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Abstract. Determination of the chaos onset in some mechanical systems with several equilibrium posi-
tions are analyzed. Namely, the snap-through truss and the oscillator with a nonlinear dissipation
force, under the external periodical excitation, are considered. Two approaches are used for the chaos
onset determination. First, Padé and quasi-Padé approximants are used to construct closed homo-
clinic trajectories for a case of small dissipation. Convergence condition used earlier in the theory
of nonlinear normal vibration modes as well conditions at infinity make possible to evaluate initial
amplitude values for the trajectories with admissible precision. Mutual instability of phase trajectories
is used as criterion of chaotic behavior in nonlinear systems for a case of not small dissipation. The
numerical realization of the Lyapunov stability definition gives us a possibility to observe a process
of appearance and fast enlargement of the chaotic behavior regions if some selected parameters of
the dynamical systems under consideration are changing.
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1. Introduction

Homo- and hetero-clinic trajectories (HT) have been extensively studied in the lit-
erature [1, 2]. A formation of HT is considered as a criterion of the chaos onset
in dynamical systems. In most cases authors of last and recent publications on the
HT construction use the well-known Melnikov condition of the trajectory formation
[3–6], which gives us a single equation for a determination of all unknown parame-
ters of the system corresponding HT formation. As a result in the Melnikov condi-
tion, separatrix trajectories of the corresponding autonomous equations that is HT
of zero approximation are utilized. A problem of effective analytic approximation
of HT of non-autonomous system is not solved in general case up to now. Here a
new approach for the HT construction in the nonlinear systems with phase space of
dimension equal to two for a case of small dissipation is utilized. Padé approximants
(PA) and quasi-Padé approximants (QPA) [7] are used for a representation both the
HT in the dynamical system phase space and the corresponding time solution. Con-
vergence condition used earlier in the theory of nonlinear normal vibration modes
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[8–10] as well conditions at infinity made possible to solve the boundary-value prob-
lem formulated for the HT and evaluate initial amplitude values with admissible pre-
cision for small value of dissipation.

Besides, for not small values of dissipation we suggest an approach to determine
the onset of chaos based on some consequences of the classical Lyapunov stability
definition for a case when initial variations are not arbitrary small and limited below.
Mutual instability of phase trajectories is accepted as a criterion of chaotic behav-
ior in dynamical systems. One compares trajectories that are initially very close. The
numerical realization of the Lyapunov stability definition shows the mutual stability
or instability of the trajectories. Calculations permit to observe a process of appear-
ance and fast enlargement of the chaotic behavior regions if some selected parameters
of the nonlinear system under consideration are changing.

Concrete results on the HT construction were obtained previously [11] for the
nonautonomous Duffing equation, self-oscillating system with cubic nonlinearity,
parametrically excited nonlinear pendulum system and other systems. In this paper
the system which contains a single-DOF oscillator connected with an essential non-
linear absorber under periodical external force and the one-degree-of-freedom weakly
forced (quasi-autonomous) oscillator with a nonlinear dissipation characteristic [12]
are considered.

2. Convergence Condition

Let’s assume that there are local expansions of solution obtained at small and large
values of a parameter c:

y(0) =
∞∑

j=0

ajc
j , y(∞) =

∞∑
j=0

bjc
−j . (1)

In order to join local expansions (1), fractional rational diagonal two-point Padé
approximants (PA) [13] can be used. Let’s consider

PAs =
∑s

j=0 αjc
j∑s

j=0 βjcj
=
∑s

j=0 αjc
j−s∑s

j=0 βjcj−s
(s =1,2,3, . . . ). (2)

Comparing expressions (1) and (2) and retaining only the terms with an order
of cr(−s ≤ r ≤ s) we will obtain a system of 2(s+1) linear algebraic equations for
a determination of coefficients αj , βj . Since generally the determinant of the system
�s is not equal to zero, the system has a single trivial exact solution. But we hope
to obtain the PA (2) having non-zero coefficients, which corresponds to the retaining
terms in the equation (1).

Without loss of generality it can be assumed that in the Padé approximants PAs

of the form (2) the coefficient β0 =1 (if β0 �=0).
In other case if β0 = 0 then we obtain from algebraic equations for a determina-

tion of coefficients αj , βj

(
j =0, s

)
that α0 = 0 too. Remaining non-zero coefficients

gives us the PA of the s −1 order, and the above arguments may be repeated.
Now, the system of algebraic equations for determination of αj , βj becomes

overdetermined. All of the unknown coefficients can be determined from (2s+1)
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equations while the “residual” of this approximate solution can be obtained by sub-
stitution of all the coefficients into the remaining equation.

THEOREM 1. The residual of the Padé approximant is linear proportional to the
value of �s that is non-zero coefficients and consequently exact PA will be obtained
in the given approximation by c only in the case when �s =0.

Proof. Let’s consider the arbitrary linear homogeneous system of equations:


a11x1 +a12x2 +· · ·+a1nxn =0;
a21x1 +a22x2 +· · ·+a2nxn =0;

· · ·
an1x1 +an2x2 +· · ·+annxn =0.

(3)

Let’s evaluate the determinant of the corresponding matrix:∣∣∣∣∣∣∣
a11 . . . a1n

...
. . .

...

an1 . . . ann

∣∣∣∣∣∣∣=
n∑

i=1

aniAni, (4)

where Ani is the cofactor of the element ani . Let xn =1 and find xk(k =1, n−1) solv-
ing the first n − 1 inhomogeneous equations using the Cramer method (we assume
now that the denominator of this system is not equal to zero):

xk =−�n−1
k

�n−1
(k =1, n−1), (5)

where

�n−1 =

∣∣∣∣∣∣∣
a11 . . . a1n−1
...

. . .
...

an−11 . . . an−1n−1

∣∣∣∣∣∣∣ ,
and �n−1

k is obtained from �n−1 by replacing the k-th column on the column
(a1n, . . . , an−1n)

T , where T denotes the transposing. Let’s find Ani in this table of
symbols:

An1 = (−1)n+1

∣∣∣∣∣∣∣
a12 · · · a1n

...
. . .

...

an−12 · · · an−1n

∣∣∣∣∣∣∣=−�n−1
1 ;

. . .

Ank = (−1)n+k

∣∣∣∣∣∣∣
a11 · · · a1k−1 a1k+1 · · · a1n

...
. . .

...
...

. . .
...

an−11 · · · an−11k−1 an−11k+1 · · · an−1n

∣∣∣∣∣∣∣=−�n−1
k ;

. . .

An n−1 = (−1)n+n−1

∣∣∣∣∣∣∣
a11 · · · a1n−2 a1n

...
. . .

...
...

an−11 · · · a1n−2 an−1n

∣∣∣∣∣∣∣=−�n−1
n−1;
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Ann = (−1)n+n

∣∣∣∣∣∣∣
a11 . . . a1n−1
...

. . .
...

an−11 . . . an−1n−1

∣∣∣∣∣∣∣=�n−1.

After replacing of these expressions in (4) and using (5) one obtains:∣∣∣∣∣∣∣
a11 . . . a1n

...
. . .

...

an1 . . . ann

∣∣∣∣∣∣∣=
n∑

i=1
aniAni =−

n−1∑
i=1

ani�
n−1
i +ann�

n−1

=�n−1

(
n−1∑
i=1

ani
−�n−1

i

�n−1 +ann

)
=�n−1

(
n−1∑
i=1

anixi +ann

)
.

If the determinant �n−1 is equal to zero then we can choose another equation as
the last one. If in every choice of the extra equation the �n−1 is equals to zero then
there are at least two linearly dependent equations what means that the determinant

corresponding to PAs−1 =
∑s−1

j=0 αj c
j∑s−1

j=0 βj cj
is equal to zero and we may consider PAs−1.

Hence the following is a necessary condition for convergence of the succession of
PAs (2) at s →∞ to fractional rational function P∞. Namely,

lim
s→∞ �s =0. (6)

It’s possible to generalize condition (6) to quasi-Padé approximants (QPA) which
contain powers of some unknown parameter and exponential functions. Besides, it is
possible to utilize the condition (6) for obtaining some unknown parameters which
are contained in local expansions [11].

3. Criterion of the Mutual Instability of the Phase Trajectories

Consider the well-known Lyapunov definition of stability stating that: the solution
y =0 is stable if for all positive ε there a positive σ exists such that for all y0 ∈N(0)

σ

and t ≥0 we have y(t, y0)∈N(0)
ε . Here N(0)

α ={y:‖y‖<α} where ‖.‖ is some norm of
the space.

Introduce a relation between the quantity ε and the initial value of the variable y.
Let

ε =ρ ‖y0‖≤ρσ(ρ = const) (7)

The condition (7) means that a value of δ is not arbitrarily small because σ ≥ ε/ρ.
One has from (7) that ρ ≥ ε/σ , that is the constant ρ is a high limit of the fraction
ε/σ . Besides, one obtains from the Lyapunov stability definition taking into account
the inequality (7), that ‖y (t)‖≤ρ ‖y0‖.

Introducing the time of calculation T , one has from the preceding the following
criterion:

Instability of the solution y =0 is established if

max
0≤t≤T

‖y (t)‖≥ρ ‖y (0)‖ (ρ >0) . (8)
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The proposed stability criterion (8) was obtained when the value of σ is not arbitrarily
small and limited below. Note that this assumption does not contradict to the Lyapunov
definition meaning because in this definition the initial values can not tend to zero.

It is necessary to choose values of ρ and T . Here a value ρ−1 is a measure of small-
ness of initial variations with respect to maximum admissible variations for any t ≥0. An
increase of the ρ means that feasible initial values of variation decrease. There is some
arbitrariness in a choice of the value ρ. Really, in the instability region the variations leave
the solution ε-neighborhood if t increases for any ρ. It should be taken into account that
possible values of ρ in the region of stability can be small, so It should be chosen not
small. Concrete calculations show that the choice of the value ρ equal to 10 permits to
detect the fast enlargement of the instability regions. We define this situation as a passage
from regular to chaotic behavior in nonlinear system.

Let’s discusses now a choice of the constant T . Note that all concrete calculations
are made at points on some chosen mesh of the system parameter space. Calculations
are conducted as long as boundaries of stability/instability regions in a chosen scale
on the system parameter space are varying. This is a criterion for the choice of the
parameter T . It is clear that if the mesh widths decrease and the number of mesh
points increases infinitely, the interval of time T tends to infinity.

We now discuss the dependence of the stability analysis on the variations ini-
tial conditions. The linear stability results are not dependent on initial conditions.
But it is known [14, 15] that additional nonlinear instability regions (obtained if we
take into account nonlinear terms) have a smaller dimension in parameter space than
instability regions obtained by the linearized stability analysis. Numerical calculations
verify that the stability analysis is independent of initial variations if the initial vari-
ations are small.

Remark. Note that in [16] some criterion is used which is similar to the criterion
(3). But a choice of the calculation time T is not discussed in the work [16].

One introduces some mesh in the phase space region using the increments:
�y,�y ′. Points of the mesh Pij (yi0, y

′
j0) will be chosen as initial points for the

selected phase trajectories y
(1)
ij (t). Let us take other initial points near the chosen ini-

tial points Pij , namely Qij (yi0 + �y0, y
′
j0) where the value �y0 is sufficiently small,

and consider the other phase trajectory, y
(2)
ij (t). Comparing the trajectories outgoing

from the close initial points and using the criterion (8) we obtain the following.
Instability of the outgoing trajectory is established if∥∥∥y(1)

ij (t)−y
(2)
ij (t)

∥∥∥≥ρ ‖�y0‖ (0≤ t ≤T ) . (9)

Note that a realization of the approach is not difficult because only the standard
RK method with an additional stability condition is used.

4. The Snup-through Truss Motion

A snap-through truss is suggested to use for longitudinal oscillations absorption of
an elastic solid [17]. In this case a part of an elastic oscillations energy is transferred
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to the truss, which is jumping from one equilibrium position to another. An elas-
tic system is approximated by the single-DOF mass-spring model to study the truss
capacity to absorb oscillations. By assumption, the truss is shallow and its mass and
stiffness are significantly smaller then the corresponding parameters of the main elas-
tic system. Such choice of the parameters is determined by the real absorber design
conditions.

Figure 1 shows the system under consideration. The equations of motion without
the external excitation are the following:

MÜ +κ1U +κ

[
U −L cosϕ +L

{
1+ W 2

(L cosϕ −U)2

}−1/2
]

=0;

mẄ +κW

[
2− L√

(L cosϕ −U)2 +W 2
− L√

L2 cos2 ϕ +W 2

]
=0,

(10)

where (U,W) are the generalized coordinates; L is a length of the spring; ϕ is the
angle, which defines the equilibrium position; κ is the truss spring stiffness; κ1 is
a stiffness of the main elastic system. The system (10) has three equilibrium posi-
tions: one saddle, (U,W) = (κL(cosϕ −1)/(κ1 +κ); 0) and two centers (U,W) =
(0;±L sin ϕ).

Let the dimensionless variables u = U/L; w = W/L and dimensionless time t =√
M/κ1τ be introduced. One introduces the variable u1 =u+ γ (1−κ)

1+γ
, too. In the new

variables the origin corresponds to the saddle. By assumption, the mass and stiffness
of the truss are significantly smaller than the corresponding parameters of the linear
sub-system. Therefore, the following relations are introduced: µ = εµ̄, γ = εγ̄ , ε �1.
It is supposed that the snap-truss system is shallow. Retaining linear, quadratic and
cubic terms by u1,w we can rewrite the system (10) as

ü1 + (1+ εγ̄ )u1 − εγ̄

ρ3 u1w
2 − εγ̄

2ρ2 w
2 =0;

µ̄ẅ − γ̄ α2w − γ̄

ρ2 wu1 + γ̄ β2

2 w3 =0,
(11)

where

ρ = γ +κ

1+γ
;α2 = 1

ρ
+ 1

κ
−2;β2 = 1

ρ3
+ 1

κ3
.

Under the external harmonic force a solution of the first equation of the system
(11) can be presented in the zero approximation by ε of the form u = F cos(ωt).
Using the additional transformation (expansion) of variables and including the dissi-
pation term we obtain from the second equation of the system (11) the next equation

Figure 1. A scheme of a system containing the snap-through truss.
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for the investigation:

y ′′ + δy ′ − (1+f cos(ωt)) y +y3 =0. (12)

For the construction of HT we need in the information about the initial point
(a0, a1) corresponding to t =0 and about a dependence between the system parame-
ters, namely the frequency ω, the amplitude f and the dissipation δ. Thus we should
construct the algebraic system for a determination of the unknown values.

Consider the equation in the next form:

y ′′ + δy ′ − (1+f cos(ωt +ϕ)) y +y3 =0. (13)

The phase ϕ allows to choose point (a0,0) as initial one. Assume that
(
y, y ′) −→

t→±∞
(0,0) and that the sought solution is analytical one. Then we can consider the Taylor
expansion of the solution y(t):

y =a0 + a2t
2 + a3t

3 + a4t
4 + a5t

5 + a6t
6 +· · · , (14)

where a0 is an arbitrary constant and aj =aj (a0, ϕ, f, δ)
(
j =2,∞

)
.

Multiplying the equation (13) by y ′(t) and integrating within the limits from t =0
to t =+∞ and from t =0 to t =−∞ we obtain the equations:

a2
0

2
− a4

0

4
+

+∞∫
0

(
δy ′ −yf cos (ωt +ϕ)

)
y ′dt =0; (15)

a2
0

2
− a4

0

4
+

−∞∫
0

(
δy ′ −yf cos (ωt +ϕ)

)
y ′dt =0. (16)

Linearizing the equations by δ we evaluate the integrals from (15)–(16) along the
separatrix of the autonomous equation yaut =

√
2/ cosh(t):

±∞∫
0

(
δy ′

aut −yautf cos (ωt +ϕ)
)
y ′

autdt

= δ

±∞∫
0

y ′2
autdt − cosϕ

±∞∫
0

yautf cos(ωt)y ′
autdt + sin ϕ

±∞∫
0

yautf cos(ωt)y ′
autdt,

where
+∞∫
0

y ′2
autdt =

0∫
−∞

y ′2
autdt = 2

3
;

+∞∫
0

sin(ωt)yauty
′
autdt =

0∫
−∞

sin(ωt)yauty
′
autdt =

+∞∫
0

sin(ωt)
−2 sinh t

cosh3
t

dt

=−ω

+∞∫
0

cos(ωt)

cosh2
t

dt =− ω2π

2 sinh ωπ
2

;
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+∞∫
0

cos(ωt)yauty
′
autdt =−

0∫
−∞

cos(ωt)yauty
′
autdt

=
+∞∫
0

cos(ωt)
−2 sinh t

cosh3
t

dt =ω

+∞∫
0

sin(ωt)

cosh2
t

dt .

Substituting these expressions into equations (15)–(16) we obtain:

a2
0

2
− a4

0

4
− 2

3
δ − ω2πf sin ϕ

2 sinh ωπ
2

−f ω cosϕ

+∞∫
0

sin(ωt)

cosh2
t

dt =0; (17)

a2
0

2
− a4

0

4
+ 2

3
δ + ω2πf sin ϕ

2 sinh ωπ
2

−f ω cosϕ

+∞∫
0

sin(ωt)

cosh2
t

dt =0, (18)

where the integral may be evaluated numerically.

Remark. The well-known Melnikov condition of the form

δ
2
3

+ ω2πf sin ϕ

2 sinh ωπ
2

=0 (19)

can be obtained from the equations (17) and (18). Note the condition is not used
here to solve the problem of homoclinic trajectory construction.

For the continuation the local expansion ad infinitum we rebuild it to QPA of the
form

y =a0 + a2t
2 + a3t

3 + a4t
4 +· · ·→ e−t α0 +α1e

t +α2e
2t

1+β1et +β2e2t
. (20)

So, the additional equation may be obtained using the convergence condition (6).
Note, that a derivation of the next equation is presented in the Appendix. One has
the following:

−24a0a4a2 +144a2
4a0 +144a5a

2
2 −288a3a4a2 +a0a

2
2 +144a2a

2
3

+60a3a
2
2 −144a4a

2
2 +144a3

3 +12a3
2 −144a5a3a0 =0. (21)

Nonlinear algebraic equations (17), (18) and (21) form the system for determina-
tion unknown parameters a0, ϕ and f = f (ω) while the dissipation coefficient δ is
fixed.

Figure 2 shows the dependences between the parameters of the system correspond-
ing to HT and obtained from the proposed here method. Also the example of homo-
clinic trajectory and comparison of the trajectory evaluated by using RK method and
using QPA are presented.

This approach is useful for the system investigation when the dissipation δ is
small. For larger values of this parameter the criterion of mutual instability of the
phase trajectories is used for investigation.
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Figure 2. (a)–(b): Lower chaotic behavior boundaries in parameter spaces; (c): the comparison of the
HT obtained from the RK method (curve 1) and by using QPA (22) (curve 2) while ω=1, δ =0.001;
(d) homoclinic trajectory in phase space while ω=1, δ =0.001.

Let’s examine the following region of the equation (13) phase plane: 0 ≤ y ≤ 1.6,
0 ≤ y ′ ≤ 0.8. Introduce some mesh in the defined region using the increments: �y =
0.02, �y ′ = 0.016. We utilize the criterion (11), where the value �y0 = 0.1�y. It is
selected ρ = 10. Results of the mutual instability analysis (the time of stabilization
here T =50) are presented in Figure 3 for different values of the external amplitude
and the dissipation coefficient. Here the initial points of the chosen mesh, which cor-
respond to unstable trajectories, are marked by dark squares. The calculations (in the
chosen mesh of the equation phase place) show that for small value of f the mutual
instability of phase trajectories can be observed near the separatrix branches. Insta-
bility regions begin to extend if values of the external amplitude f are increasing,
and this enlargement is very fast.

5. The One-degree-of-freedom Weakly Forced Oscillator with Nonlinear
Dissipation Forces

Mechanical system with a small periodic external excitation, nonlinear dissipation
forces and the Duffing type stiffness is governed by the following second order differ-
ential equation (12):

y ′′ −y +y3 =f cos (ωt +ϕ)− θ
(
y ′ −ν∗) , (22)
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Figure 3. Mutual stability/instability of phase trajectories of the snup-through truss motion equation
(13). Results of the stability analysis are obtained for ω=1, T =50. The initial points of the chosen
mesh which correspond to unstable trajectories are marked by dark squares.

where θ
(
y ′ −ν∗)=T0 sign

(
y ′ −ν∗)−α

(
y ′ −ν∗)+β

(
y ′ −ν∗)3

is the nonlinear dissipa-
tion characteristic.

For a construction of homoclinic trajectory we need to know about the initial
point (a0,0) and the phase ϕ corresponding to t = 0 and the system parameters,
namely ω, f and θ . Thus we should construct the algebraic system for determina-
tion of unknown values.

Let’s make some assumption like for the previous system. One assume that(
y, y ′) −→

t→±∞ (0,0). We will construct the analytical approximation for the sought solu-

tion. First, we can consider the Taylor expansion at zero of the solution y(t):

y =a0 +a2t
2 +a3t

3 +a4t
4 +a5t

5 +a6t
6 +· · · , (23)

where a0 is an arbitrary constant, aj =aj (a0, ϕ, f, T0, α, β)
(
j =2,∞

)
.

Then multiplying the equation (22) by y ′(t) and integrating within the lim-
its from t = 0 to t = +∞ and from t = 0 to t = −∞ we obtain the following
equations where several integrals are calculated along the zero approximation y0 =√

2/ cosh(t):

a2
0

2
− a4

0

4
− (αν∗ −βν∗3 −T0

)
a0 − 2α

3
+ 8β

35
+ 4

√
2βν∗

5
+2βν∗2 +

+f sin ϕ

+∞∫
0

sin(ωt)y ′
0 dt −f cosϕ

+∞∫
0

cos(ωt)y ′
0dt =0; (24)
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a2
0

2
− a4

0

4
− (αν∗ −βν∗3)a0 + 2α

3
− 8β

35
+ 4

√
2βν∗

5
−2βν∗2

−f sin ϕ

+∞∫
0

sin(ωt)y ′
0 dt −f cosϕ

+∞∫
0

cos(ωt)y ′
0 dt

−T0

0∫
−∞

sign
(
y ′

0 −ν∗) y ′
0 dt =0. (25)

There
+∞∫
0

sin(ωt)y ′
0dt =

0∫
−∞

sin(ωt)y ′
0dt =−ω

√
2π

2
· 1

cosh ωπ
2

;

+∞∫
0

cos(ωt)y ′
0dt =−

0∫
−∞

cos(ωt)y ′
0dt

=−
√

2+ω
√

2

(
−π

2
tanh

ωπ

2
+4ω

∞∑
k=0

1

ω2 + (1+4k)2

)
.

The integral
∫ 0

−∞
sign

(
y ′

0 −ν∗)y ′
0dt is evaluated as a function of the parameter ν∗

computationally.
For the continuation the local expansion ad infinitum we rebuild it to QPA:

y =a0 +a2t
2 +a3t

3 +a4t
4 +· · ·→ e−t α0 +α1e

t +α2e
2t

1+β1et +β2e2t
. (26)

So, the additional equation may be obtained using the convergence equation (6).
It is the same to the equation (21).

Nonlinear algebraic equations (24), (25) and (21) form the system for determi-
nation unknown parameters a0, ϕ and f = f (ω) while the dissipation parameters
T0, α, β are fixed.

Figure 4 shows the dependences between the parameters of the system correspond-
ing to HT and obtained from the proposed here method. Also the example of homo-
clinic trajectory and comparison of the trajectory evaluated by using the RK method
and using QPA are presented.

For large values of this parameter we use the criterion of the mutual instability of
the phase trajectories.

Let’s examine the following region of phase plane for the equation (22): 0≤y ≤1.6,
0 ≤ y ′ ≤ 0.8. One introduces some mesh in the defined region using the increments:
�y =0.02, �y ′ =0.016. Let �y0 =0.1�y, ρ =10.

Results of the mutual instability analysis (10) (the time of stabilization here T =
50) are presented in Figure 5 for different values of the external amplitude and the
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Figure 4. Chaotic behavior boundaries in parameter spaces and the homoclinic trajectories in phase
space while ν =0.5, T0 =α =β =0.001.

dissipation. Here the initial points of the chosen mesh, which correspond to unsta-
ble trajectories, are marked by dark squares. We can see the fast enlargement of the
instability regions when values of the external amplitude f are increasing.

6. Conclusions

We considered here a determination of the chaos onset in some mechanical systems.
One approach permits to construct closed homo- and hetero-clinic trajectories for a
case of small dissipation. This approach is based on utilization as Padé and/or quasi-
Padé approximants for a representation of the trajectories. Besides, it is possible to
investigate the mutual instability of phase trajectories in a region of chaotic behavior
fore a case of large dissipation by using some conclusions from the classical Lyapu-
nov stability definition. Realization of the approaches in concrete mechanical systems
gives us a possibility to state that the approaches presented here are sufficiently gen-
eral to be applicable to other types of nonlinear systems of phase dimension equal to
two or three. Unfortunately, we can not indicate for now how to determine a bound-
ary of validity of the approaches in a space of parameters in systems under consid-
eration. This could be a subject of some future investigation.



Chaos Onset in Mechanical Systems 265

Figure 5. Mutual stability/instability of phase trajectories of the (22). Results of the stability analysis
are obtained for ω=1, T0 =α=β =0.1, T =50. The initial points of the chosen mesh which correspond
to unstable trajectories are marked by dark squares.

Appendix

From the equation (20) we have

a0 +a2t
2 +a3t

3 +a4t
4 +· · ·≈ e−t α0 +α1e

t +α2e
2t

1+β1et +β2e2t
. (A.1)

Let’s rewrite (A.1) multiplying the local expansion by denominator of Padé
approximant:

(a0 + a2t
2 + a3t

3 +· · · )(1+β1e
t +β2e

2t )≈ e−t (α0 +α1e
t +α2e

2t ). (A.2)

Expanding the right and the left sides of (A.2) in Taylor series at t =0 and retain-
ing only terms with an order of t r (0 ≤ r ≤ 5) we obtain the system of 6 linear alge-
braic equations for calculating the coefficients of the considered Padé approximant:

a0(1+β1 +β2)−α0 −α1 −α2 =0;
−α2 +α0 +a0(2β2 +β1)=0;
−1/2α2 −1/2α0 +a0(2β2 +1/2β1)+a2(1+β1 +β2)=0;
−1/6α2 +1/6α0 +a0(4/3β2 +1/6β1)+a3(1+β1 +β2)+a2(2β2 +β1)=0;
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a2(2β2 +1/2β1)+a0(1/24β1 +2/3β2)+a3(2β2 +β1)+a4(1+β1 +β2)

−1/24α2 −1/24α0 =0;
−1/120α2 +1/120α0 +a4(2β2 +β1)+a2(4/3β2 +1/6β1)+a0(4/15β2 +1/120β1)

+a5(1+β1 +β2)+a3(2β2 +1/2β1)=0.

Then from the first five equations we have

β1 =−(2a2
2 +24a2a3 +a2a0 −24a4a2 +6a3a0 −12a4a0 +24a2

3)/K,

β2 = (12a2
3 +6a2a3 −12a4a2 +a2

2)/K,

α0 = (−12a0a4a2 −6a0a2a3 +12a0a
2
3 +a0a

2
2 +12a3

2)/K,

α1 = (24a0a4a2 +24a0a2a3 −24a0a
2
3 +10a0a

2
2 +a2a

2
0 −6a3a

2
0 −12a4a

2
0 −24a3

2)/K,

α2 = (12a0a4a2 +18a0a2a3 −12a0a
2
3 −a0a

2
2 +a2a

2
0 +6a3a

2
0 −12a4a

2
0 −12a3

2)/K,

K =−6a3a0 +12a2
3 +18a2a3 +a2a0 +13a2

2 −12a4a0 −12a4a2.

Substituting obtained coefficients in last equation we obtain the residual of approxi-
mation:

−24a0a4a2 +144a2
4a0 +144a5a

2
2 −288a3a4a2 +a0a

2
2 +144a2a

2
3

+60a3a
2
2 −144a4a

2
2 +144a3

3 +12a3
2 −144a5a3a0 =0.
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