
Journal of Sound and Vibration (1998) 216(2), 227–250
Article No. sv981613

DIRECT AND INVERSE PROBLEMS ENCOUNTERED
IN VIBRO-IMPACT OSCILLATIONS OF A

DISCRETE SYSTEM

Y. V. M

Department of Applied Mathematics, Kharkov Polytechnic University, Kharkov 310002,
Ukraine



A. F. V  G. S

Department of Mechanical and Industrial Engineering, University of Illinois at
Urbana—Champaign, 1206 W. Green Street, Urbana, IL 61801, U.S.A.

(Received 3 June 1997, and in final form 4 March 1998)

We study direct and inverse problems that arise in the vibro-impact oscillations of a
discrete system. Specifically, we examine a class of systems with two coordinates undergoing
single- or double-sided impacts; however, the presented techniques are sufficiently general
to apply to systems with multiple impacts. The analytical methods employed are a nonlinear
normal mode (NNM)-type analysis and a boundary value problem (BVP) formulation, and
enable the computation of various branches of bifurcating periodic solutions with different
impacting characteristics. Additional insight on the dynamics of these systems is obtained
by direct integrations of the equations of motion and by numerical Poincaré maps. It is
found that the vibro-impact systems considered possess rich nonlinear dynamics, including
vibro-impact localized and nonlocalized time-periodic motions, complicated bifurcation
structures giving rise to new types of single- and double-sided impacting motions, mode
instabilities, and chaotic responses. We also formulate inverse vibro-impact problems,
whereby, we seek the class of dynamical systems that produce specified orbits in the
configuration plane. The solutions of the inverse problems are generally non-unique, since
they can be reduced to underdetermined sets of algebraic equations with multiple infinities
of unknowns. Numerical applications are provided to demonstrate the techniques and
validate the analytical results.
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1. INTRODUCTION

Vibro-impact oscillations are of considerable practical importance and occur in many
engineering applications, including systems with clearances, loose joints, or motion
confining rigid constraints. Vibro-impacts lead to strong and essential nonlinearities and
their analytical or even numerical study presents challenging technical difficulties [1–3].

Among various studies in the literature, Masri and Caughey [4] analyzed linear systems
with rigid constraints by matching linear solutions computed before and after the time
instants of impacts. Studies of piecewise linear and vibro-impact oscillations with
analytical/numerical Poincaré maps and geometrical techniques were performed in a series
of works by Shaw and Holmes [5], Moon and Shaw [2], Shaw [6], Shaw and Rand [3],
and Shaw and Shaw [7]. Ivanov [8] studied vibro-impact oscillations by introducing
auxiliary phase planes, and Zhuravlev [9] analyzed these oscillations by employing special
nonsmooth transformations of variables. In a related work, Vedenova et al. [10] studied
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localized and nonlocalized vibro-impact periodic solutions of discrete oscillators using
nonsmooth coordinate transformations (cf. also reference [11]). Van de Vorst et al. [12],
studied periodic motions of a beam undergoing vibro-impacts by using finite elements and
reducing the problem to numerically solving two-point boundary value problems.
Numerical and experimental investigations of flexible elastic and rotordynamic systems
with impact nonlinearities were carried out in references [13, 14].

Additionally [5, 15–17], local and global bifurcations of periodic orbits and chaotic
motions in systems with vibro-impacts were examined. Chaotic motions of such systems
were studied in these and other works [18–21]. Whiston [22] presented a study of the
‘‘shredding’’ of the invariant manifolds of a periodically excited system with impacts due
to the non-differentiable nature of the vibro-impact dynamics, and Brogliato [23] discussed
the dynamics and controls of systems with impact nonlinearities.

In this work we study direct and inverse problems related to vibro-impact oscillations
of discrete linear or nonlinear systems with rigid constraints. The theoretical part of the
work centers on the use of functional relations between coordinates to study periodic
solutions and local dynamics, as well as, the formulation of two-point boundary value
problems (BVPs) to study analytic continuations and bifurcations of solutions. The
numerical part of the work focuses on the numerical solution of the formulated BVPs and
on the construction of Poincaré maps to study the global dynamics. An inverse problem
is also posed, whose solution leads to the determination of linear or nonlinear systems that
are capable of producing a specified vibro-impact motion in configuration space.
Bifurcating problems associated with the inverse problem are discussed and numerical
simulations that validate the theoretical findings are presented.

2. THE DIRECT PROBLEM

2.1.  

We analyze the dynamics of the system depicted in Figure 1(a). It possesses two degrees
of freedom, but the methodology to be developed can be extended to the
multi-degree-of-freedom case. The motion of each particle is restricted by two rigid
barriers, and takes place in the interval [−e, e]. As a result, for sufficiently high energy
of motion impacts occur and the equations of motion are expressed in the form

ẍ+
1P(x, y)

1x
+P(x)=0, ÿ+

1P(x, y)
1y

+P(y)=0, (1)

where P(x, y) denotes the (smooth) potential energy, and P(u) models purely elastic
impacts of the two particles with their rigid constraints. The elastic impacts are
mathematically modelled by the relationship [cf. Figure 1(b)]

P(u)= lim
n:a

c(n)0ue1
2n−1

, (2)

where c(n) is a scaling constant depending on n.
In the direct problem, we seek analytic approximations and numerical solutions to

vibro-impact, time-periodic orbits of the system, with a specified number of impacts per
cycle. Whereas this problem has been addressed in the past by other authors (especially
for the case of single degree of freedom oscillators), the technique that we propose is new
since it relies on the concept of a ‘nonlinear normal mode’ (NNM) [11] to formulate a
functional relation between the two coordiantes of the system during the vibro-impact
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Figure 1. The vibro-impact oscillator: (a) system configuration, (b) the limiting process defining the elastic
impact forces as n:a.

motion. Hence, we assume that during the vibro-impact oscillation the following
expression is satisfied at all time instants:

y(t)= ŷ[x(t)], t$R. (3)

The function y[·] is determined by substituting equation (3) into equation (1) and
eliminating the time variable from the problem. This leads us to the following quasi-linear
ordinary differential equation governing ŷ[·] in open intervals of x and y between
consecutive impacts,

2ŷ0 h−P(x, ŷ)
1+ ŷ2 + ŷ'$−1P(x, ŷ)

1x %=−
1P(x, ŷ)

1y
, =x=Q e, =ŷ(x)=Q e, (4)

where h denotes the (conserved) energy of the system, and primes denote differentiation
with respect to x. Assuming that h−P(x, ŷ)q 0 during the motion, i.e. that the
vibro-impacts occur before the system reaches its maximum potential energy value, the
equation above is nonsingular, and must be complemented by appropriate boundary
conditions at the elastic impacts.

We suppose at this point that the periodic motion under consideration involves only
impacts in the x-coordinate, and is composed of two branches y= ŷ1(x) and y= ŷ2(x),
as depicted in Figure 2(a). Between impacts the functions ŷ1,2[·] are governed by
equation (4), whereas at each instant of impact they satisfy the compatibility conditions

ŷ1(2e)= ŷ2(2e), ŷ1'(2e)=−ŷ2'(2e). (5)

That is, at the time instant t= t* when the elastic impact occurs, there is C0 and C1

continuity in y(t), but only C0 continuity in x(t). The C1 discontinuity in x(t) satisfies the
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Figure 2. Vibro-impact motion with imapcts only in the x-coordinate: (a) motion in the configuration plane,
(b) joining of branches at the point of elastic impact.

jump condition, ẋ(t*− )=−ẋ(t*+ ), which in turn leads to the conditions (5). Hence,
the direct vibro-impact problem consists of solving two nonlinear ordinary differential
equations governing the two branches ŷ1,2[·] [each similar to expression (4)] subject to the
compatibility conditions (5). Since no exact analytical solutions exist for the general
nonlinear problem, it will be necessary to resort to asymptotic approximations. We note
that more complicated vibro-impact oscillations corresponding to an arbitrarily large
number of impacts in the x- and/or y-coordinates can also exist, but these will not be
considered herein. For such motions, a similar asymptotic analysis can be performed by
considering vibro-impact motions possessing more than two branches and/or multiple
impacts per period in the x- and y-coordinates.

Before we consider the asymptotic solution of the direct problem, we remark that the
previous discussion regarding the vibro-impact motion is valid only if the condition
h−P(x, ŷ)q 0 is satisfied. If the system reaches at any time instant its maximum
equipotential surface [corresponding to the condition P(x, ŷ)= h], the coefficient of the
highest derivative in equation (4) vanishes and the problem becomes singular. Such
problems with singularities at the maximum equipotential surface are encountered in
calculations of nonlinear normal modes (NNMs) of discrete oscillators [11]; their solution
requires imposing the following boundary orthogonality condition that is valid when
P(x, ŷ)= h:

6ŷ'$−1P(x, ŷ)
1x %+

1P(x, ŷ)
1y 7P(x, ŷ)= h

=0. (6)

This condition must be imposed whenever the orbit of the vibro-impact oscillator reaches
the maximum equipotential surface.

We now consider the analytic approximation of the two-branch time-periodic orbit
depicted in Figure 2(a). It should be clear that such a vibro-impact response can only occur
for sufficiently large values of the total energy h. Indeed, for sufficiently small h the two
particles cannot reach their rigid constraints and the sought time-periodic motions are
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merely NNMs of the system with no impacts [11]. To be able to perform analytic
computations we assume the following specific form for the potential energy:

P(x, y)=
a

2
(x2 + y2)+

d

3
(x3 + y3)+

b

4
(x4 + y4)+

g

2
(x− y)2. (7)

In the above expression, the scalars a, b, d are the coefficients of the quadratic, quartic
and cubic parts of the potential functions of the oscillators, whereas g is the coefficient of
the weak linear coupling stiffness.

At low energies and sufficiently small coupling g, this system possesses two localized
NNMs, corresponding to periodic oscillations of the two masses with amplitudes of O(1)
and O(g), respectively [27]. We are interested in examining the behavior of these localized
NNMs as the energy increases and impacts start to occur. Hence, in what follows we will
assume that all coefficients in equation (7) are of O(1) with the exception of the coupling
coefficient which will be assumed small, g�1. Considering the vibro-impact orbit of
Figure 2(a), the two branches ŷ1,2(x) must satisfy the relations (4) and (5). For a potential
function given by equation (7), and taking into account that the problem possesses a small
(perturbation) parameter g, we express the two branches in the following series of
successive approximations:

ŷj(x)= s
k=1

gkŷj
k (x), j=1, 2. (8)

With equation (8) we seek vibro-impact motions that localize to the particle with
coordinate x [note that with x=O(1), we seek y=O(g)�x]. Substituting equation (8) into
the equations governing ŷ1,2(x), we obtain

2[gŷj0
1 + g2ŷj0

2 +O(g2)]$h−
ax2

2
−

dx3

3
−

bx4

4
−

g

2
(x2 −2gxŷj

1)+O(g2)%[1+O(g2)]

+ [gŷj'
1 + g2ŷj'

2 +O(g3)][−ax− dx2 − bx3 − g(x− gŷj
1)+O(g3)]

= −agŷj
1 − ag2ŷj

2 − dg2(ŷj
1)2 − g(gŷj

1 − x)+O(g3) (9)

for j=1, 2. This expression is vaid for =x=Q e, i.e. between consecutive impacts, and for
sufficiently large values of h so that the condition h−P(x, ŷ)q 0 is satisfied pointwise
for each of the two branches of the vibro-impact motion. When =x== e the elastic impact
conditions (5) are imposed and matching of the two branches takes place.

Considering terms in equation (9) proportional to g we obtain the following quasi-linear
ordinary differential equation governing ŷj

1:

2ŷj0
1 $h−

ax2

2
−

dx3

3
−

bx4

4 %+ ŷj'
1 (−ax− dx2 − bx3)+ aŷj

1 = x, =x=Q e, j=1, 2.

(10)

Since by assumption the coefficient of the leading derivative is a nonzero quantity, we can
express the solution in the power series form

ŷj
1 = s

a

p=0

cjpxp, (11)
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with the coefficients of the series determined by substituting equation (11) into equation
(10) and matching corresponding powers of x. Following this procedure we obtain the
approximation

ŷj
1 = cj0$1−

ax2

4h
−

a2x4

32h2 −
adx5

48h2%+ cj1$x+
dx4

24h
+

bx5

40h%+$ x3

12h
+

ax5

60h2%+O(x6)

0 cj0f1(x, h)+ cj1f2(x, h)+ f3(x, h)+O(x6), j=1, 2, (12)

where the leading coefficients of the series remain undetermined up to this point. A similar
expression for the second (or higher) order approximations ŷj

2 can be derived in the form,
ŷj

2 0 dj0g1(x, h)+ dj1g2(x, h)+ g3(x, h)+O(x6), but this higher order correction will not be
pursued in the present work.

Imposing the elastic impact conditions (5) and taking into account only terms of O(g)
[expression (12)], we obtain the following matrix equation governing the leading order
coefficients cjp , j=1, 2, p=0, 1:

f1(e, h) f2(e, h) −f1(e, h) −f2(e, h) c10 0

f'1 (e, h) f'2 (e, h) f'1 (e, h) f'2 (e, h) c11 −2f'3 (e, h)
G
G

G

K

k

G
G

G

L

l

g
G

G

F

f

h
G

G

J

j

g
G

G

F

f

h
G

G

J

j
f1(−e, h) f2(−e, h) −f1(−e, h) −f2(−e, h) c20

=
0

.

f'1 (−e, h) f'2 (−e, h) f'1 (−e, h) f'2 (−e, h) c21 −2f'3 (−e, h)

(13)

Provided that the matrix of the determinant of coefficients is nonsingular, the above
equation yields a unique solution for the coefficients, which is derived symbolically using
Mathematica, as follows:

c10 = c20 =
8de4(ae2 +3h)

a(−9abe6 +10d2e6 −72ae2h−36be4h−288h2)
,

c11 = c21 =
6e2(a2e4 +7ae2h+12h2)

h(−9abe6 +10d2e6 −72ae2h−36be4h−288h2)
. (14)

This solution shows that leading order approximations for the two branches coincide,
ŷ1

1 0 ŷ2
1 , and, furthermore, that the slope of the vibro-impact trajectory in the configuration

plane at the points of impact is equal to zero, ŷ1'
1 (2e)0 ŷ2'

1 (2e)=0. In Figure 3 we depict
the asymptotic approximation (11)–(14) for parameter values a= b= d=1, e=1,
g=0·1, and h=2. In the same figure we show the maximum equipotential energy level
corresponding to h=2, which is sufficiently wide to allow double-sided vibro-impact
motions to occur.

Numerical simulations were also performed, integrating the equations of motion (1) with
potential energy given by equation (7). The numerical results validated the analytical
predictions, indicating that the double-sided vibro-impact localized motion is orbitally
stable, and, hence, physically realizable. Moreover, using the numerical simulations it was
established that the localized motion persists as a stable solution for arbitrarily high levels
of the energy h, and that no bifurcations associated with this motion take place in the
system for large h. The above theoretical and numerical results prove the existence of
localized vibro-impact oscillations, where the energy of the motion is mainly confined to
one of the two particles. Moreover, the motion in the configuration plane is represented
by a line (and not by a closed loop), which indicates synchronous motion of the two particles
(purely in-phase or out-of-phase). We will show later that this is not the case for systems
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Figure 3. First order asymptotic approximation ŷ1
1 (x)0 ŷ2

1 (x) to a localized double-sided vibro-impact motion
with parameters a= b= d=1, e=1, g=0·1 and h=2.

with other types of potential function, which can support periodic motions possessing
nontrivial phase differences between particles.

An interesting question concerns the behavior of the previous localized solution as h
decreases, and we now briefly discuss this issue. For the system with (asymmetric) potential
function (7), we expect that as the energy decreases below a critical value the particle
characterized by the coordinate x will make the transition from double-sided to
single-sided impacts, and (after further decrease of energy), eventually, to no impacting
motions. Indeed, assuming small g and a localized periodic motion of the form
ŷ(x)= gŷ1(x)+O(g2), the function ŷ[·] is still governed by equation (4). The first critical
value of the energy hc1 separating the regimes of single- and double-sided impacts is
determined approximately by the condition

P(e, ŷ(e))=
ae2

2
+

de3

3
+

be4

4
+

ge2

2
+O(g2)= hc1, (15)

which corresponds to the energy level for which the particle characterized by x reaches
its maximum amplitude when x= e, and, hence, the relation hc1 −P(e, ŷ)=0 is satisfied.
Since the potential energy of the system is asymmetric, at x=−e the condition
hc1 −P(−e, ŷ)q 0 is still satisfied and impact of the particle with its rigid constraint
occurs. For a= b= d=1, e=1 and g=0·1 we find that hc1 =1·1333. As a result, for
a sufficiently small neighborhood of h bounded from above by hc1 the system undergoes
single-sided localized vibro-impact oscillations, and the motion in the configuration plane
ŷ(x)= gŷ1(x)+O(g2) is determined by solving equation (4) subject to the boundary
conditions

ŷ'(−e)=0, (elastic impact at x=−e), (16a)

6ŷ'$−1P(x, ŷ)
1x %+

1P(x, ŷ)
1y 7x=X1

=0, (right boundary of the motion), (16b)

where X1 is the maximum amplitude attained by x at the right boundary of the single-sided
vibro-impact motin (cf. Figure 4). Performing a perturbation analysis similar to the
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Figure 4. First order asymptotic approximation ŷ1(x) to the localized single-sided vibro-impact motion with
parameters a= b= d=1, e=1, g=0·1 and h=0·933333.

double-sided impact case, we express ŷ1(x) as, ŷ1(x)0 c0f1(x, h)+ c1f2(x, h) +
f3(x, h)+O(x6), where the functions fk (x, h), k=1, 2, 3, are defined by equation (12).
Imposing the conditions (16) we then determine the values of the coefficients c0 and c1.
For the above values of the system parameters and h=0·93333Q hc1, we find c0 =0·20042
and c1 =−0·49791. In Figure 4 the motion in the configuration plane is presented,
superimposed to the maximum equipotential energy level. The left boundary curve
possesses zero slope since it encounters an impact, whereas the right boundary terminates
at the maximum equipotential energy level; at that point the system possesses zero kinetic
and purely potential energy. The localized motion of Figure 4 is the analytic continuation
of the double-sided vibro-impact motion discussed earlier when the energy is decreased a
small distance below the critical value hc1.

With a further decrease of the energy below a second critical value hc2, the system ceases
to impact with its rigid barriers and performs localized NNM oscillations (Vakakis et al.
[11]). The value hc2 is determined from the relation

P(−e, ŷ(−e))=
ae2

2
−

de3

3
+

be4

4
+

ge2

2
+O(g2)= hc2, (17)

which for the above values of the system parameters is equal to 0·46666. For hQ hc2 the
localized NNM is computed by solving equation (4) subject to the boundary conditions
(6). Expressing the mode as ŷ(x)= gŷ1(x)+O(g2), a perturbation analysis can be used to
compute the first order approximation. The resulting analytical approximation for
h=0·26666Q hc2 is depicted in Figure 5, superimposed to the maximum equipotential
energy level.

The previous analysis proves the existence of a localized vibro-impact motion. As the
energy decreases this localized motion is preserved in the single-sided impact regime, and
ultimately degenerates to a localized NNM of the (smooth) dynamical system with no
impacts. Hence, the localized vibro-impact periodic motions discussed in this section can
be viewed as analytical continuations of strongly localized NNMs that are encountered
in many classes of smooth dynamical systems [11]. As mentioned earlier, the localized
vibro-impact motion is orbitaly stable at all levels of energy. This result, along with
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Figure 5. First order asymptotic approximation ŷ1(x) to the localized nonlinear normal mode of the system
with parameters a= b= d=1, e=1, g=0·1 and h=0·26666.

additional ones concerning bifurcations of other (nonlocalized) types of vibro-impact
motions, was deduced by means of direct numerical simulations and construction of
Poincaré maps.

2.2.  

The analytical results of the previous section were local in nature, establishing the
existence of localized vibro-impact motions and providing asymptotic approximations for
sufficiently small values of the coupling parameter g. The global vibro-impact response of
the system will now be considered by numerically integrating the equations of motion (1)
and constructing numerical Poincaré maps [24–26].

To construct the Poincaré maps we note that the motion of equation (1) generally takes
place in the four dimensional phase space (x, ẋ, y, ẏ). Since the impacts are assumed to
be purely elastic the energy h is conserved throughout the oscillation, and by fixing it to
a specific level we can restrict the flow of the dynamical system to an isoenergetic
three-dimensional space. If, in addition, we intersect transversely the three-dimensional
isoenergetic flow by a two-dimensional cut-plane, the cut-plane defines a two-dimensional
Poincaré map which can be used to study the global dynamics of the system. Choosing
the cut plane as T: {x=0}, the Poincaré map P(·) is defined as

P: S:S, (y, ẏ):P(y, ẏ),

where the Poincaré section is given by S= {x=0, ẋq 0}+ {energy h}. The additional
restriction of positive ẋ at the point of intersection was imposed in order that the Poincaré
map be orientation preserving [25]. A period-one vibro-impact orbit pierces the cut-section
S only once and corresponds to a fixed point of the map. The stability of the periodic orbit
can be determined by examining near-by orbits of the Poincaré map: if the fixed point
appears as a center and is surrounded by closed curves, the corresponding orbit is
stable; otherwise it is unstable. Subharmonic vibro-impact orbits of higher periods pierce
S in more than one point, whereas quasiperiodic orbits are represented by closed loops.
Chaotic motions appear as randomly distributed points that occupy a definite region of
the map.
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The numerical simulations were carried out by integrating equations (1) between impacts
using the fifth-order Runge–Kutta SLATEC routine DDERKF. The energy-conserving
elastic impacts were modelled by imposing new initial conditions after each impact, to
reflect the abrupt sign change in velocity after the x- or y-particle collide with their rigid
constraint. The exact time instant when the impact occurs is of great importance in this
numerical scheme, since it determines the points where the new initial conditions must be
imposed. The time instants of impact were determined numerically by applying Newton’s
method to the numerical results of the integration close to each instance of impact. Special
care was taken to choose a sufficiently small time steps in order to ensure accurate
convergence of Newton’s method and precise calculation of the instant of impact. This is

Figure 6. Poincaré map of the neighborhood of the localized vibro-impact motion of a system with
a= b= d=1, e=1, g=0·1, and energy (a) h=18, and (b) h=99.
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particularly important for grazing (near impact) oscillations where the accuracy of the
numerical integrations is important in order to construct correct bifurcation diagrams and
study mode instabilities initiated by impact.

2.2.1. Nonlinear potential function
In Figures 6(a, b) we present the neighborhoods of the Poincaré maps close to the

localized double-sided vibro-impact motions of equation (1) with potential energy (7),
parameters a= b= d=1, e=1, g=0·1, and energy h=18 and 99. The Poincaré maps
consist of centers surrounded by closed curves, indicating that the vibro-impact localized
motions are stable even at high values of the energy. The global dynamics of the system
are more clearly discerned from the Poincaré maps of Figure 7. In Figure 7(a) we depict
the global map of the system for energy h=2. We note the large central region that is
dominated by the localized vibro-impact periodic motion. In addition, the system possesses
a stable in-phase periodic orbit represented by the center at the top of the map; this motion
corresponds to in-phase synchronous oscillations of the two particles satisfying x= y. We
also note the large chaotic ring, composed of chaotic vibro-impact motions, that surrounds
the central region. This ‘stochastic sea’ possess islands of regular subharmonic motions.
For comparison purposes, in Figure 7(b) we present the Poincaré map of the same system
but with no impacts. The system with no impacts possess a stable localized NNM that
also dominates the central part of the map, a smaller chaotic region, and a stable in-phase
NNM at the top of the map. Islands of subharmonic motion can also be detected in this
case.

2.2.2. Linear potential function
To perform a systematic study of the effects of the vibro-impacts on the global dynamics

of system (1) we performed a detailed computation of Poincaré maps for the case of the
quadratic potential,

P(x, y)=
a

2
(x2 + y2)+

g

2
(x− y)2, (18)

with parameter values and varying values of the clearance e. In Figure 8(a–j) we present
the results of the numerical simulations, ranging from a system with no vibro-impacts
[Figure 8(a)] to a system with vibro-impacts and clearance e=1.

We note that as vibro-impacts start to occur, a region of chaotic motions starts to
develop at the boundaries of the domains of influence of the stable in-phase and
out-of-phase modes [cf. Figures 8(a–e)]. This central chaotic region expands with
decreasing clearance and surrounds the domains of influence of the two modes, where
regular quasiperiodic motions continue to occur. For e1 1·78 two saddle-node
bifurcations occur and two pairs of stable-unstable vibro-impact modes are generated. In
the Poincaré map of Figure 8(f) only the one pair of newly created modes can be observed,
since the other pair is very close to the lower boundary curve of the map, and is difficult
to observe. The small chaotic region surrounding one of the newly generated stable
vibro-impact mode close to the origin of the axes is due to transverse homoclinic
intersections of the invariant manifolds of one of the now unstable out-of-phase mode,
and, hence, is a direct result of the mode bifurcation. A similar bifurcation of nonlinear
normal modes was previously observed in a system with smooth nonlinearities [26].

With the clearance further reduced, the newly created mode becomes localized (it
approaches the origin of the axes), and its domain of influence expands. At the same time,
the regular regions surrounding the in-phase and out-of-phase vibro-impact modes
contract [cf. Figure 8(g)], until the in-phase mode becomes unstable close to e=1·4
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Figure 7. Global Poincaré map of the system with a= b= d=1, g=0·1 and energy h=2, when (a)
vibro-impacts occur at e=1, and (b) no vibro-impacts exist.

[cf. Figure 8(b)] and the out-of-phase mode becomes unstable below e=z5/3. We note
that the in-phase mode regains stability for eE 1·4; the bifurcations associated with the
small instability region of this mode is discussed in detail below. The out-of-phase mode
loses stability in a pitchfork bifurcation and remains unstable for smaller values of e. This
behavior of the out-of-phase mode is consistent with the findings of reference [26] for a
similar system with smooth nonlinearities. Further decreases of the clearance results in an
expansion of the regular domain of influence of the localized modes, with the in-phase
mode continuing to be stable [cf. Figure 8(i, j)]. As a general observation we note that the
region of chaotic motions contracts as the clearance is further reduced and the stable
localized vibro-impact modes dominate the global dynamics of the system. In the following
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Figure 8—(Caption on next page)
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Figure 8. Global Poincaré map of the system with a=1, b= d=0, g=0·1 and energy h=2, for clearances:
(a) e=2·0 (no impacts), (b) e=1·9, (c) e=1·88, (d) e=1·85, (e) e=1·8, (f) e=1·78, (g) e=1·5, (h) e=1·4,
(i) e=1·2, (j) e=1·0.

discussion we examine more closely the separate sequences of bifurcations associated with
the instability of the in-phase mode, and the generation of the localized mode in the
vibro-impact system.

We start with the bifurcations giving rise to the instability of the in-plane vibro-impact
mode. These are complicated and generate additional periodic vibro-impact motions that
have no counterparts in the corresponding smooth dynamical systems with no impacts.
To investigate the series of bifurcations associated with the in-phase mode instability we
performed detailed Poincaré map calculations in the neighborhood of that mode, as well
as, analytical/numerical boundary value problem (BVP) computations to precisely
determine the bifurcation points. We start with a discussion of the Poincaré maps in the
vicinity of the in-phase mode, as depicted in Figure 9(a–f).

In Figure 9(a) (corresponding to e=1·418) the in-phase mode (labelled ‘A’) is orbitaly
stable and non-impacting. That is, for the level of energy h=2 the in-phase synchronous
oscillations of the two particles do not possess enough amplitude to reach the rigid barriers,
and are, in fact, in-phase NNMs of the system. We also note the large region of chaotic
vibro-impact motions surrounding the in-phase mode, and the plethora of co-existing
regular quasi-periodic motions. As e is reduced to 1·417 [cf. Figure 9(b)], the in-phase
motion ‘A’ is still stable and non-impacting, and an additional stable periodic motion
appears (labelled as ‘B’) on the right of the in-phase mode. As shown below, this new orbit
corresponds to a double-impacting synchronous motion where both x- and y-coordinates
undergo single-sided impacts; clearly this type of orbit cannot be realized in the
corresponding smooth dynamical system. Moreover, it will be shown that this new motion
is generated through a Saddle-node bifurcation, and that there exists an additional
unstable orbit that cannot be discerned in the Poincaré map; also, due to symmetry, there
exists an additional stable-unstable pair of similar orbits lying on the left side of the
in-phase mode, which is not depicted in Figure 9(b). At e=z2 [Figure 9(c)] the in-phase
mode ‘A’ starts impacting and loses stability, whereas, the stable motion ‘B’ expands its
surrounding domain of influence which is composed of regular quasi-periodic orbits. It
turns out that at least four unstable branches of vibro-impacting periodic motions
converge to the in-phase mode at its point of instability, including the two unstable
counterparts of motion ‘A’. As discussed below, the in-phase impacting mode remains
unstable until e1 1·40099, when it coalesces with two new unstable branches of
vibro-impact motions and regains orbital stability. This can be realized from Figures 9(e)
for e=1·398, where both the in-phase impacting ‘A’ and the periodic motion ‘B’ are stable.
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Figure 9. Poincaré maps in the neighborhood of the in-phase mode of the system with a=1, b= d=0, g=0·1
and energy h=2, for clearances: (a) e=1·418, (b) e=1·417, (c) e=z2, (d) e=1·402, (e) e=1·398,
(f) e=1·390

A further reduction of e to 1·390 reduces the domain of influence of motion ‘B’ [cf.
Figure 9(f)], and at e1 1·38813 the orbit ‘B’ ceases to exist when it coalesces with another
unstable vibro-impact motion in a saddle-node bifurcation. Hence, the small region of
instability of the in-phase motion is associated with a complicated series of bifurcations,
which we now proceed to examine in detail using BVP formulations.

The BVP formulation is based on the realization that, since the motions of the two
particles between instants of impact is linear, they can be explicitly determined as

x(t)=C1 cos (zat−f1)−C2 cos (za+2gt−f2), =x=E e;

y(t)=C1 cos (zat−f1)+C2 cos (za+2gt−f2), =y=E e. (19)
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The undetermined amplitudes and phases can be evaluated by imposing appropriate
boundary conditions at instants of impact for each of the vibro-impact orbits. Then, by
construction the solution (19) will be periodic in t. The first time-periodic solution to be
examined is a double-sided impacting synchronous motion, where both x- and y-coordinates
undergo single-sided impacts. For this type of motion the appropriate boundary conditions
that must be imposed on equations (19) are

ẋ(T/2)=0, x(0)=3e, ẏ(0)=0, y(T/2)=2e, (20)

where T is the period of the motion, and the origin of the t-axis is chosen at the time instant
when the x-coordinate impacts. Combining equations (19) and (20), we obtain the set of
algebraic equations

1 0 −1 0 C1 cos f1

0 v1 0 v2 C1 sin f1G
G

G

K

k

G
G

G

L

l

g
G

G

F

f

h
G

G

J

j
cos v1T sin v1T cos v2T sin v2T C2 cos f2

−v1 sin v1T v1 cos v1T v2 sin v2T −v2 cos v2T C2 sin f2

−e

0
g
G

G

F

f

h
G

G

J

j

=
e

, (21)

0

where v1 =za and v2 =za+2g. Provided that the matrix of coefficients is nonsingular,
the above relation provides a unique solution for the coefficients C1, C2, f1, and f2 and
determines the solution (19). Once the solution is determined, the period T of the motion
is computed by imposing the additional condition that the total energy of the motion is
conserved and equal to h. This completes the calculation. Singularities of the matrix of
coefficients indicates points where analytic continuation of this particular branch of
solutions cannot take place, i.e. bifurcation points of the solution.

Similar BVPs can be formulated for determining the branches of solutions and
bifurcation points of other types of vibro-impact modes, such as, in-phase synchronous
motions [solution (19) with boundary conditions x(0)=−e, x(T/2)= e, y(0)=−e,
y(T/2)= e], out-of-phase synchronous motions [boundary conditions x(0)=−e,
x(T/2)= e, y(0)= e, y(T/2)=−e], and ‘loop’ vibro-impact modes (see discussion and
results below, corresponding to boundary conditions x(0)=3e, ẋ(T/2)=0, ẏ(0)=0,
y(T/2)=3e).

The numerical solutions of the aforementioned BVPs enable us to fully understand the
series of bifurcations that generate the instability of the in-phase mode, as depicted in the
Poincaré maps of Figure 9. In Figure 10 we provide the complete bifurcation structure
that gives rise to this instability for the system whose Poincaré maps were depicted
previously. In the plots of this figure we graph the values of y and ẏ vs e for each branch
of periodic solutions at the time instant when x=0 and ẋq 0. There are four families
of periodic solutions in this bifurcation structure. For eez2 the in-phase mode ‘A’ is
non-impacting and stable. At e=z2 the in-phase mode becomes where it coalesces with
four unstable branches: two of loop’ vibro-impact modes ‘C’, and two of double-sided
synchronous modes ‘B’. The mode ‘B’ (which were observed in the Poincaré plots of
Figure 9) are generated in two saddle-node bifurcations and exist in stable–unstable pairs
up to e=z2. At e=(zh/v1) sin (pv1/2v2)1 1·40099 the in-phase mode regains stability
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Figure 10. The bifurcation structure associated with the instability of the in-phase mode. Graphs of (a) y and
(b) ẏ vs e for each periodic solution at the time instant when x=0 and ẋq 0: ——, stable; - - - - -, unstable
motions.

in a pitchfork bifurcation and generates two unstable branches of solutions ‘D’. These are
in-phase synchronous motions with coinciding endpoints with the in-phase mode, and
cease to exist at e=(1/v1)zh/{1+2 tan2 [(p/2)+ (pv1/2v2)]}1 1·38813, when they
coalesce with the stable modes ‘B’ in saddle-node bifurcations. The bifurcation structure
of Figure 10 agrees completely with the numerical simulations of Figure 9, and leads to
a full understanding of the dynamic phenomena associated with the instability of the
in-phase mode.

The bifurcation results depicted in Figure 10 reveal the richness of the dynamics of the
system. Indeed, in the region where the symmetric in-phase NNM looses stability it gives
rise to stable or unstable motions with differing impacting patterns. Solutions C (cf.
Figure 10) are of particular interest due to their loop-like appearance, indicating nontrivial
phase differences between the two position coordinates; moreover, these motions
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Figure 11. The bifurcation structure associated with the generation of the localized vibro-impact mode. Graphs
of y vs e for each periodic solution at the time instant when x=−e: ——, stable; –––, unstable motions.

correspond to anisochronous and single-impacts for x and y. Similar anisochronous and
single-impacts occur in solutions B, but for these motions trivial phase differences occur
between the coordinates. Nontrivial phase differences between x and y also occur in
solutions D, but these represent unstable free oscillations. We point out that it would be of
considerable interest to analytically study the degenerate bifurcations associated with the
loss of stability of the in-phase mode at e=z2. These bifurcations indicate that the
initiation of impacts (grazing) for the in-phase mode is destabilizing, although the mode
regains stability when the non-linear impacting effects become stronger for eE 1·40099.
Additional bifurcations are expected to occur involving motions in the configuration plane
of increased complexity. Such bifurcations can be studied using the techniques outlined
herein, by imposing different boundary conditions and impacting restrictions for the
motions to be studied.

Similar BVP computations help us understand the bifurcations giving rise to the
localized vibro-impact mode that appears in the Poincaré maps of Figure 8. As mentioned
previously, due to symmetry there exists two such localized modes, one localizing in the
x-coordinate, and the other in the y-coordinate. Here we will analyze only the mode
localizing in the x-coordinate, but a similar calculation can be performed for the other
mode. To this end, we seek localized solutions governed by equation (19) between impacts,
with only the x-coordinate impacting, and boundary conditions

x(0)=−e, x(T/2)= e, ẏ(0)=0, ẏ(T/2)=0. (22)

In Figure 11 we depict the numerical solutions of the BVP. The solutions are depicted as
graphs of y vs e for each periodic solution at the time instant when x=−e. We note that
the localized mode is generated at e1 1·79 in a saddle-node bifurcation. The unstable
mode of the bifurcation has the same impacting properties with the localized mode and
ceases to exist at e=z5/31 1·291 when it coalesces with the out-of-phase vibro-impact
mode in a pitchfork bifurcation. After this bifurcation the out-of-phase modes loses
stability, and remains unstable for lower values of e. It is the transverse intersections of
the invariant manifolds of this unstable mode that give rise to the small chaotic regime
in the central region of the Poincaré plot of Figure 8(f).

In the previous sections we analyzed some of the dynamic phenomena occurring in the
direct vibro-impact problem of a two-degree-of-freedom linear or nonlinear oscillator
undergoing purely elastic impacts. We considered both analytical and numerical
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techniques, which enabled us to study local and global dynamics, and bifurcations
generating vibro-impact mode localization and mode instabilities. We now turn our
attention to the inverse problem associated with the two degree-of-freedom system. This
problem seeks the systems that under vibro-impact conditions generate an a priori specified
trajectory in the configuration plane. The solutions of the inverse problem provide
interesting insight on the class of dynamical systems that are capable of producing required
pre-determined vibro-imapct orbits.

3. THE INVERSE PROBLEM

The inverse problem associated with the vibro-impact oscillator of Figure 1 is posed as
follows. Consider the equations of motion (1) and assume that the trajectory of the system
in the configuration plane follows a specified orbit: What is the required potential function
P(x, y) required for such an orbit to exist? Moreover, under what conditions does such
a potential function exist and when is it unique? In what follows we will discuss in detail
a method of solution to the inverse problem and will provide some numerical applications.
Although the inverse problem considered herein addresses the two-degree-of-freedom
vibro-impact oscillator, it can be easily generalized to higher dimensions. In addition, in
the following exposition the inverse problem is formulated for a motion composed of two
two-sided impacting branches. Generalization to other types of vibro-impact motion can
be similarly performed.

Considering again the equations of motion (1), we assume that the orbit of the system
in the configuration space is composed of two double-sided impacting branches. We
further assume that each branch is sufficiently smooth to be expanded in power series in
x for the entire range of the vibro-impact motion:

y= ŷ1(x)= s
k=0

akxk and y= ŷ2(x)= s
k=0

bkxk for −eE xE e. (23)

Assuming that the coefficients ak and bk in the above series are specified, we seek the
potential energy function P(x, y) that is required for such a motion. Expressing the
potential function in the general form

P(x, y)= s
i+ je 2

cijxiyj for i, j=0, 1, 2, . . . , (24)

the solution of the inverse problem reduces to the determination of the coefficients cij in
the above expression.

Since the branches (23) represent double-sided vibro-impact orbits, they must satisfy the
differential equation (4) and the set of compatibility conditions (5). Substituting equations
(23) and (24) into equations (4) and (5) we obtain the algebraic equations

2$ s
k=2

k(k−1)zkxk−2%$h− s
i+ je 2

cijxi0 s
k=0

zkxk1
j

%
−$1+0 s

k=1

kzkxk−11
2

%0 s
k=1

kzkxk−11$ s
i+ je 2

icijxi−10 s
k=0

zkxk1
j

%
+$ s

i+ je 2

jcijxi0 s
k=0

zkxk1
j−1

%$1+0 s
k=1

kzkxk−11
2

%=0, zk = ak or bk , (25a)
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complemented by the compatibility conditions

s
k=0

ak (2e)k = s
k=0

bk (2e)k and s
k=1

kak (2e)k−1 =− s
k=1

kbk (2e)k−1. (25b)

These equations govern the sought coefficients cij , and their solution provides the answer
to the inverse problem. We note that conditions (25b) do not involve the unknowns cij ,
and represent mere geometric restrictions on the assumed vibro-impact branches (23).
Considering relations (25a), we make the initial observation that, if we truncate the infinite
summations to only the first N terms, by matching coefficients of respective powers xk we
obtain an underdetermined set of 2N algebraic equations for N2 unknowns. Hence, in
general, the inverse problem appears to possess non-unique solutions.

Due to the difficulty of analyzing the general equations (25), it will be necessary to
consider specific geometric forms for the branches (23) in order to proceed with concrete
solutions of the inverse problem. Hence, as an application, we consider a vibro-impact time
periodic solution composed of the two branches

y= ŷ1(x)= a−(a/e2)x2 and y= ŷ2(x)=−ŷ1(x)=−a+(a/e2)x2 for −eE xE e.

(26)

In terms of the previous notation we have, a0 = a, a1 =0, a2 =−(a/e)2, ak =0, ke 3, and
b0 =−a, b1 =0, b2 = (a/e)2, bk =0, ke 3. Substituting these values into relations (25a),
and considering terms only up to O(x3) we obtain the following matrix relation governing
the leading coefficients of the potential function:

K+ L+
2 L+

3 0 0 0 0 0 h D+
1

K− L−
2 L−

3 0 0 0 0 0 c02 D−
1

0 0 0 M+
1 M+

2 0 0 0 c03 D+
2

0 0 0 M−
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0 N+
2 N+

3 0 0 O+
0 O+

1 0 c12

=
D+

3

, (27)

0 N−
2 N−

3 0 0 O−
0 O−

1 0 c20 D−
3

0 0 0 P+
1 P+

2 0 0 Q+
0 c21 D+

4

0 0 0 P−
1 P−

2 0 0 Q−
0 c30 D−

4

where the various coefficients are defined in Appendix A. Assuming that all coefficients
ci j , ie 4, are set equal to zero, the above matrix relation governs exactly the inverse
problem and involves no approximation. The vector on the right-hand-side depends on
an infinite number coefficients cij (cf. Appendix A), and, hence, the inverse problem
possesses non-unique solutions. Furthermore, it can be realized that problem (27) can be
decomposed into two separate subproblems, one governing the coefficients c1j and c3p with
je 1, pe 0, and the other governing the coefficients c0k and c2p with ke 2, pe 0. The
solutions of these subproblems are summarized below.

(1) Subproblem I governing c1j and c3p with je 1, pe 0.
, If c1j =0, je 1, then,

either, c3p =0, pe 0

or, c30 =D+
4 /Q+

0 , and c3j , je 1 satisfy s
je 1

c3j (Q+
j +Q−

j )=0.
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, If not all c1j , je 3 are zero, then the coefficients are computed by the relations,

6c11

c127=$M+
1

M−
1

M+
2

M−
2 %

−1

6D+
2

D−
2 7, c30 = (D+

4 −P+
1 c11 −P+

2 c12)/Q+
0

and c3j , je 1 satisfy the relation

(D+
4 −P+

1 c11 −P+
2 c12)/Q+

0 = (D−
4 −P−

1 c11 −P−
2 c12)/Q−

0 .

(2) Subproblem II governing c0k and c2p with ke 2, pe 0.
In this case we cannot have the trivial solution c0j =0, je 2 and these coefficients
satisfy

6c02

c037=$L+
2

L−
2

L+
3

L−
3 %

−1

6−hK+ +D+
1

−hK− +D−
1 7.

the remaining coefficients satisfy the relation

6c20

c217=$O+
0

O−
0

O+
1

O−
1 %

−1

0$N+
2

N−
2

N+
3

N−
3 %6−c02

−c037+6D+
3

D−
3 71.

All matrices in the solutions above are invertable, provided that the parameter a of the
trajectory (26) is nonzero. This eliminates the possibility of a trivial trajectory in the
configuration plane.

A solution to the inverse problem can be formed by combining one of the two solutions
of subproblem 1 with the solution of subproblem 2. We note that since the above solutions
involve an infinite number of coefficients, one can obtain an infinity of solutions to the
inverse problem by assigning arbitrary values to all the coefficients except the ones required
to satisfy the above relations. Perhaps the simplest of these solutions is obtained by setting
c1j =0, je 1 and c3p =0, pe 0 (solution of subproblem 1), and c02 =2h/(2a2 + e2), c0j =0,
je 3, c20 = h/2(2a2 + e2), c2j =0, je 1 (solution of subproblem 2). Hence, we obtain a
linear system with clearance nonlinearities, which is predicted to possess the vibro-impact
periodic solution (26). In Figure 12 we superimpose the theoretical orbit (26) and the
numerical orbit obtained by direct numerical integration of the vibro-impact equations of

Figure 12. Comparison between theoretical and numerical solutions of the inverse problem.
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motion. The agreement between theory and numerical integration validates the previous
inverse analysis.

Summarizing, in this section we formulated an inverse vibro-impact problem by
computing the required potential function of a system in order to produce a specified
trajectory in the configuration plane. Although the analysis herein was performed for a
double-branch orbit of parabolic shape, the technique can be applied to a more general
class of orbits with single- or double-sided impacts. An interesting aspect of the inverse
problem analyzed is the degeneracy of its solutions: indeed, it was found that an infinity
of vibro-impact systems can produce the specified trajectory, a result which is due, perhaps,
to its relatively simple parabolic shape. It is conjectured that the degeneracy of solutions
of the inverse problem decreases as the shape of the trajectory becomes more complicated.
This is an interesting topic for some future research.

4. DISCUSSION

We studied direct and inverse problems associated with vibro-impact oscillations of
discrete systems. The usefulness of the presented analytical/numerical techniques stems
from the fact that the majority of previous vibro-impact works were direct problems and
centered on dynamical systems with a single impacting coordinate. By contrast, in this
work we examined systems with two impacting coordinates, undergoing single- or
double-sided impacts. The analytical methods employed were a NNM-type analysis and
a BVP formulation. In the NNM-type analysis the displacement of one of the particles
was expressed as a function of the displacement of the other particle, and the functional
relation of the motions of the two particles was asymptotically approximated. The BVP
enabled the computation of various branches of bifurcating time-periodic solutions with
different impacting properties. Numerical results were obtained by direct integrations of
the equations of motion and then used to construct Poincaré maps.

The class of vibro-impact systems considered possesses rich nonlinear dynamical
behavior, including vibro-impact localized and nonlocalized time-periodic motions (which
can be considered as analytic continuations in the vibro-impact regime of NNMs of
corresponding smooth dynamical systems), as well as, complicated bifurcation sequences
giving rise to new types of single- or double-sided impacting motions, instabilities, and
chaotic responses. These bifurcations can be studied using appropriate BVPs and
numerical Poincaré maps.

We also formulated inverse vibro-impact problems, whereby we sought systems that
would produce specified orbits in the configuration plane. As expected from experience
with similar types of inverse problems for other engineering areas, the solution of the
vibro-impact inverse problem is generally non-unique, since it can be reduced to an
underdetermined set of algebraic equations with multiple infinities of unknowns. The
inverse problems discussed in this work can find applications to tracking problems were
the design task calls for the responses of the coordinates of a system to track specified
paths. Such problems arise often in kinematics and dynamics of mechanisms, and in other
engineering applications.

The presented techniques can be extended to vibro-impact oscillators with more than
two degrees-of-freedom, although in such cases the computational and numerical effort is
expected to increase. Moreover, the outlined analysis can be used to study bifurcations
associated with the inverse problem, i.e., to investigate degeneracies in the class of
dynamical vibro-impact systems that produce a specified orbit in configuration space. That
would be an interesting problem in inverse nonlinear dynamics. In addition, the mentioned
analytical and numerical techniques can be applied to study the bifurcation structure of
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the periodic solutions of multi-degree-of-freedom vibro-impact systems, and to establish
regions of regular and chaotic responses.
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APPENDIX A: COEFFICIENTS OF THE MATRIX EQUATION (23)

The coefficients are expressed in terms of the geometric parameters of the trajectory (22)
as follows:

K2 =(34a/e2),

L2
j =−4(3a/e2)(2a)j + j(2a) j−1, j=2, 3, . . . ,

M2
j =−6(3a/e2)(2a)j + j(2a) j−1, j=1, 2, . . . ,

N2
j = j(j−1)(2a)j−2(3a/e2), j=2, 3, . . . ,

O2
j =−8(3a/e2)(2a)j + j(2a) j−1, j=0, 1, . . . ,

P2
j =−2j(a2/e4)(2a) j−1 −8(3a/e2)(a2/e4)(2a) j + j(j−1)(2a) j−2(3a/e2)

j=1, 2, . . . ,

Q2
j =−10(3a/e2)(2a) j + j(2a) j−1 j=0, 1, . . . ,

D2
1 =− s

je 4

c0jL2
j , D2

2 =− s
je 3

c1jM2
j , D2

3 =− s
je 4

c0jN2
j − s

je 2

c2jO2
j ,

D2
4 =− s

je 3

c1jP2
j − s

je 1

c3jQ2
j .


