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Abstract—In this paper two-dimensional problem of plane-wave
diffraction by a “fractional strip” is studied. “Fractional strip” is
introduced as a strip with fractional boundary conditions (FBC)
involving fractional derivatives of the field components. FBC describe
intermediate boundary between perfect electric conductor (PEC) and
perfect magnetic conductor (PMC). It is shown that “fractional
strip” has scattering properties similar to the well-known impedance
strip. For one important case of fractional order equal to 0.5 the
solution of the wave diffraction problem by a “fractional strip” can
be found analytically. Detailed comparison analysis of the physical
characteristics of the scattered fields for both fractional and impedance
strips is presented. The relation between the fractional order and the
value of impedance is derived. It is shown that in a wide range of
input parameters the physical characteristics of the “fractional strip”
are similar to the strip with pure imaginary impedance.

1. FORMULATION OF THE PROBLEM

Consider a two-dimensional problem of electromagnetic wave diffrac-
tion by a strip located at the plane y = 0 and infinite along the axis
z. The width of the strip is 2a. In this paper E-polarization case
is discussed. An incident plane wave is described by the function
�Ei(x, y) = �zEi(x, y) = �ze−ık(xα0+y

√
1−α2

0) where α0 = cosθ0, θ0 is
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the incidence angle and k = 2π
λ is the wave number. Time dependence

is assumed to be e−ıωt and deprecated throughout the paper.
Boundary conditions are fractional boundary conditions (FBC)

defined as application of fractional derivative to the electric field
component [1]

Dν
kyEz(x, y)|y→±0 = 0, −a < x < a (1)

For convenience the fractional differentiation is applied in respect
to a dimensionless variable ky. Operator Dν

yf(y) in (1) is defined by
the integral of Riemann-Liouville [2]

Dν
yf(y) ≡ −∞D

ν
yf(y) =

1
Γ(1 − ν)

d

dy

∫ y

−∞

f(t)
(y − t)ν

dt, (2)

The fractional order ν varies from 0 to 1, and Γ(ν) is the Gamma
function. Function Ez(x, y) in Equation (1) is the z-component of the
total electric field �E = �Ei + �E1,s — a sum of the incident plane wave
�Ei(x, y) and the scattered field �E1,s = �zE1,s. For the value ν = 0
the strip with FBC (1) corresponds to a perfectly electric conducting
(PEC) strip, and for ν = 1 we get a perfectly magnetic conducting
(PMC) strip [3]. For intermediate values 0 < ν < 1 FBC describe
fractional boundary with specific properties studied in this paper. FBC
yield to utilization of fractional Green’s function (FGF) Gν [4] and the
fractional Green’s theorem [1, 5, 6]. In this case the scattered field can
be presented as [1]

E1,s
z (x, y) :=

∫ ∞

−∞
f1−ν(x′)Gν(x− x′, y)dx′ (3)

where f1−ν(x′) is an unknown function which we name “fractional
potential density”. The presentation (3) is a result of application of
the fractional Green’s theorem which generalizes the classic Green’s
theorem. FGF Gν is defined in two-dimensional case as [4–6]

Gν(x− x′, y) = − ı
4
Dν

kyH
(1)
0 (k

√
(x− x′)2 + y2)

= −ıe
sign(y)ıπν/2

4π

∫ ∞

−∞
eık((x−x′)α+|y|

√
1−α2)(1 − α2)(ν−1)/2dα, (4)

Here H(1)
0 (x) is the Hankel function of the first kind of zeroth order.

The second diffraction problem we consider in this paper is a
diffraction of the E-polarized plane wave on a strip defined by the
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impedance boundary conditions (IBC) [3]:

∂

∂y
Ez ±

ık

η
Ez = 0, for y → ±0, −a < x < a, (5)

where η is the impedance of the strip normalized by the impedance of
the free space. For value η = 0 we get a PEC strip, and for η = −ı∞
it is a PMC strip. Commonly used technique is to search the scattered
field as a sum of two potentials: single layer potential and double layer
potential, i.e., [3, 8, 9]

E2,s
z (x, y) := − ı

4

∫ ∞

−∞

[
fe(x′) + fm(x′)

∂

∂y

]
G(x− x′, y)dx′ (6)

where G(x−x′, y) is the Green’s function of the free space defined the
two-dimensional case as

G(x− x′, y) := H
(1)
0

(
k
√

(x− x′)2 + y2
)

=
1
π

∫ ∞

−∞
eık((x−x′)α+|y|

√
1−α2) 1√

1 − α2
dα (7)

Two unknown densities fe(x′), fm(x′) in presentation (6) have certain
physical meaning - they correspond to the densities of surface electric
and magnetic currents, respectively. It should be noted, that
presentation (6) is not the only possible way to search a scattered
field. It is possible to utilize one single layer potential or double-layer
potential only [9]. Each presentation results in the different integral
equations (IE) to evaluate unknown potential densities and different
methods to solve the IEs.

2. SOLUTION OF THE DIFFRACTION PROBLEMS

Following the method described in the works [1, 9, 11, 12] we present the
scattered field E1,s

z (x, y) (3) via the Fourier transform (FT) F 1−ν(α)
of the fractional potential density f1−ν(x):

E1,s
z (x, y)=−ıe

±ıπν/2

4π

∫ ∞

−∞
F 1−ν(α)eık(xα±y

√
1−α2)(1 − α2)(ν−1)/2dα, (8)

F 1−ν(α)=
∫ 1

−1
f̃1−ν(ξ)e−ıεαξdξ, f̃1−ν(ξ) ≡ af1−ν(aξ) (9)

where ε = ka, ξ = x/a.
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Satisfying the function Ez(x, y) FBC (1) and taking into account
(8) we get IE in respect to the function F 1−ν(α) [1]:

1
ε

∫ ∞

−∞
F 1−ν(α)

sin ε(α− β)
α− β (1 − α2)ν−1/2dα

= −4πeıπ/2(1−ν)(1 − α2
0)

ν/2 sin ε(β + α0)
ε(β + α0)

, for −∞ < β <∞ (10)

IE for impedance strip case in respect to functions Fe(α)
and Fm(α), which are the Fourier transforms of fe(x) and fm(x),
respectively, can be obtained in the following form [9]:

−η
ε
Fe(β) = 4ı

sin ε(β + α0)
ε(β + α0)

+
1
επ

∫ ∞

−∞
Fe(α)

sin ε(α− β)
α− β (1 − α2)−1/2dα

1
η
Fm(β) = 4

√
1 − α2

0

sin ε(β + α0)
ε(β + α0)

− 1
π

∫ ∞

−∞
Fm(α)

sin ε(α− β)
α− β (1 − α2)1/2dα

(11)

where

Fe(α) =
∫ 1

−1
f̃e(ξ)e−ıεαξdξ, f̃e(ξ) ≡ afe(aξ)

Fm(α) =
∫ 1

−1
f̃m(ξ)e−ıεαξdξ, f̃m(ξ) ≡ fm(aξ)

(12)

For the impedance boundary we have to solve two independent
IE (11) in spite of one IE (10) for the “fractional strip”. As one can
see the kernel of the “fractional” IE sin ε(α−β)

α−β (1− α2)ν−1/2 generalizes
kernels of the IE for the impedance boundary: for ν = 0 and ν = 1 the
kernel in (10) equals to sin ε(α−β)

α−β (1−α2)−1/2 and sin ε(α−β)
α−β (1−α2)1/2,

respectively. In order to solve considered IE we follow the method
presented in the works [9, 11, 12] and represent the density function by
a uniformly convergent series

f̃1−ν(ξ) = (1 − ξ2)ν−1/2
∞∑

n=0

fν
n

1
ν
Cν

n(ξ), (13)
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where Cν
n(ξ) denotes Gegenbauer polynomials. This presentation

allows to satisfy the edge condition [7] in the following form:

f̃1−ν(ξ) = O
(
(1 − ξ2)ν−1/2

)
, ξ → ±1 (14)

Using expressions (13) FT F 1−ν(α) can be presented as [1]

F 1−ν(α) =
2π

Γ(ν + 1)

∞∑
n=0

(−ı)nfν
nβ

ν
n

Jn+ν(εα)
(2εα)ν

(15)

where βν
n = Γ(n+ 2ν)/Γ(n+ 1).

Substituting (15) into IE (10) a system of linear algebraic
equations (SLAE) for the definition of unknown coefficients fν

n is
obtained [1]:

∞∑
n=0

(−ı)nfν
nβ

ν
nC

ν
kn = γν

k , k = 0, 1, 2, . . . (16)

with matrix elements

Cν
kn =

∫ ∞

−∞
Jn+ν(εα)Jk+ν(εα)(1 − α2)ν−1/2 dα

α2ν
,

γν
k = −2Γ(ν + 1)(2ε)νı1−ν(1 − α2

0)
ν/2Jk+ν(εα0)

εα0

(17)

Since the coefficients fν
n are found the potential density function

f̃1−ν(ξ) and FT F 1−ν(α) can be obtained from Equations (13) and
(15), respectively.

For the impedance strip the densities f̃e(ξ) and f̃m(ξ) are
expressed by the series [9]

f̃e(ξ) = (1 − ξ2)−1/2
∞∑

n=0

f (e)
n C0

n(ξ)

= (1 − ξ2)−1/2

(
f

(e)
0 + 2

∞∑
n=1

f
(e)
n

n
Tn(ξ)

)

f̃m(ξ) = (1 − ξ2)1/2
∞∑

n=0

f (m)
n C1

n(ξ)

= (1 − ξ2)−1/2
∞∑

n=0

f (m)
n Un(ξ)

(18)
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where Tn(ξ), Un(ξ) are Chebyshev polynomials of the first and second
kind, respectively. In that case the edge conditions are formulated in
the form

f̃e(ξ) = O
(
(1 − ξ2)−1/2

)
, f̃m(ξ) = O

(
(1 − ξ2)1/2

)
, ξ → ±1 (19)

FT Fe(α) and Fm(α) can be expressed via the series

Fe(α) = πf
(e)
0 J0(εξ) + 2π

∞∑
n=1

(−ı)nf (e)
n

1
n
Jn(εα)

Fm(α) = π

∞∑
n=0

(−ı)n(n+ 1)f (m)
n

Jn+1(εα)
εα

(20)

Finally SLAE for the definition of the unknown coefficients f (e)
n ,

f
(m)
n is obtained [9]

∞∑
n=0

Xn

(
ηdE1

kn +DE1
kn

)
= −γE1

k , k = 0, 1, 2, . . .

∞∑
n=0

Yn

(
1
η
dE2

kn +DE2
kn

)
= γE2

k , k = 0, 1, 2, . . .

(21)

where

Xn =

{
f

(e)
0 , n = 0,

2(−i)n 1
nf

(e)
n , n > 0

Yn = (−i)n(n+ 1)f (m)
n

(22)

And the matrix coefficients are defined as

dE1
kn =

∫ ∞

−∞
Jk(εα)Jn(εα)dα,

γE1
k = 4ı(−1)k Jk(εα0)

α0

dE2
kn =

∫ ∞

−∞
Jk+1(εα)Jn+1(εα)

dα

α2
,

γE2
k = −4(−1)k

√
1 − α2

0

α0
Jk+1(εα0)

DE1
kn =

∫ ∞

−∞
Jk(εα)Jn(εα)

dα

(1 − α2)1/2

(23)
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DE2
kn =

∫ ∞

−∞
Jk+1(εα)Jn+1(εα)

(1 − α2)1/2dα

α2

As a result of solving SLAE (21) the coefficients f (e)
n , f (m)

n are found
and the current density functions are found directly from (18). But for
the fractional boundary we have different situation with the current
densities. Electric and magnetic current densities for the fractional
boundary defined as

jν(e)
z = −(Hx(x,+0) −Hx(x,−0)),

jν(m)
x = −(Ez(x,+0) − Ez(x,−0))

(24)

can be obtained after the additional integration of the FT F 1−ν(α)

jν(e)
z = −2ı cos(πν/2)

ı

4π

∫ ∞

−∞
F 1−ν(α)eıkαx(1 − α2)ν/2dα,

jν(m)
x = −2 sin(πν/2)

ı

4π

∫ ∞

−∞
F 1−ν(α)eıkαx(1 − α2)ν/2−1/2dα

(25)

Note that the currents jν(m)
x = 0 for ν = 0 and j

ν(e)
z = 0 for

ν = 1 that agrees with the properties of FBC mentioned before. In
the general case 0 < ν < 1 the E-polarized plane wave incident on a
“fractional strip” excites two surface currents — electric and magnetic,
magnetic current directs along the axis z and electric current is along
the axis x. Similar current distributions are observed in the diffraction
of the E-polarized plane wave on an impedance strip. However, the
solution of the impedance problem is presented via two functions fe(x)
and fm(x) while the solution of the fractional problem is expressed
through one function f1−ν(x). As a result the fractional problem
requires less computational efforts to solve IE and SLAE than the
impedance problem. From the other hand for the impedance problem
the unknown functions fe(x) and fm(x) are the physical surface current
densities, but for the fractional problem we have to apply an additional
integration (25) to f1−ν(x) to find the physical currents. For the special
cases of ν = 0 and ν = 1 the expressions (25) become simpler and
the function f1−ν(x) describes electric and magnetic current density,
respectively.

Analyzing IE (10) for “fractional strip” it is seen that for the
special case of ν = 0.5 the kernel becomes sin ε(α−β)

α−β and the IE can be
solved analytically for any value of ε = ka:

f̃0.5(ξ) = −2ıε(1 − α2
0)

1/4e−ıεα0ξ+ıπ/4, (26)

F 0.5(α) = −4ı(1 − α2
0)

1/4eıπ/4 sin ε(α+ α0)
α+ α0

(27)
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3. RELATION BETWEEN FRACTIONAL AND
IMPEDANCE STRIP

In this section we compare FBC (1) and IBC (5). Consider plane
wave reflection from the infinite fractional and impedance boundaries.
Having fractional boundary with certain value of the fractional order
ν we can find an equivalent impedance boundary with η = η(ν) as
a function of ν and input parameters of the problem. Equivalence of
the fractional and impedance boundaries is treated in such sense that
the reflected plane waves from both boundaries are equal. Indeed for
the incident E-polarized plane wave �Ei(x, y) = �ze−ık(x cos θ0+y sin θ0)

comparing the reflected fields for the fractional and impedance
boundaries the following relation between the impedance and the
fractional order is obtained [1, 5, 13, 14]:

ν =
1
ıπ
ln

1 − η sin θ0
1 + η sin θ0

, η = −ı 1
sin θ0

tan(
πν

2
) (28)

The value ν = 0 corresponds to the impedance η = 0 (PEC) and
ν = 1 corresponds to η = −ı∞ (PMC). For the intermediate values
0 < ν < 1 the impedance has pure imaginary values between 0 and
−ı∞. Both boundaries support electric and magnetic surface currents
which are perpendicular to each other. It is known that for the
impedance boundary the value of the impedance is defined as the ratio
of components of the currents

η = −j
(m)
x

j
(e)
z

(29)

or equivalently as ratio of the field components

η =
Ez

Hx

∣∣
y→±0

(30)

We introduce similar ratio for the fractional solution:

ζ(x) :=
Ez(x)
Hx(x)

=
j
ν(m)
x

j
ν(e)
z

= ı tan
(πν

2

) Aν(x)
Bν(x)

, x ∈ (−a, a) (31)

where

Aν(x) =
∫ ∞

−∞
F 1−ν(α)eıkαx(1 − α2)(ν−1)/2dα,

Bν(x) =
∫ ∞

−∞
F 1−ν(α)eıkαx(1 − α2)ν/2dα,

(32)



Progress In Electromagnetics Research C, Vol. 2, 2008 197

The ratio (31) may depend on the coordinate x (−a < x < a) while
the ratio (29) for impedance is a constant η by definition. However, for
one special value ν = 0.5 the function ζ(x) is a constant for all values
of ε

ζ(x)|ν=0.5 =
1

ı sin θ0
(33)

In general for diffraction problems on a strip the ratio ζ(x) can
be evaluated numerically. For the physical optics (PO) approximation
(ε→ ∞) we can use asymptotic formulas [1, 9] for the integrals

F 1−ν(β) ≈ −4ıν
(1 − α2

0)
(1−ν)/2

(1 − β2)(1−2ν)/2

sin ε(β − α0)
β − α0

, ε→ ∞ (34)

Aν(x)≈−4πıν+1e−ıkα0x, Bν(x)≈−4πıν+1(1−α2
0)

1/2e−ıkα0x, ε→ ∞ (35)

In this case the ratio ζ(x) is expressed analytically (31)

ζ(x) ≈ 1
ı sin θ0

tan
(πν

2

)
, ε→ ∞ (36)

For finite boundaries in the case of PO approximation we have exactly
the same relation between the fractional order and the impedance (28),
(36) as for infinite boundaries. For other values of ε the expressions
for currents will be found solving SLAE using reduction method [1].

As mentioned earlier for the special case ν = 0.5 IE (10) can
be solved analytically (26), (27) for all values of ε. However, IE for
impedance strip for the value η = − ı

sin θ0
corresponding to ν = 0.5

does not allow similar analytical solution.
For all values of ε the impedance for the fractional strip can be

introduced as the ratio (31) which can be obtained numerically by
solving the diffraction problem. The closer ζ(x) to constant (28) for
−a < x < a the more the fractional boundary behaves as impedance
boundary.

4. NUMERICAL RESULTS

In this section we compare the solutions of diffraction problems by
the “fractional strip” and the impedance strip by analyzing physical
characteristics of the scattered fields. We focus on such physical
characteristics as radiation pattern (RP), monostatic and bistatic radar
cross sections (RCS), and densities of the surface currents.

Using the method of the stationary phase in the far-zone kr →
∞ the scattered field Es

z(x, y) can be presented in the cylindrical
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coordinate system (r, φ), x = rcosφ, y = rsinφ as [1, 9]

Es
z(r, φ) ≈ A(kr)Φ(φ), kr → ∞ (37)

where

A(kr) =

√
2
πkr

eıkr−ıπ/4 (38)

The function Φ(φ) denotes the RP of the scattered field. For the
“fractional strip” RP is expressed as [1]

Φν(φ) = − ı
4
e±ıνπ/2F 1−ν(cosφ) sinν φ

=
ıπe±ıνπ/2

2Γ(ν + 1)
tanν φ

∞∑
n=0

(−ı)νfν
nβ

ν
n

Jn+ν(ε cosφ)
(2ε)ν

(39)

where the upper sign is chosen for the values φ ∈ [0, π], and the bottom
sign when φ ∈ [π, 2π]. And for the impedance strip the RP is [9]:

Φimp(φ) = Φimp
e (φ) + Φimp

m (φ)

Φimp
e (φ) =

1
4
Fe(cosφ) =

π

4

∞∑
n=0

XnJn(ε cosφ)

Φimp
m (φ) =

1
4
ε sinφFm(cosφ) =

π

4
ε sinφ

∞∑
n=0

Yn
Jn(ε cosφ)
ε cosφ

(40)

For the special case ν = 0.5 and all values of ε = ka we have exact
analytical expression

Φν(φ) = e∓ipi3/4eipi/4
√

sinφ sin θ0
sin ε(cosφ+ cos θ0)

cosφ+ cos θ0
(41)

Bistatic RCS σ2d
λ and monostatic RCS σ2d (monostatic) are defined

via RP Φ(φ):

σ2d

λ
(φ) =

2
π
|Φ(φ)|2, σ2d(monostatic) =

σ2d

λ
(θ0) (42)

We used the reduction method to solve the SLAEs for both the
“fractional strip” and impedance strip and calculated the values of the
coefficients fν

n , f (e)
n , f (m)

n . Then RP, monostatic RCS, bistatic RCS
and the fractional potential density f̃1−ν(ξ) are evaluated.
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Figure 1. Radiation pattern for the “fractional” and impedance strips
for frequency parameter ε = 4 and the incidence angle θ0 = 90◦.

Figure 2. Radiation pattern for the frequency parameter ε = 4 and
the incidence angle θ0 = 60◦.

Figures 1 and 2 show RP for the “fractional strip” and impedance
strip for the frequency parameter ε = 4 and the incidence angles
θ0 = 90◦ and θ0 = 60◦, respectively. On Figures 1 and 2 the fractional
parameter is chosen to be ν = 0.5 and the impedance obtained from
the formula (28) equals to η = −ı. For the wide range of observation
angle φ it shows good agreement.

Graphics 1 and 2 for RP show comparison of solutions for one
fixed value of the incidence angle, while graphics for monostatic RCS
are plotted for all range of the incidence angle from 0 to 90 degrees.

Monostatic RCSs for the “fractional strip” for ν = 0.5 and for the
impedance strip with corresponding η = −ı are presented on Figure 3
as well as analytical solution for the “fractional strip”. It is seen that
the curve for the analytical fractional solution has deep resonance while
other two curves obtained numerically have less precise minimum.
As seen from Figure 3 the monostatic RCS for the “fractional strip”
with ν = 0.5 obtained numerically coincides with the monostatic RCS
expressed analytically for ν = 0.5.

Monostatic RCS for the intermediate values of ν are shown on
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Figure 3. Monostatic RCS versus the incidence angle for ε = π. (1)
fractional strip with ν = 0.5, calculated numerically; (2) impedance
strip with η = −ı/ sin(θ0); (3) fractional strip with ν = 0.5 calculated
analytically.

Figure 4. Monostatic RCS versus the incidence angle for ε = π. (1)
fractional strip ν = 0.25; (2) impedance strip with impedance defined
for ν = 0.25, ε = π; (3) ν = 1; (4) impedance corresponding to ν = 1.

Figures 4 and 5. It is seen that the lines for the “fractional strip” and
corresponding lines of impedance solution have similar behavior and
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Figure 5. Monostatic RCS versus the incidence angle for ε = 2π. (1)
fractional strip ν = 0.25; (2) impedance strip with impedance defined
for ν = 0.25; (3) ν = 0.75; (4) impedance corresponding to ν = 0.75.

Figure 6. The fractional potential density |f̃1−ν(ξ)| for ε = π,
θ0 = 90◦.

have minimums at the same values of incidence angle. For a fixed value
of ν and ε the impedance has different values for different incidence
angles.
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Figure 7. The ratio ζ(x) for the fractional strip for ε = π, θ0 = 90◦.

Figure 8. Electric current density for the fractional strip for the values
of parameters as on Figure 6.

Figure 6 shows the fractional potential densities f̃1−ν(ξ) for ε = π,
θ0 = 90◦ and different values of ν from 0 to 1. The currents for
the values ν = 0 and ν = 1 correspond to the electric current j0(e)z

existing on PEC strip and the magnetic current j1(m)
x on PMC strip,

respectively. It is interesting to note that the fractional density for
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Figure 9. Magnetic current density for the fractional strip for the
values of parameters as on Figure 6.

the intermediate case ν = 0.5 is close to the value obtained from the
analytical formula (33), i.e., to the constant |f̃0.5|θ0=90◦ = 2ε.

Electric and magnetic surface current densities existing on the
“fractional strip” are plotted on Figures 8 and 9. These currents are
found after integration of the fractional density f̃1−ν (25). Electric
current jν(e)

z has a singularity at ξ = ±1 while magnetic current jν(m)
x

becomes zero for ξ = ±1. This fact is in good agreement with the
behavior of the currents near the edges of the impedance strip (19).
Similar graphics for electric and magnetic currents on the impedance
strip were presented in [9].

Figure 7 presents the graphic of the ratio ζ(x) for the “fractional
strip”. For the wide range of the coordinate x the function ζ(x) is
close to the value of impedance (28). It means that approximately
a “fractional strip” can be treated as an impedance strip with pure
imaginary impedance.

5. CONCLUSION

E-polarized plane wave diffraction by the “fractional strip” and the
impedance strip has been analyzed. Following the previous works
to solve considered diffraction problems field presentations, surface
currents, integral equations and physical characteristics are compared.
It is shown that the solution for a “fractional strip” can be expressed
through one potential density function, but for an impedance strip the
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solution is defined via two current densities functions. Moreover the
integral equations for the “fractional strip” can be solved analytically
for the special intermediate value of the fractional order ν = 0.5. The
relation between the fractional order and the impedance is derived.
Fractional boundary conditions result in existence of both electric
and magnetic surface currents on the strip. Relation for the surface
currents on the “fractional strip” proves that the fractional boundary
conditions are similar to the impedance boundary conditions with pure
imaginary impedance and in the physical optics approximation the
ratio of the surface currents is the same as for the impedance strip.
Numerical results are presented showing the comparison of the physical
characteristics of the fractional and impedance strips such as radiation
pattern, monostatic radar cross section and surface current densities.
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