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Abstract. Nonlinear normal modes (NNMs) are a generalization of the linear normal vibrations. By 

the Kauderer-Rosenberg concept in the regime of the NNM all position coordinates are single-values 

functions of some selected position coordinate. By the Shaw-Pierre concept, the NNM is such a 

regime when all generalized coordinates and velocities are univalent functions of a couple of dominant 

(active) phase variables. The NNMs approach is used in some applied problems. In particular, the 

Kauderer-Rosenberg NNMs are analyzed in the dynamics of some pendulum systems. The NNMs of 

forced vibrations are investigated in a rotor system with an isotropic-elastic shaft. A combination of 

the Shaw-Pierre NNMs and the Rauscher method is used to construct the forced NNMs and the 

frequency responses in the rotor dynamics.  

1.  Introduction 

Kauderer [1] was a forerunner in developing quantitative methods to analyze the NNMs in two-DOF 

conservative systems. Rosenberg [2] defined NNMs as synchronous periodic motions during which all 

coordinates of the system vibrate equiperiodically, reaching their maximum and minimum values at 

the same instant of time. He selected a few classes of essentially nonlinear systems allowing NNMs 

with rectilinear trajectories (modal lines) in a configuration space. The first formulation of the NNMs 

can be named the Kauderer-Rosenberg approach. In general, the NNM modal lines are curvilinear. 

The power series method to construct these trajectories is proposed in [3,4]. Shaw and Pierre [5,6] 

proposed the other formulation of NNMs for a general class of nonlinear discrete conservative or non-

conservative systems. This analysis is based on the computation of invariant manifolds on which the 

NNM oscillations take place. This NNMs formulation can be named the Shaw-Pierre approach.  

Basic results on NNMs are presented in the book [7-9] where quantitative and qualitative analyses 

of NNMs in conservative and non-conservative systems are considered.   

An efficiency of the NNMs method is showed in some applied problems. In particular, NNMs in 

vibro-absorption problems are investigated in [10-12]. An essentially nonlinear oscillator, a snap-

through truss with three equilibrium positions, and a vibro-impact oscillator are considered as 

absorbers. Construction and stability analysis of the localized and non-localized nonlinear normal 

modes are developed. If the localized mode is realized, the system energy is concentrated in the 

nonlinear absorber. This situation is the most appropriate to absorb vibrations of a linear subsystem. 

NNMs are used to analyze the cylindrical shell nonlinear dynamics [13]. Initial imperfections are 

taken into account. The Shaw-Pierre NNMs are used to analyze a 7-dof model for a double tracked 

road vehicle [14]. Nonlinear response of the suspension is taken into account.  
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The paper is organized as follow. In Section 2 the Kauderer-Rosenberg and Shaw-Pierre 

approaches are presented. In Section 3 an investigation of the NNMs in some pendulum 

systems is described. In Section 4 the Shaw-Pierre NNMs and the modified Rauscher method 

are used to construct the NNMs of forced vibrations in a one-disk rotor system.   

2.  Two approaches to the nonlinear normal modes 

The Kauderer-Rosenberg approach of the NNMs is based on a construction of trajectories in the 

system configuration space. If some generalized coordinate is chosen as the independent one, for 

example, xx 1 , then the following functions defines the NNM:   

                                              ),...,3,2();( nixxx ii                                                                (1) 

For a finite-dof conservative system with the potential energy, )x(  , which is a positive 

definite analytical function, and the kinetic energy is transformed to the canonical form, the equations 

to obtain trajectories (modal lines) in the system configuration space can be written as [2, 7-9]   

                       
ixxi

n

k

ki )(x)x/()h(x   
2

212 )n,...,,i( 32                                            (2) 

Here the prime means a differentiation by the variable x . These equations have singular points on 

the maximal equipotential surface   hx,...,x n 1 . An analytical continuation of the NNM 

trajectories to the surface is possible if the next boundary conditions are satisfied [2, 7-9], namely, 

     ))X(x)...,X(x,X())]X(x)...,X(x,X()[X(x nxnxi i 22   ),...,3,2( ni                         (3)  

The relations (3) are natural boundary conditions for the variational principle in the Jacobi form. 

Here )X(x,Xx i  are the trajectory return points lying on the maximal equipotential surface 

  hx,...,x n 1 . If the NNM (1) is obtained from the boundary problem (3)-(4), then the system 

under consideration is reduced to a single-dof nonlinear oscillator. So, the NNM is a two-parametric 

(by energy and phase of the motion) family of periodic solutions with smooth modal lines. To 

construct the NNM, a power series can be used [3,4].   

Shaw and Pierre [5,6] reformulated the method of NNMs for a general class of quasilinear 

dissipative systems. Their analysis is based on the computation of invariant manifolds of motion on 

which the NNMs take place. One chooses a couple of new independent variables (u, v), where u is 

some dominant generalized coordinate, and v is the corresponding generalized velocity. By the Shaw-

Pierre concept, the nonlinear normal mode is such a regime when all phase coordinates are univalent 

functions of the selected couple of variables. It is possible to obtain the solution in the power series by 

new independent variables u  and v  using a system of partial differential equations.   

Generalization of the NNMs approach to non-autonomous and self-exited systems can be found in 

Refs. [7-9].  

 

3. NNMs by Kauderer-Rosenberg in the pendulum dynamics  

One considers free vibrations of the spring pendulum (Figure 1). Here m  is a mass of the pendulum, l  

is length of the linear spring in the unstressed state. The dynamics of the system are described by two 

positional coordinates,   and  .  

One introduces a new variable 0 z , where c/gml 0  is a static extension of the 

spring in the equilibrium position. In the system two vibration modes can be selected: а) longitudinal 

vibration mode when 0 , )t(zz  ; b) coupled vibration mode when )t(  , )t(zz  .  
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Figure 1. The model of the spring pendulum 

 

The coupled vibration mode can be constructed in the form of the trajectory in the configuration 

space as )(zz  . Corresponding equation and boundary conditions are similar to equation (2) and 

(3). The NNM is determined as a power series by the independent variable  . Coefficients of the 

series are obtained from algebraic equations. A numerical simulation needed for checking shows a 

good agreement with the obtained analytical solution.  

The longitudinal vibration mode stability was studied previously [15] and results of such 

investigations are known. The corresponding linearized equation for variations in the horizontal 

direction can be reduced to the Mathieu equation. A more exact method for the stability analysis is 

based on reduction to the Hill equation. Analysis of stability of the coupled vibrations mode is made 

by the analytical-numerical criterion which is proposed in [16]. In this case current values of 

perturbations are compared with initial ones.  

Free vibrations of the two-DOF system, which is shown in Figure 2, are considered too. The 

anchor spring is linear having a stiffness coefficient k . The linear oscillator of the mass 1m  is 

connected with the pendulum absorber, having the mass 2m ; the length of the pendulum is equal to l . 

The system motions are determined by two generalized coordinates x and  .  

 

 
Figure 2. The mechanical system having the pendulum absorber 

 

Two nonlinear vibration modes can be selected in this system: а) the coupled vibrations mode, 

)t(),t(xx   , when vibration amplitudes of two generalized coordinates have the same order; b) 

the localized vibration mode, which is the most appropriate for absorption of the linear subsystem 

vibrations, when amplitudes of )t(  are essentially larger than ones of  )t(xx  .  

The method of the NNMs construction presented in Section 2, is utilized here. The coupled 

vibration mode, )x(  , is  found in a power series in x . The trajectory of the localized vibration 

mode is determined of the form: )(xx  . The NNM trajectory is obtained as a power series in the 

variable  .  The near rectilinear trajectory of the localized mode is presented in Figure 3.  
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Figure 3. Trajectory of localized vibration mode in configuration space 

 

Again the numerical simulation shows a very good agreement with the analytical solution.   

The non-localized and localized NNMs trajectories are near rectilinear. Stability of the mode is 

determined by variations, which are orthogonal to the trajectories. The Mathieu and Hill equations are 

used in this investigation. The region of the localized mode instability is very narrow. So, the localized 

mode is very effective for absorption of elastic vibrations.  

The forced NNMs in the system containing the pendulum absorber under the external periodic 

excitation are obtained too.  

 

4. Nonlinear normal modes of forced vibrations in rotor systems  

Different nonlinear effect must be taken into account in the analysis of the dynamical behaviour of 

rotor systems [17,18]. Note that in many publications mostly the simplest models, for example, the 

Jeffcott rotor, are considered due to a complexity of the rotor system dynamics. Here nonlinear forced 

vibrations of the rotor are considered. Gyroscopic effects, nonlinear flexible base, inertial forces in 

supports, an asymmetrical disposition of the disk in the shaft and internal resonances are all taken into 

account. Equations of motion of the one-disk unbalanced rotor with the linearly isotropic elastic shaft 

and nonlinear elastic bearings are the following [9]:   
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where l  is the shaft length; 21 l,l  are distances of the disk up to left and right supports, 

correspondently; 2211 l/lh;l/lh  ; )(
y

)(
x c,с 11  are coefficients which characterize linear terms 
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in the left support restoring force; )(
y

)(
x k,k 11  are similar coefficients for the right support; 

)(
y

)(
x c,с 22  are coefficients which characterize cubic terms in the left support restoring force; 

)(
y

)(
x k,k 11  are similar coefficients for the right support;   is a coefficient of damping in the 

supports; 21  , are coefficients of damping during the disk motion; m is the disk mass;   is 

an eccentricity of the disk mass center.  

One has an 8-dof nonlinear system, describing the displacements and rotations of the disc, and 

displacements of the nonlinear supports. The NNMs are constructed here in the forced rotor system 

having an internal resonance. This situation is always realized in the rotor dynamics with the isotropic-

elastic shaft and supports. In a case of internal resonance it is possible to obtain a 2-dof nonlinear 

system for each vibration mode of the forced vibrations.     

The Rauscher method was first proposed for the single-DOF system [19]. Generalization of the 

method to construct NNMs in general non-conservative systems is proposed in [20]. One considers the 

nonlinear dynamical system under the external harmonic excitation in normal coordinates.     

Let  1 2, ,...,
T

Nq q q q , T
Nssss },...,{ 21  be the principal coordinates and corresponding 

velocities. It is assumed that two linearized frequencies 1  and 2  are close, and they are close to the 

external frequency,  , that is 21   . In this case two active coordinates, 
21,q , and two 

corresponding velocities, 2,1s , may be taken as independent master coordinates to construct the forced 

NNMs. One uses from the zero approximation a representation of the active coordinates as a Fourier 

series when the other coordinates are essentially smaller than the master ones:   

 

       ...)tsin(B)tcos(A)tsin(B)tcos(A)tsin(B)tcos(Aq   3322 3322111  

       ...))tsin(A)tcos(B)tsin(A)tcos(B)tsin(A)tcos(B(s   33332222 3322111
 

       ...s...q  22                                                                                                                       (5) 

 

One has from here, after some trigonometric transformations, that       

 

                            ...sqsqsq)tcos(  2
16

2
1524231211                                     (6)                                                            

 

When the coefficients of the expansions (6) are determined from algebraic equations, then an n-

dof “pseudo-autonomous” system is obtained instead of the initial non-autonomous system. It 

corresponds to the principal idea of the Rausher method. In the obtained autonomous system, having 

the internal resonance, the NNMs can be constructed as functions of four independent coordinates 

1 1 2 2, , ,q s q s . Corresponding partial differential equations, similar to equations (8), are used. Solutions 

of these equations are obtained in the form of the power series by four master coordinates. It permits 

the reduction of the n-dof system to the two-dof one. Four active phase coordinates are obtained from 

this reduced system in a form of the Fourier series. The recurrent process is constructed, and the 

pointed out series of operations can be repeated some times to reach the necessary condition of 

exactness. So, the steady-state resonance regimes are constructed in the form of the NNMs.  

The procedure of the NNMs construction is used in the rotor dynamics. Frequency responses near 

the first resonance are presented in Figure 4 for some values of the system parameters. Figures (a) and 

(b) represent frequency responses for principal coordinate 1q  (first and third harmonic of excitation 

frequency respectively). Trajectories of the resonance vibrations in the system configuration space are 

constructed too. Numerical simulation shows a good efficiency of the proposed approach. 
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a) 

  

(b) 

Figure 4.  Frequency responses near the first resonance. Bold curves correspond to the NNM 

approach, and thin curves correspond to the calculations by the harmonic balance method. Here 

frequencies on the horizontal axis are dimensionless; all amplitudes are multiplied by a scaling 

coefficient of 1000. 

5. Conclusions 

Nonlinear normal modes (NNMs) are typical regimes realized in different conservative or 

near-conservative finite-dof systems. The method of nonlinear normal modes is one of the 

approaches for dimension reduction in nonlinear systems. The Kauderer-Rosenberg concept, 

when all positional coordinates are single-valued functions of some of them, is associated 

with trajectories in configuration space. The Shaw-Pierre concept is based on the computation 

of invariant manifolds of motion. In this case the NNMs can be obtained as single-valued 

functions of two selected phase coordinates. An efficiency of the NNMs theory is shown in 

some applied problems, in particular, in pendulum and rotor dynamics.   
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