

∂φ0

∂T0
;

∂2 R1

∂2T0
+ α2

2 R1 = −2
∂2 R0

∂T0∂T1
+ 1

1 + 2χ r̄2
0[

G R2
0 + C + r̄0

(
∂φ0

∂T0

)2

− 2χ r̄0

(
∂ R0

∂T0

)2

− F0

2
φ2

0

]
.

(39)

The analysis of secular terms of the system (39) shows,
that only one internal resonance exists:

α2 = 2α1 + εσ, (40)

where σ is the detuning parameter. Equating to zero the
secular terms of the system (39), the following system
of modulation equations is derived:

α2
da1

dT1
− B

4
a2

2 sin(φ1 + σ T1 − 2φ2) = 0;

−α2a1
dφ1

dT1
+ B

4
a2

2 cos(φ1 − 2φ2 + σ T1) = 0;

α1
da2

dT1
+ π∗

4
a1a2 sin(φ1 − 2φ2 + σ T1) = 0;

α1a2
dφ2

dT1
+ π∗

4
a1a2 cos(φ1 − 2φ2 + σ T1) = 0, (41)

where B = 1
1+2r̄2

0 χ
(α2

1 r̄0 + F0
2 ); π∗ = F0

r̄2
0

− 2
r̄0

α1α2.

Let us introduce the new variable ψ = φ1 − 2φ2 +
σ T1. Then the system (41) has the form:

da1

dT1
= B

4α2
a2

2 sin ψ ;
da2

dT1
= π∗

4α1
a1a2 sin ψ ;

dψ

dT1
= σ +

(
Ba2

2

4α2a1
+ π∗a1

2α1

)
cos ψ. (42)

The system (42) has two fixed points. The first one is
determined by the equations:

a1 = a(0)
1 ; a2 = 0; cos ψ = − 2α1σ

π2a(0)
1

, (43)

where a(0)
1 is an arbitrary constant. We stress, that for-

mulae (43) describe the NNM (19, 28). The second
fixed point is the following:

a1 = a(0)
1 ; sin ψ = 0;

Ba2
2

4α2a(0)
1

= −π∗a(0)
1

2α1
∓σ.

(44)

The fixed points are plotted on the frequency response
a2(σ ) (Fig. 4).

The eigenvalues λ1, λ2, λ3 of the Jacobian matrix
of the vector field (42) are determined to study stabil-
ity of the fixed points. The fixed points (43) have the
following values of λ1, λ2, λ3:

λ1 = 0; λ2 = −3
√

F0a(0)
1

r̄
3
/.2

0 4

√
1 − 4σ 2α2

1

π2
2 a(0)2

1

;

λ3 = −2λ2. (45)

If 1 − 4σ 2α2
1

π2
2 a(0)2

1

< 0 (1 − 4σ 2α2
1

π2
2 a(0)2

1

> 0), then the fixed point

(43) is orbitally stable (unstable), respectively. Note
that orbitally stable and unstable fixed points are shown
on Fig. 4 by solid and dotted lines. The fixed point (44)
has the following values of λ1, λ2, λ3:

λ1 = 0; λ2,3

= ±i
3a2

√
F0r̄0

4
√

1 + 2r̄2
0 χ

√
1

r̄2
0

+ a2
2

16(1 + 2r̄2
0 χ )a2

1

. (46)

Therefore, the fixed points (44) are orbitally stable. The
frequency response (Fig. 4) contains two bifurcation
points A, B, which have the following values of σ :

σ = ∓3
√

F0r̄0a(0)
1

2r̄
3/2
0

. (47)

Let us study the bifurcation behavior on the plane
( f10, f20). Such bifurcation set is described by the
system of two nonlinear equations, which is obtained
from (34, 47):

r̄0 + γ1r̄3
0 + gr̄5

0 = F0; α2 = 2α1 ∓ ε
3
√

F0r̄0a(0)
1

3r̄
3/2
0

.

(48)
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Fig. 4 The frequency
response a2(σ ). The stable
motions are denoted by
solid lines and unstable
motions by dotted line

The following bifurcation set is derived by the asymp-
totic analysis:

SB = {
( f10, f20) ∈ R2/[

ψ(r̄0) + εr̄ (±)
1 ψ ′(r̄0)

]2

+O(ε2) = f 2
10 + f 2

20

}
, (49)

where r̄0 is determined from the nonlinear equation:

3 + (γ1 + 8χ )r̄2
0 + (8γ1χ − g)r̄4

0 + 8χgr̄6
0 = 0.

Others parameters of Equation (49) are calculated in
the following way:

r̄ (±)
1 = 1

Ps(r̄0)

[
β(r̄0) ± 6V (r̄0)a(0)

1

r̄0

]
,

V (r0) = 1 + γ1r2
0 + gr4

0 Ps(r̄0)

= (
1 + 2χ r̄2

0

)−2[r̄0(2γ1 + 4χ )

+ r̄3
0 (32γ1χ − 4g) + r5

0 (44gχ + 32χ2γ1)

+64gχ2r7
0

]
;

P(r̄0) = −3 − r̄2
0 (10χ + 7γ1) − r̄4

0 (10χγ1 + 19g

+ 16χ2) − r̄6
0 (26gχ + 16χ2γ1) − 16gχ2r̄8

0 ;

β(r̄0) = 3F0Sr̄0

1 + 2χ r̄2
0

+ 4
(
1 + γ1r2

0 + gr4
0

)
×

(
Sr̄2

0 + 2Dr̄0

F0

)
+ P(r̄0)(D + F0S3r̄0)(

1 + 3γ1r̄2
0 + 5gr̄4

0 )(1 + 2r̄2
0 χ

)2 .

Note, that the bifurcation set (49) has the form of two
concentrically circles. The width of unstable area is
estimated as O(ε).

5. Analysis of internal resonance 1:2

The multiple scales method [32] is used to analyze the
system (15) in the first approximation of μ. Solutions
of the system (15) have the form:

x j = x j0(T̃0, T̃1, . . .) + μx j1(T̃0, T̃1, . . .) + · · · ;

j =
→

1, 3, (50)

where T̃0 = t ; T̃1 = μt ; . . . The expansion (50) is sub-
stituted into (15) and the terms of the same order ofμ
are equated. As a result the following equations are
derived:

x j0 = A j (T̃1) exp(i T̃0) + Ā j (T̃1) exp(−i T̃0);

j = −→
1, 3; (51)

∂2x11

∂ T̃ 2
0

+ x11 + exp(i T̃0)

[
2i

∂ A1

∂ T̃1
+ δ̄1i A1

+3γ̄2 A2
1 Ā1 + 2γ̄3 A1 A3 Ā3 + 2γ̄2 A2 Ā2 A1

+γ̄2 A2
2 Ā1

]
+ γ̄1 Ā1 A3 exp[i T̃0(ω̄3 − 1)]

+γ̄3 Ā1 A2
3 exp[i T̃0(2ω̄3 − 1)]

= ᾱ1

2
exp(i pT̃0) + · · · ; (52)
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∂2x21

∂ T̃ 2
0

+ exp(i T̃0)

[
2γ̄3 A3 Ā3 A2 + 2γ̄2 A2 A1 Ā1

+3γ̄2 A2
2 Ā2 + γ̄2 Ā2 A2

1 + 2i
∂ A2

∂ T̃1
+ δ̄2i A2

]
+x21 + γ̄3 Ā2 A2

3 exp(i T̃0[2ω̄3 − 1])

+γ̄1 Ā2 A3 exp[i T̃0(ω̄3 − 1)] + · · · = 0; (53)

∂2x31

∂ T̃ 2
0

+ ω̄2
3x31 + exp(iω̄3T̃0)[

2iω̄3
∂ A3

∂ T̃1
+ 4

3
γ̄3(A1 Ā1 + A2 Ā2)A3

]
+ γ̄1

3

(
A2

1 + A2
2

)
exp(i2T̃0)

+2

3
γ̄3

(
A2

1+A2
2

)
Ā3 exp[i T̃0(2 − ω̄3)]+ · · · = 0.

(54)

Only essential terms are retained in the Equations (52–
54). As follows from these equations five resonances
can take place in the system (15):

a − p ≈ 1; b − ω̄3 ≈ 2; c − ω̄3 ≈ 2; p ≈ 1;

d − ω̄3 ≈ 1; e − ω̄3 ≈ 1; p ≈ 1.

The book [32] contains the approach of resonance
determination for multiple scales method. The case
a(p ≈ 1) corresponds to the main resonance in the sys-
tem (15) and one internal resonance between eigenfre-
quencies of conjugate modes. The case b(ω̄3 ≈ 2) cor-
responds to the internal resonance between eigenfre-
quency of axisymmetric mode ω̄3 and eigenfrequency
of conjugate modes, which is equal to 1 in dimension-
less form. The case c merges the cases a and b. The case
d corresponds to the forced oscillations of cylindrical
shell with internal resonance between eigenfrequency
of axisymmetric mode ω̄3 and eigenfrequency of con-
jugate modes. It is suggested that the internal reso-
nance between conjugate modes takes place. The case
e merges the cases d and a. Kubenko, Koval’shuk and
Krasnopolskaya [3] studied the case a. The cases b and
c are considered in this paper.

The internal resonance 1:2 can be presented as

ω̄3 = 2 + εσ, (55)

where σ is a detuning parameter. Let us determine the
shell parameters, which satisfy this internal resonance.
Then only the summands of order O(1) are taken into
account in (55) and the term εσ is rejected. The param-
eters of the system (15) are substituted into (55). Then
the following fourth order algebraic equation with re-
spect to ξ is obtained:

5n2

s2
h2ξ 4 − 16n2h2ξ 3 + ξ 2(8n2h2s2 − 18)

+72s2ξ − 36s4 = 0, (56)

where ξ = r2 + s2. If the value ξ is calculated from
(56), then the following formula for the shell length l
is derived:

l = mπ√
ξ − n2 R−2

. (57)

Now numerical values of the shell parameters, which
satisfy the internal resonance (55), are determined. The
values n, h, s are set and the real roots of Equation (56)
are determined. Then the shell length l is calculated
from (57). As a result, the following values of the shell
parameters are calculated:

h = 8 × 10−3 m; ν = 0.3; R = 0.2 m;

μ = 4 × 10−2; n = 2; l = 0.2 m; (58)

E = 2 × 1011 Pa; ρ = 7.8 × 103 kg/m3;

m = 1; ω̄3 = 2.013; γ̄1 = −5.707;

γ̄2 = 0.68; γ3 = 0.619.

Now the nonlinear dynamics of shell in the case
of internal resonance (55) is analyzed. The secular
terms are excluded from (52–54). As a result the
system of three modulation equations with respect
to the complex variables is derived. The following
change of the variables is used to the obtained sys-
tem of modulation equations with respect to real vari-
ables: A j = 0.5a j exp

(
iψ j

)
; j = �1, 3. As a result it is

derived:

a′
1 = − δ̄1

2
a1 − γ̄2

8
a2

2a1 sin (2ψ2 − 2ψ1)

− γ̄1

4
a1a3 sin(σ T̃1 + ψ3 − 2ψ1); (59)
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ψ ′
1 = 3γ̄2

8
a2

1+
γ̄3

4
a2

3 + γ̄2

4
a2

2 + γ̄2

8
a2

2 cos(2ψ2 − 2ψ1)

+ γ̄1

4
a3 cos(σ T̃1 + ψ3 − 2ψ1); (60)

a′
2 = − δ̄2

2
a2 − γ̄2

8
a2

1a2 sin(2ψ1 − 2ψ2)

− γ̄1

4
a2a3 sin(σ T̃1 + ψ3 − 2ψ2); (61)

ψ ′
2 = γ̄3

4
a2

3 + γ̄2

4
a2

1 + 3γ̄2

8
a2

2 + γ̄2

8
a2

1 cos(2ψ1 − 2ψ2)

+ γ̄1

4
a3 cos(σ T̃1 + ψ3 − 2ψ2); (62)

a′
3 = − δ̄3

2
a3 − γ̄1

12ω̄3
a2

1 sin(2ψ1 − σ T̃1 − ψ3)

− γ̄1a2
2

12ω̄3
sin(2ψ2 − ψ3 − σ T̃1); (63)

ψ ′
3 = γ̄3

6ω̄3

(
a2

1 + a2
2

) + γ̄1a2
1

12ω̄3a3
cos(2ψ1 − σ T̃1 − ψ3)

+ γ̄1a2
2

12ω̄3a3
cos(2ψ2 − ψ3 − σ T̃1). (64)

where (·)′ = d(·)
dT̃1

. All parameters of the system (59–
64) are defined in Section 2 and Appendix. The
system (59–64) is reduced to the five equations
by the change of the variables (a1, a2, a3, θ1, θ2) =
(a1, a2, a3, 2ψ1 − σ T̃1 − ψ3, 2ψ2 − ψ3 − σ T̃1) :

a′
1 = − δ̄1

2
a1− γ̄2

8
a2

2a1 sin (θ2 − θ1) − γ̄1

4
a1a3 sin θ1;

a′
2 = − δ̄2

2
a2− γ̄2

8
a2

1a2 sin (θ2 − θ1) + γ̄1

4
a2a3 sin θ2;

a′
3 = − δ̄3

2
a3 − γ̄1

24
a2

1 sin θ1 − γ̄1a2
2

24
sin θ2;

θ ′
1 = −σ + 3γ̄2

4
a2

1 + γ̄3

2
a2

3 + γ̄2

2
a2

2 (65)

+ γ̄2

4
a2

2 cos (θ2 − θ1) + γ̄1

2
a3 cos θ1

− γ̄1a2
1

24a3
cos θ1 − γ̄1a2

2

24a3
cos θ2;

θ ′
2 = γ̄3

2
a2

3 + γ̄2

2
a2

1 + 3γ̄2

4
a2

2 + γ̄2

4
a2

1 cos (θ2 − θ1)

+ γ̄1

2
a3 cos θ2 − γ̄1a2

1

24a3
cos θ1 − γ̄1a2

2

24a3
cos θ2 − σ.

Only one fixed point a1 = a2 = a3 = 0 exists in the dy-
namical system (65). The linearized flow of the vector
field (65) in the point a1 = a2 = a3 = 0 is derived to
study stability. Eigenvalues of this linearized flow are

λ1 = − δ̄1

2
; λ2 = − δ̄2

2
; λ3,4 = − δ̄3

2
; λ5 = 0.

(66)

Hence, the fixed point a1 = a2 = a3 = 0 is stable.
These results have the following physical meaning. If
the resonance for p is not taken place and the internal
resonance (55) is considered, then the general coordi-
nates of the system (15) x1, x2, x3 have orders O(μ2).

6. Primary resonance of forced oscillations

In this section the case with the internal resonance (55)
and the primary resonance

p = 1 + μς (67)

is considered. Annihilating the secular terms in (52,
53, 54), the system of modulation equations with
respect to (a1, a2, a3, θ1, θ2, θ3) = (a1, a2, a3, ς T̃1 −
ψ1; 2ψ2 − 2ς T̃1; ψ3 + σ T̃1 − 2ς T̃1) is derived:

a′
1 = − δ̄1

2
a1 − γ̄2

8
a2

2a1 sin(θ2 + 2θ1)

− γ̄1

4
a1a3 sin(θ3 + 2θ1) + ᾱ1

2
sin(θ1);

a1θ
′
1 = ςa1 − 3γ̄2

8
a3

1 − γ̄3

4
a1a2

3 − γ̄2

4
a2

2a1

− γ̄2

8
a2

2a1 cos (θ2 + 2θ1)

− γ̄1

4
a1a3 cos(θ3 + 2θ1) + ᾱ1

2
cos(θ1);

a′
2 = − δ̄2

2
a2 + γ̄2

8
a2

1a2 sin (θ2 + 2θ1)

− γ̄1

4
a2a3 sin (θ3 − θ2) ;

θ ′
2a2 = −2ςa2 + γ̄3

2
a2

3a2 + γ̄2

2
a2

1a2

+3γ̄2

4
a3

2 + γ̄2

4
a2

1a2 cos (θ2 + 2θ1)
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+ γ̄1

2
a3a2 cos (θ3 − θ2) ;

a′
3 = − δ̄3

2
a3 + γ̄1

24
a2

1 sin (2θ1 + θ3)

+ γ̄1a2
2

24
sin (θ3 − θ2) ;

a3θ
′
3 = (σ − 2ς ) a3 + γ̄3

12

(
a2

1 + a2
2

)
a3

+ γ̄1a2
1

24
cos (θ3 + 2θ1) + γ̄1a2

2

24
cos(θ2 − θ3),

(68)

where ψ1, ψ2, ψ3 are the variables of dynamical system
(59–64).

6.1. Undamped case

Let us consider the cylindrical shell oscillations without
damping: δ̄1 = δ̄2 = δ̄3 = 0. Now the standing waves,
which correspond to the fixed points of the system (68)
(a2 = 0; θ2(t) 
= 0), are analyzed,. These fixed points
are described by the equations:

−ς + 3

8
γ̄2a2

1+
γ̄3

4
a2

3 + γ̄1

4
a3(−1)n− ᾱ1

2a1
(−1)m = 0;

σ − 2ς + γ̄3

12
a2

1 + γ̄1

24a3
a2

1(−1)n = 0, (69)

where m and n are integers.

The frequency response a1(ς ), a2(ς ) of the standing
waves is determined. The case ᾱ1 � 1 is considered.
Then the zero approximation of the system (69) (ᾱ1 =
0) are described by the following equations:

ς = 9γ̄2σ − 0.5γ̄ 2
3 a2

3 − 0.75γ̄3γ̄1(−1)na3 − 0.25γ̄ 2
1

18γ̄2 − 2γ̄3 − γ̄1(−1)na−1
3

;

a1 =
√

24a3(2ς − σ )

2γ̄3a3 + γ̄1(−1)n
. (70)

The calculations with the parameters (58) and σ = 2.5
are carried out according to the Equation (70). The
results are presented on Fig. 5, where a1 is shown versus
ς .

Let us consider the case of an arbitrary value of ᾱ1.
Then the following cubic equation is derived from (69):

−144z3 + P1z2 + P2z + P3 = 0; (71)

P1 = 24γ̄3a2
1 + 144

[
3

4
γ̄2a2

1 − σ − ᾱ1

a1
(−1)m

]
;

P2 = 3γ̄ 2
1 a2

1 − γ̄ 2
3 a4

1

−24γ̄3a2
1

[
3

4
γ̄2a2

1 − σ − ᾱ1

a1
(−1)m

]
;

P3 = γ̄ 2
3 a4

1

[
3

4
γ̄2a2

1 − σ − ᾱ1

a1
(−1)m

]
− γ̄3

8
γ̄ 2

1 a4
1 .

The frequency response is calculated according to the
Equation (71) with the parameters (58). Given the value

Fig. 5 Zero approximation
of the frequency response of
system (15) at ᾱ1 = 0. The
value a1 is shown versus z
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Fig. 6 The frequency
response of standing waves
in undamped shell. Stable
(unstable) oscillations are
shown by solid (dotted)
lines, respectively

a1 with the certain step, the cubic equation is solved.
The frequency response is shown on Fig. 6.

Now the function θ2(t) (see Equation (68)) is de-
termined to analyze a stability of standing waves. The
function θ2(t) satisfies the following equation:

θ ′
2 = C1 + C2 cos θ2, (72)

where C1 = −2ς + 0.5γ̄3a2
3 + 0.5γ̄2a2

1 ; C2 =
0.25γ̄2a2

1 + 0.5γ̄1a3(−1)n. If −1 < C1C−1
2 < 1, the

Equation (72) has the fixed point. The analytical
solution of (72) is the following:

θ2(t) =

⎧⎪⎪⎨⎪⎪⎩
2 arctan

{√
C1+C2
C1−C2

tan

[
1
2

√
C2

1 − C2
2 (t − t0)

]}
; |C1| > |C2| ;

2 arctan

{√
C1+C2
C2−C1

tanh

[
1
2

√
C2

2 − C2
1 (t − t0)

]}
; |C1| < |C2| .

(73)

Note, that the function θ2(t) is growing, if |C1| > |C2|
and it tends to fixed point, if |C1| < |C2|.

The small deviations �a1, �θ1, �a2, �θ2, �a3,

�θ3 from the fixed points are considered to study stabil-
ity. The system of variation equations has the following
form:

⎡⎢⎢⎢⎣
�a′

1

�θ ′
1

�a′
3

�θ ′
3

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0 B12 0 B14

B21 0 B23 0

0 B32 0 B34

B41 0 B43 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

�a1

�θ1

�a3

�θ3

⎤⎥⎥⎥⎦ ; (74)

�a′
2 = χ sin θ2�a2; (75)

�θ ′
2 = A1(t)�θ2 + A2(t)�a1 + A3(t)�a3

+A4(t)�θ1 + A5(t)�θ3, (76)

where the coefficients B12, . . . , B43, χ, A1(t), . . .,
A5(t) are given in Appendix. Note that the system (74)
is independent on the Equations (75) and (76). The
Equation (76) is coupled with the system (74) and the
Equation (76) can be solved after (74). The character-
istic exponents λ1, . . . , λ4 of the system (74) are deter-
mined as∣∣∣∣∣∣∣∣∣
−λ B12 0 B14

B21 −λ B23 0

0 B32 −λ B34

B41 0 B43 −λ

∣∣∣∣∣∣∣∣∣ = 0. (77)

The Equation (77) can be presented as

λ4 − λ2b + c = 0, (78)

c = γ̄1ᾱ1

48
a2

1(−1)n+m
[
γ̄ 2

3 a1a3

12
+ γ̄ 2

1 a1

48a3
+ γ̄3γ̄1a1(−1)n

12

+ γ̄1γ̄2a3
1(−1)n

32a2
3

+ γ̄1ᾱ1(−1)n+m

48a2
3

]
;
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b = 3

8
γ̄2γ̄1a2

1a3(−1)n − 3ᾱ1

8
(−1)m γ̄2a1

+ ᾱ1γ̄1a3

4a1
(−1)m+n − ᾱ2

1

4a2
1

− γ̄1γ̄3

12
a2

1a3(−1)n

− γ̄ 2
1 a4

1

576a2
3

− γ̄ 2
1 a2

1

24
.

The solution of the Equation (75) is the following:

�a2 = �a20 exp

(
χ

∫ t

0
sin θ2dt

)
, (79)

where �a2(0) = �a20 is the initial condition; the con-
stant χ is determined in Appendix. The integral (79)
is calculated using the Equation (72). The solution of
Equation (79) can be presented as

�a2
2(t) = �a2

20

∣∣∣∣∣ C1 + C2 cos θ
(0)
2

C1 + C2 cos θ2(t)

∣∣∣∣∣ , (80)

where θ
(0)
2 is an initial condition for the Equation (72).

If solutions of the system (72) tend to the fixed point
and the denominator of (80) tends to zero, then the vari-
able �a2 increases infinitely. In this case the standing
waves are unstable. Thus, as follow from the expression
(80), the condition of instability of the standing waves
is

∣∣C1C−1
2

∣∣ < 1. This inequality can be presented as∣∣∣∣−2ς + 0.5γ̄3a2
3 + 0.5γ̄2a2

1

0.25γ̄2a2
1 + 0.5γ̄1a3(−1)n

∣∣∣∣ < 1. (81)

The following function is introduced to study the Equa-
tion (76):

F�(t) = α1�a1 + α2�a3 + (α3�a1 + α4�a3) cos θ2

+ (α5�θ1 + α6�θ3) sin θ2 =
∑

P̄i (t) exp (λi t) ;

P̄i (t) = A(�)
i + B(�)

i cos θ2 + D(�)
i sin θ2, (82)

where the values α1, . . . , α6 are presented in Appendix.
The parameters A(�)

i , B(�)
i , D(�)

i are linear functions of
initial conditions of the system (74):

⎡⎢⎣ A(�)
i

B(�)
i

D(�)
i

⎤⎥⎦ =

⎡⎢⎣β
(1)
i,1

β
(2)
i,1

β
(3)
i,1

β
(1)
i,2

β
(2)
i,2

β
(3)
i,2

β
(1)
i,3

β
(2)
i,3

β
(3)
i,3

β
(1)
i,4

β
(2)
i,4

β
(3)
i,4

⎤⎥⎦
⎡⎢⎢⎢⎢⎣

�a(0)
1

�θ
(0)
1

�a(0)
3

�θ
(0)
3

⎤⎥⎥⎥⎥⎦ ,

(83)

Solution of the Equation (76) is:

�θ2 = �θ
(0)
2 exp

(
−χ2

∫ t

0
sin θ2dτ

)

+
4∑

i=1

∫ t

0
P̄i (τ ) exp (λiτ ) exp

(
−χ2

∫ t

τ

sin θ2dt1

)
dτ,

(84)

where �θ2(0) = �θ
(0)
2 is an initial condition. The

Equation (72) permits to determine the integrals in the
formula (84). Then the Equation (84) can be presented
as

�θ2 = �θ
(0)
2

∣∣∣∣∣C1 + C2 cos θ2(t)

C1 + C2 cos θ
(0)
2

∣∣∣∣∣ + RI (t);

RI (t) =
∫ t

0
F� (τ )

∣∣∣∣ C1 + C2 cos θ2(t)
C1 + C2 cos θ2(τ )

∣∣∣∣ dτ. (85)

It is assumed that all characteristic exponents (78) have
negative real parts and there is not fixed point of the
Equation (73). Then the following estimation is true
for the integral (85):

|RI (t)| = |C1

+C2 cos θ2(t)|
∣∣∣∣∫ t

0

∑
i P̄i (t) exp(λi t)

|C1 + C2 cos θ2(ξ )|dξ

∣∣∣∣
≤ χ̄ (�)

∑
i

∫ t

0
exp(Re[λi ]ξ )dξ. (86)

Note, that the value RI (t) is bounded.
On the basis of the above-presented analysis the con-

ditions of stability/instability of standing waves can
be formulated in the following form. If the inequal-
ity (81) is not fulfilled, and all characteristic exponents
λ1, . . . , λ4 have negative real parts, the variable �θ2 is
limited and the standing waves are stable. If the con-
dition of instability (81) is satisfied or one of the char-
acteristic exponents λ1, . . . , λ4 has positive real parts,
the standing waves are unstable.

The stable and unstable solutions are shown on Fig. 6
by solid and dotted lines, respectively. Note, that this
frequency response (Fig. 6) describes the standing wave
in a cylindrical shell. The soft and hard frequency re-
sponses of cylindrical shells are considered in the paper
[22]. Bondarenko, Telalov [33] showed experimentally,
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that the frequency response is hard for small number
of waves in the circumference direction.

Now the traveling waves in cylindrical shells are
considered. These waves are described by the fixed
points of the modulation Equations (68), which satisfy
the following relation: a′

i = θ ′
i = 0; i = 1, 2, 3; a1 
=

0; a2 
= 0; a3 
= 0. These fixed points satisfy the sys-
tem of six nonlinear algebraic equations, which follows
from (68):

Y (a1, a2, a3, θ1, θ2, θ3, ς ) = 0. (87)

The frequency response a1(ς ), a2(ς ), a3(ς ) is the so-
lution of the system (87). To obtain the frequency re-
sponse, the system (87) is studied by the continuation
algorithm [34]. The calculations are performed with
the parameters (58) and σ = 0. Fig. 7 shows the result
of calculation a1(ς ).

The stability analysis is performed for fixed points
(Fig. 7). The characteristic exponents λ̃1, . . . , λ̃6 are
calculated from the equation:

det[DY − λ̃E] = 0,

where DY is Jacobian matrix evaluated at the fixed
points of the system (87); E is the identity matrix. The
stable and unstable fixed points are shown on Fig. 7 by
solid and dotted lines, respectively. Two saddle- node
bifurcation points and two Andronov- Hopf bifurcation
points are presented on Fig. 7.

6.2. Damped case

Nonlinear oscillations of damped shell are described
by the system of modulation Equation (68). It is known
from the experimental data [1, 3], that two conjugate
modes make the main contribution into cylindrical shell
nonlinear oscillations. Therefore, the work of a friction
force of the conjugate modes is greater than the one
of axisymmetric mode. Therefore, the damping coeffi-
cients are taken as δ̄1 = δ̄2 = δ̄∗; δ̄3 = 0.

The standing waves in the shell are considered,
which correspond to the fixed points (a2 = 0; θ2(t) 
=
0) of the system (68). In this case the frequency re-
sponse is described by the cubic equation, which is
similar to the Equation (71):

−144z3 + Q1z2 + Q2z + Q3 = 0, (88)

where Q1 = 24γ̄3a2
1 + 144g1; Q2 = 3γ̄ 2

1 a2
1 − 24a2

1 g1

γ̄3 − γ̄ 2
3 a4

1 ; Q3 = g1γ̄
2
3 a4

1 − γ̄3γ̄
2
1 a4

1
8 ; g1 = −σ + 3

4 γ̄2a2
1

− (−1)m ᾱ1
a1

√
1 − δ̄2∗

ᾱ2
1
a2

1 .The frequency response is cal-

culated with the parameters (58) and δ̄∗ = 0.1. Fig. 8
shows the frequency response a1(z).

The variation equations with respect to
(�a1, �θ1, �a2, �θ2, �a3, �θ3) are derived to
study a stability of standing wave. The system of
variation equations in the damped case differs from

Fig. 7 The frequency
response of traveling waves
in undamped shell. Stable
(unstable) oscillations are
shown by solid (dotted)
lines, respectively
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Fig. 8 The frequency
response of standing waves
in damped shell. Stable
(unstable) oscillations are
shown by solid (dotted)
lines, respectively

Fig. 9 The frequency
response of traveling waves
in damped shell. Stable
(unstable) oscillations are
shown by solid (dotted)
lines, respectively

the Equations (74–76) only by dissipative terms and it
has the form:

⎡⎢⎢⎢⎣
�a′

1

�θ ′
1

�a′
3

�θ ′
3

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
−0.5δ̄∗ B12 0 B14

B21 0 B23 0

0 B32 0 B34

B41 0 B43 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

�a1

�θ1

�a3

�θ3

⎤⎥⎥⎥⎦ ;

(89)

�a′
2 = (−0.5δ̄∗ + χ sin θ2)�a2; (90)

�θ ′
2 = A1(t)�θ2 + A2(t)�a1 + A3(t)�a3

+A4(t)�θ1 + A5(t)�θ3. (91)

The change of the variables is introduced to study the
Equation (90)

�a2 = exp
(−0.5δ̄•t

)
η(t). (92)

Then the Equation (90) takes the form:

η′ = χ sin θ2η. (93)
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The Equation (93) is the same as the Equation (75).
Solutions of the Equation (90) can be presented as

�a2 = �a20 exp

(
−0.5δ̄•t + χ

∫ t

0
sin θ2 dt

)
. (94)

The equation for the variable θ2 in the damped case co-
incides with the Equation (72). Repeating the transfor-
mation to calculate the integral in (94) (see Subsection
6.1), the solution of (90) can be presented as

�a2 = �a20 exp

(
− δ̄∗

2
t
) ∣∣∣∣∣ C1 + C2 cos θ

(0)
2

C1 + C2 cos θ (t)

∣∣∣∣∣ . (95)

Thus, if the function

r (t) = exp

[
− δ̄∗

2
t
]

·
∣∣∣∣∣ C1 + C2 cos θ

(0)
2

C1 + C2 cos θ2(t)

∣∣∣∣∣ ; (96)

is bounded, the trivial solution of the Equation (90) is
stable. As follows from the relation (96) and condition
(80), if∣∣C1C−1

2

∣∣ > 1, (97)

the trivial solution of the Equation (90) is asymptoti-
cally stable. If the Equation (72) has not fixed points,
the trivial solution of the Equation (90) is asymptoti-
cally stable too.

Note that the Equation (91) coincides with the Equa-
tion (76) for the undamped case. Therefore, the conclu-
sions about stability with respect to the variable θ2(t)
for the damped case are the same as for the undamped
one.

To analyze a stability of the trivial solution of the
system (89) the characteristic exponents λ1, . . . , λ4 are
determined from the following equation:

λ4 + δ̄∗
2

λ3 − bλ2 − δ̄∗
2

ãλ + c = 0, (98)

where ã = − γ̄ 2
1 a4

1

576a2
3

− γ̄1γ̄3a2
1 a3

24 (−1)n − γ̄ 2
1 a2

1
48 . The results

of a stability analysis are presented on Fig. 8 for the
system parameters (58) and δ̄∗ = 0.1. Stable and un-
stable oscillations are shown by solid and dotted line,
respectively.

Now the traveling waves in damped cylindri-
cal shell are considered. The fixed points (a1 
=
0; a2 
= 0; a3 
= 0) of the modulation Equations (68)
are described the traveling waves. The approach for
these fixed points analysis in the undamped case
is considered above. The method for the damped
system investigations is the same as for the damped
one.

The frequency response a1(ς) of the damped system
is presented on Fig. 9 for the shell parameters (58) and
δ̄∗ = 0.1, σ = 0. The fixed points (Fig. 9) are abound-
ing in bifurcations. The Andronov- Hopf bifurcation

0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8

9104,0

9104,5

9105,5

9106,0

θ 1

a1

9105,0

(a)

Fig. 10 The steady states in
the plane (a1, θ1). These
motions correspond to the
following values of the
detuning parameter: a-
ς = −0.1465; b-
ς = −0.195; c- ς = −0.22
(Continued on next page)
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0,0 0,5 1,0 1,5

9094

9093

9092

9091

θ 1

a1

2,0

9106,0

9105,5

9105,0

9104,5

9104,0

9103,5

0,4 0,6 0,8 1,0 1,2 1,4 0,6

θ 1

a1

(b)

(c)

Fig. 10 (Continued)

of the fixed points takes place at ς = 6.0 · 10−4. As a
result of this bifurcation, the limit cycle appears. Such
limit cycle is shown on Fig. 10a at ς = −0.1465. This
cycle undergoes the periodic doubling bifurcation. Fig-
ure 10b shows the periodic motions on the plane (a1, θ1)
after this bifurcation atς = −0.195. After the sequence
of periodic doubling bifurcation chaotic motions take
place. The chaotic motions at ς = −0.22 are shown on
Fig. 10c.

7. Conclusions

The results of the nonlinear normal mode analysis
for cylindrical shells are presented in this paper. Only
a single nonlinear normal vibration mode close to a
straight line is discovered. This NNM is mainly deter-
mined by the shell imperfections. This mode undergoes
the bifurcations and the stable quasiperiodic motions
appear.
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The forced oscillations of circular cylindrical shell
in the case of two internal resonances are analyzed in
this paper. One condition of the internal resonance de-
scribes equality of the eigenfrequencies of the conju-
gate modes. Energy pumping from the conjugate modes
into axisymmetric motions takes place in the case of the
second internal resonance 1:2. Analysis of the forced
oscillations (traveling and standing waves) reduces to
the system of six modulation equations due to the mul-
tiple scales method. The frequency response of stand-
ing and traveling waves are hard, which explained by
the addition internal resonance 1:2. Moreover, the se-
quence of periodic doubling bifurcations of limit cycle
is discovered in the case of traveling waves.

Determination of nonlinear periodic free oscillations
of cylindrical shell can be carried out by nonlinear nor-
mal modes method. However, bifurcations and stability
of the free oscillations of cylindrical shell can be stud-
ied by the multiple scales method. Moreover, multiple
scales method is very effective for analysis of cylindri-
cal shell forced oscillations.

Appendix

The parameters of model for free shell oscillations are
the following:

2χ = 3

2

(
n2

2R

)2

; γ = − Er4

8ρ
f10 f20;

ω2
1 = ω2

0 − Er4

16ρ

(
f 2
10 − f 2

20

)
;

ω2
2 = ω2

0 + Er4

16ρ

(
f 2
10 − f 2

20

)
;

ω2
0 = 1

ρ

[
D
h

(s2 + r2)2 + Er4

R2(s2 + r2)2

]
;

γ1 = 1

ρ

[
E
16

r4 + Dn4r4

h R2
− Er4s4

(s2 + r2)2

]
;

g = 3E
16ρ

n2r4s6

[
1

(s2 + r2)2
+ 1

(s2 + 9r2)2

]
;

α1 = Er4s4 f20

2ρ(s2 + r2)2
; α2 = 3Er4s4 f10

4ρ(s2 + r2)2
;

α3 = Er4s4 f10

4ρ(s2 + r2)2
;

β1 = Er4s4 f20

4ρ(s2 + r2)2
; β2 = 3Er4s4 f20

4ρ(s2 + r2)2
;

β3 = Er4s4 f10

2ρ(s2 + r2)2
.

The parameters of models for forced oscillations have
the following form:

ω2 = 1

ρ

[
D
h

(r2 + s2)2 + Er4

R2(r2 + s2)2

]
;

ω2
3 = 16Dr4

3ρh
+ E

ρR2
;

γ1 = − Es2

ρR

[
2r4

(r2 + s2)2
− 1

4

]
;

γ2 = E
16ρ

(r4 + 3s4);

γ3 = Er4s4

ρ

[
1

(s2 + r2)2
+ 1

(s2 + 9r2)2

]
;

γ̄1 = − 3n2(1 − ν2)[8r4 − (r2 + s2)2]

R2h2(r2 + s2)4 + 12(1 − ν2)r4
;

γ̄2 = 3(1 − ν2)(r4 + 3s4)h R3(r2 + s2)2

4[h2 R2(r2 + s2)4 + 12(1 − ν2)r4]
;

γ̄3 = 12(1 − ν2)r4s4h R3[(s2 + 9r2)2 + (s2 + r2)2]

(s2 + 9r2)2[h2 R2(r2 + s2)4 + 12r4(1 − ν2)]
.

The parameters for stability analysis can be presented
as

B12 = − γ̄1

2
a1a3(−1)n + ᾱ1

2
(−1)m ;

B14 = − γ̄1

4
a1a3(−1)n; B41 = γ̄3

6
a1 + γ̄1a1

12a3
(−1)n;

B43 = − γ̄1a2
1

24a2
3

(−1)n;

B21 = −3

4
γ̄2a1 − ᾱ1

2a2
1

(−1)m ;

B23 = − γ̄3

2
a3 − γ̄1

4
(−1)n; B32 = γ̄1

12
a2

1(−1)n;

B34 = 1

2
B32;

χ = γ̄2

8
a2

1 + γ̄1

4
a3(−1)n; A1(t) = −χ2 sin θ2;
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A2(t) = γ̄2a1 + γ̄2

2
a1 cos θ2;

A3(t) = γ̄3a3 + 0.5γ̄1(−1)n cos θ2;

A4(t) = −0.5γ̄2a2
1 sin θ2;

A5(t) = 0.5γ̄1a3(−1)n sin θ2;

χ2 = 0.25γ̄2a2
1 + 0.5γ̄1a3(−1)n;

α1 = γ̄2a1; α2 = γ̄3a3; α3 = γ̄2

2
a1;

α4 = γ̄1

2
(−1)n; α5 = − γ̄2

2
a2

1 ;

α6 = γ̄1

2
a3(−1)n.
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