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The nonlinear two-degree-of-freedom system under consideration consists of the linear
oscillator with a relatively big mass, which is an approximation of some continuous elas-
tic system, and of the vibro-impact oscillator with a relatively small mass, which is an
absorber of the linear system vibrations. Analysis of nonlinear normal vibration modes
shows that a stable localized vibration mode, which provides the vibration regime appro-
priate for the elastic vibration absorption, exists in a large region of the system param-
eters. In this regime, amplitudes of vibrations of the linear system are small, simultane-
ously vibrations of the absorber are significant.

Copyright © 2006 Y. V. Mikhlin and S. N. Reshetnikova. This is an open access article dis-
tributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is prop-
erly cited.

1. Introduction

Numerous scientific papers contain a description and analysis of different devices for
the absorption of elastic vibrations due to the importance of these problems in engi-
neering. It is known that in many cases the absorption can be effective by using lin-
ear absorbers with big masses, but this is impossible to realize in most concrete sys-
tems. So, an analysis of absorption by using nonlinear passive absorbers is interesting
for both theory and engineering applications. Here some publications on the subject
are selected. In particular, principal aspects of the nonlinear absorption theory are an-
alyzed by Kolovski [11]. The linear and nonlinear absorber general theory is presented
too in the handbook [5]. Haxton and Barr [7] analyzed the absorber in the form of a
beam, which is attached to the linear mass-spring system. An existence of a transfer of
energy from the periodic forcing of the mass-spring system into the beam was shown.
The pendulum-type centrifugal absorber was analyzed in numerous papers. Shaw and
Wiggins [22] analyzed such type of absorber to reduce torsion oscillations. Lee and Shaw
[12] considered a quenching of torsion oscillations of the internal combustion engine by

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2006, Article ID 37980, Pages 1-15
DOI 10.1155/MPE/2006/37980


http://dx.doi.org/10.1155/S1024123X05412119

2 Elastic system and a vibro-impact absorber

this type of absorber too. Haddow and Shaw [6] studied experimentally the rotating ma-
chinery with the centrifugal pendulum absorber. Different aspects of the use of pendulum
absorbers were also considered in [4, 26]. Natsiavas [19] offered to use the oscillator with
a nonlinear spring to absorb forced oscillations of the Duffing system. The mass-spring
nonlinear system to reduce vibrations of some self-excited system was analyzed in [20].
Impact systems which can be used to absorb oscillations are analyzed by Karyeaclis and
Caughey [9, 10]. Aoki and Watanabe [1] offered the impact absorber, which contains
small mass hitting on the stop. In [24] the process of redistribution of energy was con-
sidered in a system of connected linear and nonlinear oscillators. The energy transfer to
nonlinear normal mode is caused by subharmonic resonance which is possible because
of the nonlinear oscillator existence. In other papers by Vakakis et al. [14, 15], theoreti-
cal investigation and some experimental verification on the use of nonlinear localization
for reducing the transmitted vibrations in structures subjected to transient base motions
have been presented. In particular, the experimental assembly, containing the main linear
subsystem and the nonlinear absorber, is described in [15]. It was shown that the energy
transfer to the nonlinear absorber exists. A semi-infinite linear chain with an essentially
nonlinear absorber is considered in [23].

In this paper, the single-DOF vibro-impact oscillator is examined to quench oscilla-
tions of some elastic system. In this case, a part of the elastic oscillation energy is trans-
ferred to the oscillator. The elastic structure is approximated by the single-DOF mass-
spring model to study the principal capacity of the oscillation absorption. The mass and
stiffness of the absorber are smaller than the corresponding parameters of the main lin-
ear system. Such choice of the parameter is determined by the real engineering design
conditions. Oscillations of the two-DOF system are studied by methods of the nonlinear
normal vibration mode (NNM) theory [13, 16, 25]. It is possible to select in the two-DOF
nonlinear system under consideration the nonlocalized normal mode when the vibration
amplitudes of the main linear subsystem and essentially nonlinear absorber are compa-
rable, and the localized normal mode. The localized NNM, when the main linear system
and absorber have small and large vibration amplitudes, respectively, is appropriate for
the absorption. Note that the NNM approach was used earlier in some problems of the
linear vibration absorption in systems containing the absorber with a cubic nonlinearity
and the snap-through truss as an absorber (2, 3, 17].

Free vibrations of the system under consideration are analyzed in Section 2 by us-
ing the nonlinear normal vibration mode theory and the nonsmooth transformation
approach by Pilipchuk. Analysis of stability of the localized and nonlocalized NNMs is
presented in Section 3. The authors use the algebraization by Ince which can be success-
fully used in conservative systems to solve the stability problem. The regions in the system
parameter space, where the nonlocalized mode is unstable and the localized mode, ap-
propriate to the absorption, is stable are selected.

2. Nonlinear normal modes in a system containing the vibro-impact absorber

One considers a possibility to absorb vibrations of linear elastic structure. The single-
DOF vibro-impact oscillator is examined as the absorber. To simplify the investigation,
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Figure 2.1. Two-DOF nonlinear system under consideration.

we replace the elastic system by a single-DOF linear oscillator. The corresponding trans-
formation can be realized, for example, by using the standard Bubnov-Galerkin proce-
dure. As a result, the following two-DOF nonlinear system (Figure 2.1) is investigated:

emi+y(x—y)+P(x) =0,
2.1
Mj+w?y+y(y—x)=0. 1)

Here x and y are displacements of the absorber and main elastic systems, respectively;
w? and y are stiffness coefficients of the springs. By assumption of Section 1, the mass of
the absorber is significantly smaller than that of the elastic system. Therefore, the formal
small parameter ¢ is introduced. The function P(x) describes the impact interaction of
the absorber with the catch. The restoring force exerted by the catch is assumed in the
form of the power function with the sufficiently big power. Considering only the impact
interaction, we can present the absorber dynamics as a motion in the potential well with
the potential in the following form: [] = x"™/(n + 1), where the well becomes rectangular
if n — oo. The authors consider here the elastic impact, so the restitution coefficient is
equal to one.

In this system, both nonlocalized and localized vibration modes are possible. To ana-
lyze the vibration modes, methods of the NNM theory are used [13, 16, 25]. Nonlinear
normal modes are a generalization of the normal (principal) vibrations of linear systems.
In the mode, a finite-dimensional system behaves like a conservative one having a single
degree of freedom, and all position coordinates can be analytically represented by any one
of them.

One writes the system (2.1) energy integral of the form

B xz }-,2 2},2 (xfy)z X"H
T+n:£m?+M7+a) 7+)/T+n+l—h, (22)

where T and [ ] are kinetic and potential energies, respectively; k is the system total energy.
Trajectories of the NNMs in the system (2.1) configuration space are sought in the
form y(x). The next relations to eliminate f from (2.1) are used:

d(o) _xd(o) d*(o) :xzdz(o) +j€d(o)
dt dx’ de? dx? dx

(2.3)
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Using these relations and the system energy integral (2.2), one derives the following equa-
tion to obtain the trajectories:

= (0 (y*/2) +y((x = p)*/2) + X/ (n+ 1))

M[2y em+M(y')? —%(y(x—y)—kx”)]

(2.4)
+wly+y(y—x)=0.

Here prime means a derivation by x.

Equation (2.4) has singularities at the maximum equipotential surface IT = h where,
x = Xo, y = y(Xo), and all velocities are equal to zero. The NNM trajectory can be analyt-
ically continued up to the maximum equipotential surface by satisfying some additional
boundary condition,

My (y(x—y)+x") +em[w’y+y(y —x)] =0 ifx =X, (2.5)

which is a condition of orthogonality of the NNM trajectory to the maximum equipo-
tential surface [13, 16, 25].
The zero approximation with respect to ¢ (¢ = 0) gives us the following:

n

=x+=. (2.6)
Yo y

This is the nonlocalized vibration mode. In this mode, the vibration energy is dis-
tributed both in the linear oscillator and in the essentially nonlinear absorber, that is,
the vibration amplitudes of the subsystems are comparable. The corresponding limiting
system, which can be obtained from (2.1), is the following:

yx=y)+x"=0,  Mj+w’y+y(y—x)=0. (2.7)

By using the classical procedure of the small parameter method, we can obtain the
solution as the power series with respect to €. Note that the power series method was
proposed for a construction of the NNM curvilinear trajectories in [13, 16, 25]. The first
approximation (by ¢) equation and the corresponding boundary conditions are not pre-
sented here, but the equation can be easily obtained from the relations (2.4) and (2.5).
The solution of the first approximation by ¢ can be obtained in power series by x.

One selects now the localized vibration mode when amplitudes of vibrations of the
main linear system are small; simultaneously vibrations of the absorber are significant.
This regime can be analyzed if the next time transformation is imputed: t = \/e7. Then
the system (2.1) can be written as

mi+p(x— y)+x" =0, %szﬁy(y—x) =0. (2.8)

The corresponding limiting system (for ¢ — 0) has the form

mx+y(x—y)+x" =0,

Mj =o0. (2:9)
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One has from here yy = 0. In this case, the equation to obtain NNM trajectory y(x) is the
following:

S h— (X" (n+ 1)+ 02 (y2/2) +y((x— »)?/2)) ¥ ;
M[zy m+ (M/e)(y')? Tl _y(x_y))]

+ew’y+ep(y —x) =0.

(2.10)

By using the first approximation equation with respect to € and the corresponding bound-
ary conditions at the maximal equipotential surface, it is possible to obtain a solution of
the form of the following power series by x.

One considers a new zero approximation (2.6) of the nonlocalized vibration mode. Sub-
stituting both the approximation of the function y(x) and derivatives of the function by
time, y = (1+ (n/y)x" )% and j = (1 + (n/y)x"" 1% + (n(n — 1)x""2/y)x?, into the sec-
ond equation of the system (2.1), one obtains the following equation to determine the
solution x(t):

_ n—2
M[<l+§x”’l)x+ %xzbwz(“iﬂ) +x" = 0. (2.11)

By expressing %? from the system energy integral (2.2) and substituting it into (2.11), one
has, as a resul t, the next equation:

xn—2

1y h=[(@22) (x+ (U/p)x") + 3272y + X (n+ 1)
M(1+Ex“—1)x+2”(" . [ 4 zy |
Y (1+ (n/y)xn-1)
+w2<x+%x”) +x"=0.

(2.12)

According to the nonsmooth transformation theory developed by Pilipchuk [21, 25],
one presents the periodic solution of the form

2
x=At+X(1), T= = arcsin (sin (%wm‘)) = 17(wot), (2.13)

where the function X(7) has to be determined, and the parameters A and wy, will be
connected later by the amplitude-frequency characteristic. One introduces now the new
independent variable 7 instead of the variable ¢ by using the formula (2.13). In this case,
x=wy(A+X)1, %= 0i(A+ X))+ wiX"(1)? = wj(A+X')t + w3 X". Then one derives
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Figure 2.2. Amplitude-frequency relation, corresponding to the nonlocalized vibration mode.

the following equation instead of (2.12):

. nn—1
X -2 ](\/Iyw%)
h=[(@22) (AT + X+ (Up)(AT+X)")* + (AT +X)2/2p + (AT+X)" /(n+1) |
. (1+ (n/y)(AT+X)n-1)°
WHAT+X + (/) AT+ X)") + (AT+X)"
Maw}(1+ (n/y)(Ar +X)m1)

(AT +X)"? -

(2.14)
One supplements also the condition
X'|pei +A =0, (2.15)

which is a condition of elimination of singularity in (2.14). Here the new independent
variable is limited, |7| < 1. The condition (2.15) permits to find out a solution of (2.14)
without nonperiodic terms, by using the simple iterative procedures. One of them is de-
scribed in [21]. By means of this procedure, the next amplitude-frequency relation was
obtained: Mwj = (w?/2)(1+ (1/y)A"1)? + A2"=D/2y + A"~1/(n + 1). This amplitude-
frequency relation, corresponding to the nonlocalized vibration mode, is presented for
different values of the index n in Figure 2.2.

Similar calculations for the localized mode give us the relation mw§ = y/2 + A"/
(n+1), which is presented in Figure 2.3.

3. Stability of localized and nonlocalized nonlinear normal modes

To investigate the stability of the system (2.1) solutions, a system of the variational equa-
tions can be written. Let x = xo +u, y = yo + v, where u and v are variations for the NNMs
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Figure 2.3. Amplitude-frequency relation, corresponding to the localized vibration mode.

of the system (2.1). Then we have
emii+y(u—v) +nxilu=0, M+ w*v+y(v—u) =0. (3.1)

Note that we will investigate a stability of NNMs up to terms of the order O(e). In this
case, eliminating the variable u from the first equation (3.1), u = v/(1+ (n/y)x{""), one
obtains from the second equation (3.1) the following simplified variational equation:

Mi)+v[w2+y(1—W)] =0. (3.2)

First, one considers a stability of the nonlocalized vibration mode. A motion along this
mode is determined by (2.11), which were obtained by using the approximate expres-
sion of the mode in the form (2.6). Note that a harmonic approximation of solution is
impossible for the vibro-impact system under consideration.

The NNM stability analysis is based on the so-called algebraization by Ince. In this
case, a new variable associated with the solution under consideration is chosen as an
independent argument [8]. Then the variational equation is converted to the equation
with singular points. This approach was used earlier to investigate a problem of the NNM
stability [13, 18, 25]. Note that the Ince algebraization can be used to solve the stability
problems only in conservative systems.

One introduces the following transformation of the independent variable:  — x. Ex-
pressing the time derivatives in terms of the new independent variable x, namely, the
relations (2.3), we can obtain the next equation instead of (3.2):

M(v”)'c2+v'5é)+v[w2+y(1—W)] =0. (3.3)
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Substituting the expressions, obtained previously for %? and %, into (3.3), after some
transformations, the following equation can be written as

C()V” — C1V’ +Cv =0, (34)
where
h- [(w2/2) (x+ (l/y)x”)2 +x2/2y +x"/ (n+ 1)]
C = 2 >
0 (1 +(n/y)x”*1)2
c n(n—1) h— [(wZ/Z)(x+(l/y)x”)2+x2”/2y+x”“/(n+1)]
1= 2 - X

y ' (1+ (n/y)an-1)° (3.5)
W (x+ (1/y)x") +x™
1+ (n/y)xn—1

W (1+ (n/y)x"1) + nx"!
1+ (n/y)xn—1

C =

Singular points of (3.4) are situated on the maximal isoenergetic surface: h — [(w?/2)(x +
(1/y)x™)? + x*/2y + x"*1/(n+ 1)] = 0. One denotes the points as +Xj. Indices of the
equation singular points are equal to a; = 0 and a, = 1/2. It is demonstrated in [8] that
solutions corresponding to boundaries of stability/instability regions of equations with
singular points, in which indices are equal to 0 and 1/2, are the following:

VI =ag+ax+ax +asx® Faxt - (3.6)
V) = \lX(% —x2- (b()-l' b1x+b2x2 +b3X3 +b4x4+ s ) (37)

Substituting the series v; into the variational equation (3.4) and matching respective pow-
ers of x, it is possible to obtain the next infinite recurrent system of linear algebraic equa-
tions to determine coefficients of the expansion (3.6):

x°: 4ha, + w?ag = 0,
1 : 12]1613 = 0,
21 —3way +24hay = 0, (3.8)

x> : 40has — 8w?az = 0,

It is clear that the system decomposes into two subsystems to determine coefficients with
even and odd subscripts.
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Analogously, substituting the solution v, into (3.7) and matching respective powers of
x, one has the following recurrent equations:

x0: —2X02hb0 +4X04hb2 =0,
xl : 12X04hb3 - 6X02hb1 = 0,
X —3X04a)2b2 — 18X02hb2 + 24X04hb2 =0, (39)

X 240X04hb5 — 38X02hb3 - 8X04w2b3 — 2X02w2b1 +4hb; =0,

which also decompose into two subsystems to determine coefficients with even and odd
subscripts.

As a result, four systems of the algebraic equations with respect to a;, b;, i = 1, 0, are
derived. These systems have nontrivial solutions if their determinants are equal to zero.
These determinants were calculated up to sixth order. Thus four equations connecting the
system parameters are derived. These equations give the instability region boundaries for
the nonlocalized vibration mode. Three determinants have solutions only when the sys-
tem parameters are equal to zero. The boundaries of instability for the last determinant,
which correspond to b;, i = 2k, k € N, for the following parameters: em = 0.1, M = 1,
w? = 1, are shown in Figure 3.1. The regions of instability are shaded in this figure.

Now the procedure of algebraization is used to analyze the stability of the localized
vibration mode. It restricts oneself to the zero approximation of the mode: y = 0. The
energy integral along this vibration mode has the form

mx2+ x2+xn+1
2 V5

— =h (3.10)

Let us exclude from the first equation of the system (2.9) ¥ = —(yx +x")/m, and from the
energy integral (3.10) x? = 2(h — (yx%/2 + x""!/(n+1))/m). The results are substituted
into the variational equation (2.14). One has the following equation:

2 n+1 n—1 n—1
g<h—[&+x—])<l+nx )v"—l<yx+x"’l)<l+nx )v'
Iz 2 ntl y Iz y (3.11)

+(0?+nx""1)v =0,

where y = m/M.

Developing the same transformations as for the nonlocalized mode with respect to the
singular points of (3.11) and its exponents, one obtains that the boundary solutions have
the form of the power series (3.6) or (3.7).
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Substituting these series into (3.11), one has two systems of recurrent algebraic equa-
tions to obtain the series coefficients:

4
x%: Zhay + w?ag = 0,

1 12
x':—=ya, + w*a; + —has = 0,
U U

4 24
X’ ——ya, + ;ha4+w2az =0,

4
X wlas+ —Oha5 - 2ya3 =0,
U U

x0: 7%X02hb0 +X04(U2b() + éAX04th =0,
% 4
. 6., - 4 2 124
x: —;Xo ybi — ﬁXo hby +Xo"w"by + FXO hbs =0,

4 1 24 2
x2 : —;Xo4yb2 - 78X02hb2 +X04w2b2 + ;Xo4hb4+—2X02w2bo + ;on)/bo =0,

X3 : —/%X04)/b3 - %nghlk +X04(02b3 + %Xg4hb5 - 2X02w2b1 + ghbl + gX()Z)/bl =0,

(3.12)

Each of these systems is decomposed into two systems. One of these systems corre-
sponds to even powers of x and the other one to odd powers. The systems of linear equa-
tions have nontrivial solutions if determinants are equal to zero. The determinants are
calculated up to sixth order. Thus one has four equations to determine the boundary of
instability, which depend on the system parameters. The boundaries for localized mode,
with the following system parameters: em = 0.1, M = 1, w? = 1, are shown in Figure 3.2.
The regions of instability are shaded in this figure. Note that boundaries of the stabil-
ity/instability regions are almost the same for values of the parameter em which are less
than 0.1.

Besides, here examples of the unstable nonlocalized and stable localized nonlinear nor-
mal modes from the stability/instability regions (see Figure 3.2) are presented. Both vi-
bration modes were calculated numerically if the small dissipation terms of the form §x
and &y were introduced to the first and second equations (2.1), respectively. The calcu-
lations were made for the following values of the system parameters: em = 0.1, M = 1,
w = 0.3, § = 0.005. Here y = 6 for the stable nonlocalized mode (Figure 3.3(a)) and y =
0.5 for the unstable nonlocalized mode (Figure 3.3(b)). Trajectories of the NNM:s in the
system configuration place are shown for the following time of calculation: 50 < t < 100.
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Figure 3.1. Regions of instability of the nonlocalized mode in two different planes of the system pa-
rameters, obtained by using the Ince algebraization (a) Xo =1, M =1,em=0.1. (b) X =1, w =1,
M=1,em=0.1.

4, Conclusions

In this paper, the two-DOF system consisting of the linear oscillator with a relatively
big mass, which is an approximation of some continuous elastic system, and the vibro-
impact oscillator with a relatively small mass, which is an absorber of the main linear
system vibrations, is analyzed by using the nonlinear normal mode theory. The method
of nonsmooth transformation by Pilipchuk and the Ince algebraization were successfully
used to obtain the frequency response and regions of stability/instability of the vibration
modes. It is shown that there are large regions of the system parameters favorable for the
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Figure 3.2. Regions of instability of the localized mode in two different planes of the system parame-
ters, obtained by using the Ince algebraization. (a) Xo =1, M =1,em=0.1.(b) X =L, w=1,M =1,
em=0.1.

extinguishing of elastic vibrations where the nonlocalized mode is unstable and the lo-
calized mode is stable. In a case when the localized mode, appropriate for the absorption,
is realized, the main elastic system and absorber have small and significant amplitudes,
respectively.
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Figure 3.3. (a) Trajectory in the configuration space of the stable nonlocalized normal mode (em =
0.1, M=1,w=0.3,8 =0.005, y = 6). (b) Trajectory in the configuration space of the unstable non-
localized normal mode (em = 0.1, M = 1, w = 0.3, § = 0.005, y = 0.5).
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