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Abstract. We analyze axisymmetric, spatially localized standing wave solutions with periodic time dependence
(breathers) of a nonlinear partial differential equation. This equation is derived in the ‘continuum approximation’
of the equations of motion governing the anti-phase vibrations of a two-dimensional array of weakly coupled
nonlinear oscillators. Following an asymptotic analysis, the leading order approximation of the spatial distribution
of the breather is shown to be governed by a two-dimensional nonlinear Schrödinger (NLS) equation with cubic
nonlinearities. The homoclinic orbit of the NLS equation is analytically approximated by constructing [2N � 2N ]
Padé approximants, expressing the Padé coefficients in terms of an initial amplitude condition, and imposing a
necessary and sufficient condition to ensure decay of the Padé approximations as the independent variable (radius)
tends to infinity. In addition, a convergence study is performed to eliminate ‘spurious’ solutions of the problem.
Computation of this homoclinic orbit enables the analytic approximation of the breather solution.
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1. Introduction

Standing and traveling waves in one dimensional lattices [1–4] and in systems described by
nonlinear partial differential equations [5–8] have been extensively studied in the literature.
In [9] a numerical technique based on geometrical arguments in phase space was developed
to study axisymmetric standing waves of the nonlinear Schrödinger (NLS) equation; the
existence and properties of standing wave solutions in NLS were studied in [10–12]. MacKay
and Aubry [13] proved the existence of weakly and strongly localized breathers (i.e., time-
periodic and spatially localized waves considered in appropriate co-ordinate systems) in
Hamiltonian systems consisting of weakly coupled nonlinear oscillators; in their work they
used concepts from analytic continuation of solutions and functional analysis. In the work by
Akylas [14] three-dimensional effects on soliton and periodic wave interactions and on water
wave propagation are reviewed.

In this work we analyze axisymmetric standing breathers of a nonlinear partial differential
equation with two independent variables. As in [8] the problem formulation is performed
by regarding the standing breathers as localized nonlinear normal modes (NNMs) [15], and
deriving the nonlinear ordinary differential equations that govern the leading orders approxi-
mations to the breather envelopes. Then, we use diagonal Padé approximants [16] to develop
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analytic approximations for the homoclinic orbits of these leading order differential equations;
these solutions are shown to provide approximations for the localized spatial distributions of
the breather envelopes. Although the analysis is carried out for a specific nonlinear partial dif-
ferential equation, the methodology is sufficiently general to be applicable to general classes
of partial differential equations with two or more independent variables that admit standing
breather-type solutions. Moreover, the method of Padé approximants developed in this work
can be used to compute analytical approximations of homoclinic and heteroclinic orbits of
nonlinear dynamical systems with phase spaces of dimensions greater or equal to two.

2. Asymptotic Analysis

Consider the small transverse oscillations of a two-dimensional chain of rigid particles
unbounded in the plane. Each particle has transverse diplacement vm;n(t), is grounded by
a nonlinear stiffness with linear and cubic characteristics, and is coupled to its neighboring
particles by massless strings. Assuming anti-phase motions between any two neighboring par-
ticles, the transverse vibrations of the particles can be approximately modeled by the following
nonlinear partial differential equation:

utt + �(u+ "�u3) + "�(uxx + uyy) = 0; 0 < "� 1; �; �; � > 0

�1 < x < +1; �1 < y < +1; t � 0; (1)

where the short-hand notation for partial differentiation was adopted, e.g., (�)xy �
@2(�)=@x@y. Equation (1) is obtained as the ‘continuum approximation’ [1, 17] of
the bi-infinite set of ordinary differential equations governing the transverse vibrations
of the two-dimensional discrete array after the transformation of variables um;n(t) =
(�1)n (�1)mvm;n(t) has been imposed. In the continuum approximation, only leading-
order discreteness effects are taken into account, and the discrete positional variables of the
oscillators are transformed to a continuous variable with two spatial and one temporal inde-
pendent variables. Higher order discreteness effects can be taken into account [18] but this is
not performed here.

We seek axisymmetric standing breather solutions of this equation satisfying the following
relations:

lim
jx2+y2j!1

u(x; y; t) = 0; u(x; y; t+ T ) = u(x; y; t); (2)

where T denotes the period of the standing wave oscillation. To compute these solutions we
extend the methodology first developed in [8] where the one-dimensional analog of Equa-
tion (1) was studied. An added complication in the two-dimensional case is radial dispersion
which, as shown below, introduces a dispersion/dissipative term in the equation governing the
leading order approximation of the spatial distribution of the solution. As in [8] we consid-
er a ‘reference position’ (x0; y0) and a ‘reference displacement’ u(x0; y0; t) � u0(t). On a
breather solution of (1), u(x; y; t) can be parametrized in terms of the reference displacement
as follows:

u(x; y; t) = U [x; y; u0(t)]; (3)

where U [x; y; u0(t)] is referred to as the modal function. Once the modal function and the
reference displacement are computed, the response of the system is defined by (3).



Two-Dimensional Axisymmetric Breathers 329

We now formulate a well-posed problem in terms of U [x; y; u0(t)] that can be solved by
asymptotic analysis. Considering the first integral of motion for (1) (where E represents the
value of the total energy),

E =
1
2

+1Z
�1

+1Z
�1

[u2
t + �u2 + ("=2)��u4 � "�(u2

x + u2
y)] dx dy (4a)

expressingu(x; y; t) by (3), and using the chain rule of differentiation, we obtain the following
expression for the square of the derivative of the reference displacement:�

du0

dt

�2

=
2E �

R+1
�1

R+1
�1

[�U2 + ("=2)��U4 � "�(U2
x + U2

y )] dx dyR +1
�1

R +1
�1

(Uu0)
2 dx dy

: (4b)

It is assumed that E <1 for the types of motions considered herein. The acceleration of the
reference point is computed by evaluating the equation of motion (1) at the reference point:

d2u0

dt2
= [��(U + "�U3)� "�(Uxx + Uyy)](x;y)=(x0;y0): (5)

Relations (4b) and (5) are now used to express the governing equation of motion in terms
of the modal function and the reference displacement by means of (3) and the chain rule of
differentiation:(

2E �
R +1
�1

R +1
�1

[�U2 + ("=2)��U 4 � "�(U2
x + U2

y )] dx dyR+1
�1

R+1
�1

(Uu0)
2 dx dy

)
Uu0u0

+ f��[U(x0; y0; u0) + "�U3(x0; y0; u0)]� "�[Uxx(x0; y0; u0) + Uyy(x0; y0; u0)]gUu0

= ��U � "��U3 � "�(Uxx + Uyy): (6a)

Equation (6a) must be solved subject to the following conditions which ensure (i) that relations
(2) are satisfied [Equation (6b)]; (ii)‘that the definition (3) is compatible with the definition
of the reference displacement [Equation (6c)]; and (iii) that the asymptotic solution of (6a) is
analytically extended up to the point of maximum potential energy [8] [Equation (6d)]:

lim
jx2+y2j!1

U [x; y; u0(t)] = 0; u0(t+ T ) = u0(t); (6b)

U [x0; y0; u0(t)] = u0(t); (6c)

+f��[U(x0; y0; u
�
0) + "�U3(x0; y0; u

�
0)]

� "�[Uxx(x0; y0; u
�
0) + Uyy(x0; y0; u

�
0)]gUu0(x; y; u

�
0)

= ��U(x; y; u�0)� "��U3(x; y; u�0)� "�[Uxx(x; y; u
�
0) + Uyy(x; y; u

�
0)]; (6d)

where u�0 denotes the maximum value attained by u0(t) when the system reaches its maximum
potential energy value; u�0 is computed in terms of the total energyE by the following relation:

2E =

+1Z
�1

+1Z
�1

f�U2(x; y; u�0) + ("=2)��U4(x; y; u�0)

� "�[U 2
x(x; y; u

�
0) + U2

y (x; y; u
�
0)]g dx dy: (7)
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Considering relations (6a) and (7), it becomes clear why the condition of analytic continuation
(6d) must be imposed: The points u0(t) = �u�0 are regular singular points of (6a) (since
the coefficient of the highest order derivative vanishes there), and condition (6d) ensures that
asymptotic approximations developed in open intervals ju0(t)j < u�0 are analytically extended
up to the singular points. Moreover, since the system under consideration possesses cubic-type
nonlinearities, the solutions of (6a–d) are odd with respect to the argument u0(t), and, the
problem has to be solved only in the half-interval 0 � u0(t) � u�0.

Following a methodology similar to [8], the solution of (6a–d) is expressed in the following
series form:

U [x; y; u0(t)] =
1X
k=0

"kU (k)[x; y; u0(t)]; (8a)

where the leading order approximation is expressed as,

U (0)[x; y; u0(t)] = a
(0)
1 (x; y)u0(t) (8b)

in view of the separation of space and time in (1) for " = 0. Higher-order approximations are
not, in general, separable in space and time and are expanded in series as follows:

U (k)[x; y; u0(t)] =
1X

m=1

a(k)m (x; y)um0 (t); k � 1: (8c)

Moreover, due to the compatibility relation (6c), the spatial coefficients in (8b, c) satisfy the
relations:

a
(0)
1 (x0; y0) = 1; a(k)m (x0; y0) = 0; m = 1; 2; : : : ; k � 1: (8d)

Since in the following asymptotic analysis the series (8a) and (8c) will need to be truncated,
it is necessary to remark that the resulting expresions will be valid only for " and u0(t) suf-
ficiently small. Hence, we will be computing the solutions of (6a–d) in small neighborhoods
of the origin of the parameter plane ["; u0(t)]. We now consider each order of approximation
separately.

O(1) terms
The equation governing the O(1) approximation to the solution is given by,

U (0)[x0; y0; u0(t)]U
(0)
u0

[x; y; u0(t)] = U (0)[x; y; u0(t)]

) a
(0)
1 (x; y)[1� a

(0)
1 (x0; y0)]u0(t) = 0; (9)

where the separation of variables (8b) was imposed. For nontrivial solutions, we require that
a
(0)
1 (x0; y0) = 1, which is identical to the first of the compatibility relations (8d). Hence, the

balancing of O(1) terms in (6a–d) does not provide any new information for the solution and
higher order terms must be considered.

O(") terms
Substituting (8a) into (6a–d) and matching terms of O(") we obtain the equations governing
U (1)[x; y; u0(t)]. Expressing U (1)[x; y; u0(t)] by the series expression (8c) with k = 1, and
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matching the coefficients of respective powers of u0(t), we obtain the following equations

governing the spatial distributions a(0)1 (x; y) and a(1)m (x; y):

r2a
(0)
1 (x; y)�

"
r2a

(0)
1 (x0; y0) +

3�u�2
0

4�

#
a
(0)
1 (x; y) +

3�u�2
0

4�
a
(0)3

1 (x; y) = 0;

a
(1)
3 (x; y) =

�

6�u�2
0

[r2a
(0)
1 (x0; y0)a

(0)
1 (x; y) �r2a

(0)
1 (x; y)];

a
(1)
4 (x; y) = 0;

: : : (10)

where only terms up to O[u3
0(t)] were included. Complementing these relations are the

compatibility Equations (8d) and the following set of limiting expressions:

lim
j(x�x0)2+(y�y0)2j!1

a
(0)
1 (x; y) = 0;

lim
j(x�x0)2+(y�y0)2j!1

a(1)m (x; y) = 0; m = 1; 2; : : : (11)

The approximation a(1)1 (x; y) is computed at the next order of approximation.
The first of Equations (10) governs the O(1) leading approximation for the envelope of the

breather. Introducing polar instead of Cartesian co-ordinates x�x0 = r sin �; y�y0 = r cos �,
the Laplacian operator in the equation for a(0)1 is expressed as

r2 =
@2

@r2 +
1
r

@

@r
+

1
r2

@2

@�2 :

Since we seek axisymmetric breather solutions we assume that there is no �-dependence in the
solution, a(0)1 = a

(0)
1 (r). Furthermore, we introduce the following transformation of variables,

� = r2a
(0)
1 (0); � =

3��u�2
0

4�
; � = (�+ �)1=2r; a

(0)
1 = �

�
�+ �

�

�1=2

'(�): (12)

Using (12), and considering (8b), (10) and (11), the problem governing the leading order
approximation a(0)1 assumes the nondimensional form,

'00(�) +
1
�
'0(�)� '(�) + '3(�) = 0; '(0) = �

�
�

� + �

�1=2

; lim
�!1

'(�) = 0: (13)

with an additional condition for the slope'0(0) = 0, being dictated from symmetry arguments;
moreover, the problem is solved in the domain � � 0.

The solution of (13) provides the O(1) spatial coefficient a(0)1 and the O(") cubic spatial

coefficient a(1)3 (through the third or relations (10)). The O(") linear spatial coefficient a(1)1
cannot be determined at this order of approximation, and O("2) terms must be considered.
In the following section we develop analytic approximations of (13) by means of Padé
approximants.
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Before proceeding with the asymptotic evaluation of a(0)1 , we briefly comment on the
computation of the reference displacement u0(t). From the previous derivations, the modal
function for the breather is approximated as,

U [x; y; u0(t)] = [a
(0)
1 (x; y) + "a

(1)
1 (x; y)]u0(t) + "a

(1)
3 (x; y)u3

0(t) +O["u5
0(t); "

2]; (14)

where Cartesian co-ordinates are used. An equation for the determination of u0(t) is derived
by substituting (14) into the governing equation of motion (1) and evaluating the resulting
expression at the reference position (x0; y0):

d2u0

dt2
+ �(1 + "�h1)u0 + "�u3

0 +O("2) = 0; (15a)

h1 =

(
@2a

(0)
1

@x2 +
@2a

(0)
1

@y2

)
(x;y)=(x0;y0)

: (15b)

This equation is the classical Duffing oscillator subject to initial conditions
(u0(0); du0(0)=dt) = (u�0; 0), and its exact solution can be expressed in terms of elliptic
functions and integrals [19].

3. Padé Approximations

Problem (13) can be recognized as identical to the one governing the radially symmetric
standing wave solutions of the nonlinear Schrödinger (NLS) equation in two dimensions. As
discussed in [9] and other works, this problem possesses solutions that decay to zero as �
tends to infinity and possessing arbitrary numbers of zeros. In [23] an existence theorem is
given regarding the solutions of (13); it is proven that this problem possesses a discrete infinite
spectrum (i.e., a countable infinity) of initial conditions '(i)(0), ordered in the sequence
0 < '(0)(0) < '(1)(0) < : : :, and with the i-th solution corresponding to a localized response
with i zeros (nodes). A numerical technique for computing these decaying solutions is given
in [9], based on locating basin boundaries between attracting invariant curves in the three-
dimensional phase space of the system. Additional numerical techniques for solving (13) are
discussed in [24, 25].

In this section we develop a new technique for analytically approximating the decaying
solution of (13) with initial condition '(0)(0), corresponding to a localized breather with no
nodes. The technique is based on diagonal Padé approximants [16], and can be similarly applied
to study breather solutions with initial conditions '(i)(0); i � 1. As shown in [20, 21], Padé
approximations can be used to determine the radius of convergence of asymptotic expansions
of nonlinear oscillatory problems. This can be performed by studying the convergence of the
poles and zeros of successive Padé approximants; based on this analysis, a transformation of
variables can be introduced that eliminates the singularities from the perturbation expansions,
leading to infinite radius of convergence. In an additional work [22] applications of Padé
approximants in perturbation problems are discussed.

We begin our analysis by recognizing that the problem of computing the decaying solutions
of (13) is identical to the problem of computing homoclinic orbits in the three-dimensional
phase space of the nonlinear oscillator,

'00(�) +
1
�
'0(�)� '(�) + '3(�) = 0 (16)
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or equivalently, of computing the initial conditions ('(0); '0(0)) = (�; 0) for these orbits. In
view of the previously introduced polar transformation and the anticipated symmetry of the
solution, we restrict the analysis to � � 0 and require that '(�) = '(��). Since the sought
solutions are expected to be analytic functions of � , they can be expressed in Taylor series
about � = 0,

'(�) =
1X
p=0

C2p�
2p; (17a)

where the leading coefficients of the series were computed in terms of the (yet undetermined)
initial displacement � using Mathematica:

C0 = �; C2 =
1
4
�(1� �2); C4 =

1
64

�(1� �2)(1� 3�2);

C6 =
1

2304
�(1� �2)(1� 3�2)� 3

16
�3(1� �2)2;

C8 =
1

64
[C6(1� 3�2)� 6�C2C4 � C3

2 ];

C10 = � 1
100

[(3�2 � 1)C8 + 6�C2C6 + 3�C2
4 + 3C4C

2
2 ];

C12 = � 1
144

[3�2C10 + 6�C2C8 + 6�C4C6 + 3C6C
2
2 + 3C2C

2
4 � C10];

: : : (17b)

We now construct the [2N � 2N ] diagonal Padé approximants corresponding to the trun-
cated Taylor series (17a) of degree 4N . In essence, the Padé approximants are Laurent series
that converge to the Taylor series for sufficiently small values of �; what makes the Padé
approximations useful in our problem is that they provide ‘global’ analytic approximations to
the solution over the entire range 0 � � < 1, and, moreover, can be used to determine an
estimate for the value � corresponding to the breather-type solution. The [2N � 2N ] Padé
approximant used herein has the form [16],

'[2N�2N ])(�) =
a0 + a2�

2 + a4�
4 + � � � + a2N�

2N

1 + b2�2 + b4�4 + � � �+ b2N�2N : (18)

Only even powers of � are retained due to the anticipated symmetry of the solution, '(�) =
'(��). The coefficients of the rational expression (18) are computed in terms of� by imposing
the following matching between '[2N�2N ](�) and the Taylor series (15a) which is performed
correct to O(�4N ):

a0 + a2�
2 + 4�4 + � � � + a2N�

2N

1 + b2�2 + b4�4 + � � �+ b2N�2N =
2NX
p=0

C2p�
2p +O(�4N+2) (19)

Matching coefficients of respective powers of �2p in (19), we obtain the following expressions
for the coefficients of the Padé approximation [16]:8>>><
>>>:

b2
b4
...

b2N

9>>>=
>>>;

=

2
6664

C2N C2N�2 : : : C6 C4 C2
C2N+2 C2N : : : C8 C6 C4

...
...

...
...

...
...

C4N�2 C4N�4 : : : C2N+4 C2N+2C2N

3
7775
�1 8>>><

>>>:

�C2N+2
�C2N+4

...
�C4N

9>>>=
>>>;

(20a)
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and

a0 = C0;

a2 = C2 + b2C0

a4 = C4 + b2C2 + b4C0;

: : :

a2N =
NX
j=0

b2(N�j)C2j : (20b)

Hence, all coefficients of '[2N�2N ](�) can be parametrized in terms of �, and the Padé
approximation (18) becomes a one-parameter family of analytical approximations of the
solutions of (14) with initial conditions ('(0); '0(0)) = (�; 0). We now compute the value of
� for which '[2N�2N ](�) decays to zero as � tends to infinity. Denoting this value by �̂[2N ]

and considering the rational structure of (18), the necessary and sufficient condition for the
decay of '[2N�2N ](�) for large values of � is,

lim
�!1

'[2N�2N ](�; �̂[2N ]) = 0 , a2N (�̂[2N ]) = 0 and b2N (�̂[2N ]) 6= 0; (21)

where the parametrization of'[2N�2N ] with respect to� is explicitly denoted. For a given order
2N of the diagonal Padé approximation relations (21) provide a means to numerically compute
�̂[2N ]. To eliminate mathematical (spurious) solutions, a convergence study is performed by
varying the order of the Padé approximation and selecting the converging numerical value of
� that satisfies the above relations.

We numerically computed the Padé approximants (18) using Mathematica up to order
2N = 8. We then imposed the conditions (21) and obtained the following convergent values
of �̂[2N ] for varying orders 2N :

Padé order 2N Estimate �̂[2N ]

2 �
p

3

4 �2:20701

6 �2:21121

8 �2:21200

In Figure 1 the decaying Padé approximations '[2N�2N ](�; �̂[2N ]) are graphically depicted,
and the convergence of the solution with increasing order N is shown.

To compare the derived analytical approximations with numerical solutions, the Equa-
tion (16) was numerically integrated with initial conditions specified at � = 10�8 (in order to
avoid the singularity at � = 0). The initial condition corresponding to the decaying solution
was numerically estimated as �̂num � �2:206208416865, which compared to �̂[8] indicates
a 0.262% error in the analytical estimate. In Figure 2 the approximation '[8�8](�; �̂[8]) is
compared to the numerical solution; satisfactory agreement is noted.
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Figure 1. Convergence of the Padé approximations for 2N = 2; 4; 6 and 8: (a) '[2N�2N](�; �̂[2N]) as functions
of �, (b) d'[2N�2N](�; �̂[2N])=d� as functions of �, and (c) in the projection of the phase space.
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Figure 2. Comparison between '[8�8](�; �̂[8]) and the numerical solution of (16) in the projection of the phase
space; —— Padé approximation, - - - - - - numerical solution.

From the previous analysis, the solution of problem (13) is approximated as,

'(�) =

(
a0 + a2�

2 + 4�4 + a6�
6

1 + b2�2 + b4�4 + b6�6 + b8�8

)
�=�̂[8]

+O(�18) (22)

with the various Padé coefficients given by (20) and (17b); the corresponding analytical
expressions for these coefficients are lengthy nonlinear functions of � and are not reproduced
here. The scalar � in Equations (12) and (13) is then computed by the relation,

'(0) = �
�

�

� + �

�1=2

= �̂[8] � �2:212 ) � � �0:7956�; (23)

where � is defined in (12). The O(1) approximation a(0)1 is then evaluated through the last of
relations (12).

4. Concluding Remarks

We analyzed axisymmetric standing breathers of the nonlinear partial differential Equation (1).
The asymptotic analysis was performed by defining a reference displacement and constructing
analytical approximations to the modal function describing the (nonlinear) dependence of
the motion on the reference displacement. The leading order approximation of the spatial
distribution of the breather is governed by a two-dimensional NLS equation with cubic
nonlinearities. Hence, the problem of computing the breather was converted to the problem
of analytically approximating the homoclinic orbit of the NLS equation. This was performed
by constructing [2N � 2N ] Padé approximants of the sought solution, expressing the Padé
coefficients in terms of an initial amplitude, and imposing a necessary and sufficient condition
to ensure decay of the Padé approximations as the independent variable tends to infinity.
Moreover, a convergence study was performed in order to eliminate additional ‘spurious’
solutions.

To the best knowledge of the authors the outlined technique for analytically estimating
the homoclinic orbit of a nonlinear dynamical system is presented for the first time in the
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literature, and might provide a tool for computing homoclinic or heteroclinic trajectories of
dynamical systems of higher dimensions. Moreover, the methodology for computing axisym-
metric breathers presented in this work is sufficiently general to be applicable to other types
of nonlinear partial differential equations of dimensions higher than two.
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