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I. Introduction.

Recent years in diffraction theory (electrodynamics) the three principal ways in
solving the boundary-value problems have been conditionally tracked. They correspond
to numerical, analytical and numerical-analytical methods.

The numerical methods are considered as the most perspective because of their
univesality (in the scope aspect). Last years the series of problems on electromagnetic
waves scattering from different obstacles has been solved due them. The starting-point
of this approach is formulating an integral equation (IE) in unknowns of the search
field or current density distribution on the surface of scatterer. Futher this IE is trans-
formed by means of the moments method to infinite system of linear algebraic equations
(ISLAE) which after using the truncation method becomes suitable for computer treat-
ment. As the idea of this method is simple enough its implementation area is spacious.

In contrast to the numerical methods the scope of the analytical methods is not
extensive. Unfortunately, the exact solutions can be achieved in not many cases but
only when the variables separation technique is feasible. But although for certain class
of problems the numerical methods have clear advantages over the analytical ones their
applicability becomes questionable for the problems of complicated geometry because of
troubles with the computations. The memory volume and computer time reguirements,
the errors problems may bee too large. On the contrary, the analytical approach, if it
is applicable, provides more effective calculations, gives more accurate resulis, makes
easier their physical interpretation etc.

* The numerical-analytical approach may be considered as a combination of analyti-
cal and numerical methods. It bases on analytical manipulations of the initial operator
equation that the boundary-value problem is reduced to. The new ISLAE derived is
much better for computering due to less size of inverted matrix, feasible estimation of
the convergence criterion etc.

Although the numerical-analytical approach compares unfavourable with more uni-
versal in view of the scope numerical methods it synthesizes highly efficient algorithms
for a certian class of problems. Besides, it can be considered as a tool to be used for
the determination of different asymptotical methods validity range. When numerical-
analytical methods are applicable then on minimum computer time expenses they out-
put reliable data to be a standard for the testing of different numerical methods accu-
racy. In particular, such poweful methods as the modificated residue method [1], various
modifications of the Viener-Hopf method [2], and so-called semi-inversion method [3-5]
are the representatives of numerical-analytical class.

This lecture does not intend to be a presentation of an exhaustive survey of mul-
titude of numerical-analytical methods (for this see the books [2,6]). Its aim is to
introduce a general idea only of one of them.

It would seem reasonable to present the semi-inversion method because step-by-
step it has been extending chiefly by the scientists of the Institute of Radiophysics and
Electronics of Ukrainian Academy of Sciences over the past three decades. In Soviet
times these results were familiar to the soviet specialists mainly. In spite of the times
considerable number of original works on this subject (only the monographs’ number is
of a few dosens) they remain unknown to the scolars abroad. They were never translate
from Russian. :



Because of a large body of the works I wish to present only those having a method-
ological value and which obtaining I took part in.

It is worthwhile mentioning that the works [7-10] promoting the progress and im-
plementation of the semi-inversion methods present the studies of numerous external
and internal diffraction problems. Through the efficient well-conditioned computational
algorithms the rigorous investigations have been carried out to study in detailes the fea-
tures of the fields scattered on following obstacles: on confined axial-/plane-symmetry
screens as a strips, circular waveguide cut, disk (Sologub [74, Veliev [8]); on periodic
diffraction gratings of various profiles (Kirilenko, Masalov, Shestopalov, Sirenko [10],
Veliev (8], Litvinenko [9],), echelette, strip grating, grating of circular/rectangular rods;
on waveguide heterogeneities with the partial domains confined by the piece-linear
boundaries (Kirilenko, Rud’ [10]); on plane waveguide fractures, dielectric wedges in
waveguide etc.

The brief scheme of the semi-inversion technique is as follows. Let an initial
boundary-value problem be posed in a from of operator equation

Lz=B (1)

in corresponding space of the finctions (this is the space [l; isually).The principal (sin-
gular) part Lo should be separated from L operator.Then the equation (1) can be
rewritten in form

(Lo+L)z=B (2)

Futher Lo operator can be analytically inverted, i.e. the explicit form of Lj*
operator is formulated. By acting Ly’ operator on (2) we get the next equation

I+Qx=f; @Q=Lg'L,, f=>L;'B (3)

Where I is unit operator. g

If the right basis set has been found, then the equations (1) and (2) can be repre-
sented in a form of ISLAE. As a rule, the ISLAE matrix elements corresponding with
the equation (1) are of a slow convergency. This means the computing of ISLAE of a
large order, i.e. considerable waste of computer time.

In contrast, the equation (3) is the Fredholm equation of the second kind. And
in case when Lg operator has been found correctly the matrix operator @ can become
a quite contiuous one with the fast-decreasing matrix elements. This circumstance
provides a fast convergency for the approximate solutions either. Thus for (1)L;? plays
part of the regularization operator. It is easy to see that the right definition of L
operator is the critical point in this approach because this procedure conditions on the
effectiveness of the final result. In particular, any operator confroming to the special
and limiting values of parameters characterizing the scattering object may be chosen
as Ly operator.

The subsequent paragraphs are dedicated to thr proposed scheme realization for a
specific class of boundary-value diffraction problems.

1. Dual series and integral equations.

Agranovich [11] was the first who proposed the semi-inversion method in capasity
of effective method solution of dual series equations (DSE) with the kernel in trigono-
metrical functions appearing on solving the problem of wave diffractin by a flat grating
of strips.



Let turn our attention to finding the regularizator for the most simple form of dual
series equations (DSE) and dual integral equations (DIE):

o0
S pemme™ = fi(n), Il<1

n=—o0

o0 .
> paem=0,  [g|>1

n=—0o

(4)

[ pek@e=rda = fan) al <1
T (5)

o0

/ pla)e*Tda =0,  |n|>1

-0

Here {pn}oe. _o, and p(a) unknowns are the Fourier coefficients for the functions con-
forming to the electromagnitic field component or the surface current density; h is
normalized coordinate; @ and ¢ are the geometrical parameters of the scattering ob-
ject; { fj}?:l are the given continuous functions specified by the incident field. The

given complex values {¥n}5%_., and k(a) may depend on wave-dimension of the ob-
ject. Tables 1 and 2 list these parameters data corresponding to such problem of plane

E-polarized wave

E° = ¢ilackztkyy/1-ag) k= 2777-; a = cos @; (6)

as scattering on the flat grating of strips, non-closed circular cylinder, flat strip, and for
the problem of electrical dipole field excitation of circular waveguide cut respectively.

In particular, the only non-zero component of the electromagnetic field (for (b)
problems see Table 1, for (¢) see Table 2) can be put in the form [5,12]

oo Jn(ka)H,(.l)(kr),}e,-”,ﬂ r>a

B2+ 3 ol imyee, ™

r<a
n=oo
E.=E’+ ﬁ / pla)k(a)eeme1=aNde €50 . (8)
—o0

Here

1 1
pn = /p(n)e"""”dn; pla) = /p(n)e“‘°"dn
-1 =1

where p(n) is the current density function appearing due to the field incidence on the
scattening screens surfaces; J,(z) and H,(z) are the Bessel and Hankel functions re-
spectively; € = ka

It is easy to see that the imposing of the Dirichlet boundary condition on the field
(7,8) on the scattering screens surfaces yields DSE like (4) and DIE like (5).

Before setting forth an idea of the semi-inversion technique conformably to DSE (4)
and DIE (5) it is noteworthy to emphasize that these equations correspond to integral
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Table 1

K(a)=(1-a?)"}

K(a) = ngo(g)H(()l)(g)

c
) I-a—l[l —E(lal)] = ilal[l o 5('“')] ; gz - (ka)2 — a2
¥ '
1 k! X ] ..
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|
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Table 2
o (P Yo = Ju(ka) HD (ka)
c
1 = ‘;’[1 +€jai]
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equations {IE) with the difference kernels. For the problems of wave scattering on a
f[iat] strip and nonclosed circular cylindrical screen these IE are respectively as following
12]:

1

/ o OHD (e —al) de = filn), e -11] (9)
/ p(p)H (2e sin £270 ) do = fa(ge), @0 € [~a,al (10)

In order to go from IE (9,10) to DSE (4) and DIE (5) the unknown current func-
tions p(£) should be expanded in the Fourier-type integral and Fourier series, and it is
necessery to use the following represenations for the kernels of IE (9,10) [12]:

o0

(1 3 iea(é—n) _ da
Hy (ele -nl) = - / Ry
g <2e sin 2 %0 = ) = 3 Ja(e)HM (e)entemve) (11)

n=-—00

The functions p(¢) and p(¢) are extended by zero outside the region of their defi-
nition, i.e. p=0if || > 1, p=01if o € [, q].

IE (9,10) belong to very significant class of IE, namely, to IE with the log-difference
kernel. In view of the following definition for the zero-order Hankel function

L. Inz + N(z), z>0 (12)

n

Hé?z):
the IE (9,10) may be rewritten as follows:

1

/p(é) (In|é — n|d€ + N1(€,m,€)) dE = fi(n),  ne(-1,1] (13)

-1
a

/ p(¥) [ln?

-

@ — @0
2

sin

’ + Nz(%voaﬁ)] do = fo(po),  wo € [~a,q] -

Let proceed now to finding the regularizations for DSE (4) and DIE(5). For the
account simlisity reason the development will be continued for DSE(4) only. Let 7jq

values be in the form:
- 2 1 c O(N~1—* 15
= M+en),  €n e O ) (15)

The ¢ data are listed in Table 1 in an instance of (a) and (b) cases. The explicit
form of € shows that in order to get a concrete expsession of (15) for the particular
scattering problem we need in asymptotes of ¥ when |n| — co.

—_27—



On account of (15) the DSE (4) may be rewritten:

5% i P
Z _nelna,, e I (f1(77) i PO’YO) Z _n.ene"loﬂ’ Inl < 1
ml® T i
n#0 nFo (16)
o0
>, e =, [g[ma
n=-—0o0

Notice that if DSE (4) is equivalent to IE (10), then DSE (16) is equivalent to (14).
This can be proved. Then the splitting of the DSE (4) operator with reference to ¥
values on using (15) is equivalent to the separation of the singular (log-difference) part
from the operator of IE (10). This brings us a conclusion that in the semi-inversion
technique for DSE(4) and DIE(5) L, operator is equivalent to the singular parts of the

corresponding equations operators. The from of the inverted operator L} for DSE(16)
can be effectively synthesized by the Riemann-Hilbert problem method {3].

Proceeding in this way let us prove that DSE(16) can formulate the Riemann-
Hilbert problem on the reconstruction of an analytical function of complex variable via
the limiting data of this function belonging some controur. Let us prove this sttement
in the following way.

After differentiation of equation (16a) with respect to n and atseparate considera-
tion of 7 = 0 case we get the new system:

¢ n .
> %Pne'"o" ='(n) Il<1
n#0
Pn _
. Zm—r(o) =0 a7)
n#o0
2 | .
3 pae™ =0 [n|>1
n=-00
where
1 n in = in
T(n) = = (i(n) = po70) = 3_ P2 pnene™ = 37 Dpein®" (18)

n®0 n=-o00

Let now introduce the ancillary functions

Xt(z) = Z oz X7 (z)=- Z pnz"

n>0 n<0

that are holomorphic functions inside and outside unit circle |z = 1| on complex variable
plane z = je'¥ . According to (17) the following relations

{ X*(e¥)+ X7 (e¥)=TH(e¥) y=6y, el (19)

XtEe)-X"(e¥)=0 ypel”
are valid

So, the limiting values of X+ and X~ are the Same for L" arc (Fig.1) of the unit

circle. This means that one of them analytically becomes another one over L” arc, i.e.
both of them are the same analytical al function X(z). On the added L" arc the limited
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values of X(z) function are connected with one anoter through the relationship (19)
that is the relationship for X (z) function reconstruction [13]

T(t)R* C
Xo =g [ T ime Gy (20)
LI

where C is a constant,

0, zeLl"

Bfel= { (t - a)(t — a*), a=ce", ot =e" zel (21)

R(z)* = £R(2), z—z€L’

As follows from (19) and (20) the function X*(e'¥) — X~ (e'¥) = ane""” has
(r)
the rootsingularity at the end points of L’ controur. Because of proportionality of this
function value to the surface current density for the problems under consideration it
may be sure that the function X satisfies the edge condition.

In order to obtain the Fourier coefficients for the function I'(%) it is recommended
to emply the plemelj-Sokhotskii formulas {13] for the extreme values of functions rep-
resented by the Cauchy-type integrals.

As a result of the C constant deduction from (20) and on using the Fourierexpan-
sion of I'(n) function (18) and equation (17b) we obtain ISLAE of the second kind in

P(1)} o oot
pn=3 pmQmntbe, n=0,%1... (22)
(m)
where
Em 1
Qmn ~ =Tma()s « ba~—2_ fmTma(n)
In Tn

1 n—1
—VaZitn), m#0

m-—1
1
Tmn(n) = ;Vn—_.l1(7’l), m=0,n#0, U =cosf
—2ln1;U, m=n=0

Va(ei?, 8 . + n
Ve = L/Me_"’""; Va(ts,8) = iiTP.V. Rt—(t)i-dt

™ 2m ; Rt(ei¥) 50t to
ViU) = 5 [PalU)Pans(V) = P (U)PU) (23)

where P, (n) are the Legendre polynomials.

ISLAE (22) is equivalent to DSE(16) and is a result of the application of the
regularization procedure to DSE(16). This system of equations can be effectively solved
by the reduction method.

It seems reasonable to address the questions: What is the most important feature
of the Riemann-Hilbert problem method. The way of answering this question is to turn



to the fact thatDSE(16) is equivalent to IE(11). It is known that this class of IE can
be reduced to the IE of Fredholm the second kind by means of the inversion procedure
imposed on the log-difference part of the operator. This procedure is known enough in
mathematics [13]. In the useal way this is a formal procedure and the obtained equations
kernels are intricated enough and represented by the integrals in the sense of the main
value. In the contrast of the methods the Riemann-Hilbert problem method brings us
the ISLAE of the second kind with matrix elements characterized by the fact that all
the integrals in their expressions can be caleulated though the quadrature technique
and have a simple apperance. This allows to synthesize highly efficient algorithms for
calculations. This is a clear advantage of this method.

As has been pointed before the scattering characteristics of numerous structures
had been calculated on the basis of theRiemann-Hilbert problem method. As an exam-
ple the frequency dependencies of total scattering cross-section ¢ and near- and far-field
distributions both for the flat and cylindrical strips are shown in Fig. 2,3, 4.

2. Method of orthogonal polynomials (O.P.)
2.1. Method of O.P. for IE with log-difference kernel.

Let try now to solve IE (13), (14) by means of more general and quite symple
method. Let call it the method of O.P. This is the particular implentation of general
scheme of the moments method (M.M.) because it differs from the last by two consid-
erations. It needs firstly to investigate preliminary the structure of solution near the
edge poimnt of the domain of integration and secondly to construct spectral expressions
for singular parts of the kernels with orthogonal polyunomials as eigenfunctions.

The method of O.P. is widely used for solution of problems of the theory of elastisity
and continuous media mechanics [14,15]. Nevertheless, it has not yet found applications
in electromagnetic theory.

It will be shown below that the method of O.P. has the power to formulate the
solutions to DSE (4) and DIE (5).

At first let us consider IE (13). Assume that the solution structure be such that

p(&) satisfies the condition
plE) ~ (1-€)78 (24)

3% 31

That means p(£) has square-root singularity at the ends of interval [—1,1]. It is
well known that condition (24) follows from Meixner condition in diffraction problems.
Let us unite the unknown function p(¢) as follows

pE)=(1—€)% > paTu(8) (25)

n=-oo

where {Tn(£)}22, are Chebyshev polynomials of the 1-st kind, p, are the coefficients

to be found out.
The expansion (25) for rho(£) is caused by the fact that Chebyshev polynomials
T,.(€) are eigen-functions of the following intefral operator (1.0.) [14,15]

1

‘%;,/ \/7;71(_5)62_ Inf€ = nld€ = waTu(n), 0l <1 Ga

Here {w,}52, are eigenvalues of 1.O. and are given by

In2, n=20
wn = { 1 (27)

- n=12...
n
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For further derivations we need orthogonally condition for Chenyshev polynomials
given by

1 n=20

2, n#0 %)

/T(n)T (n)\/—n-2 ﬂnﬂé""’ ﬁ:{

Using (26) and (28) one can show the kernel of (26) to have a convergent in definite
sense bilimear expansion

=i|>-'

e nl Z nTn(&)Tn(n) ° (29)

Substituting (25) into L.E. (13), let us take into account spectral expression (26)
Then assuming the continuous function to F(n) be represented by the series expression

AM) =Y faTa(n) (30)
n=0
and using orthogonality condition (28) for coeﬁiments Pk seeking, we obtain infinite
system o? linear algebraic equations (SLAE)
Pk — Z GknPn = Yk, k=0,1 (31)
n=0
Here
B [ [_Tu(OT. )
k
n= —— N ,n,€)dnd 32
e 7 fk
(2wk)

It may be shown that {yx}7o, € l2 and besides

3 i‘ |axnl? < 0o (33)

n=0 k=0

It means that matrix {axn}tz, produced a fully continuous operator A, from Iz to I,.
Consequently, this operator may be approximated by a finite- dimensional one, in other
words SLAE (31) may be treated by means of truncation.

Let proceed to IE (14). For the simplicity reason the unknown function p(y) and
the given function f,(¢) are assumed to be even.

Then for the functions p(¢) we can write

(34)

pe) = m Zzzn 2n (sx_ni‘z_-) 3 @ € [—a,a]



As before, the form of expansion (22) is caused by the fact that Chebyshev polyno-
mials T5, (sin % /sin E) are eigen functions of I.O. corresponding to the singular part of

the IE kernel (-1‘4) As has been shown in there exist the following spectral expressions

: () e
1 1 2n \sin 2 s
— | ln cos—d = 09nTon 2) 35
1r/ 2{sin 2522 | | /9(cos ¢ — cos a) e ( 7 )

sin &
—-a
Here {02,}52, are eigenvalues of 1.0., equal to

2

. a
—Insin —, n=20

02k = 1 (36)

%, n=1,2,...

Besides it shown be noted that for Chebyshev polynomials T;, (sm —/sin 2) the

following orthogonality conditions are valid

in £ L2 £
/Tn (Sm—i) T (Slni) — dp = % mbas, (37)
sin § siny / \/(cosp — cosa) B

The krenels of IE (35) may be shown to have the following bilinear expansions

1 S sin £ sin £2
In —mm—— = B Don 2\ Top — 2 38
n2|sin g—zfol Ea‘z PnT: (sin%) & (sm% ) (68)

n=0

Now let us substitute expressions (34) into IE (14). Taking into account spectral
expressions (35) and orthogonality (37) we obtain an infinite SLAE for seeking unknown
coefficients

oo !
Tok + Z b2k,2n12n &= f;k’ k= 0,k 5 e (39)

n=0

Here we have denoted
b'lk 2n =

cos ¥ cos 5Ty (s.n -) Ton (s_n?‘})
Sdzk //

V/(cos p — cos a)(cos g — cos a)

Na(p, wo; £)dpdpo

h *+(g) cos 2 sin £
= s f 7o) 2 Tok ( : f,) dipo
402k | v/2(cos po — cos a) sin

Z
It may be shown that

ST3 lbakanlf <00 Y ISR <o (40)

k=0n=0 k=0



In other words, matrix operator B produced by the matrix {b2x 2n } f=q is an absolutely
continuous one and may be approximated by finite-dimensional operator. Then the
solution of infinite SLAE (39) may be obtained with any given prefixed accuracy by the
truncation method.

The universality of the method of O.P. resides in the opportunity to construct the
spectral relationships for different singular kernels where O.P. play part of the eigen-
functi?ns. As an example it seems reasonable to cite the following spectral relationships
14,15] :

1

1 o B s
o 1 Un(y) ~ In2 2T2(I), n=0
TS PR AT YT Ta(e) | Taiala) (1)

=i y]__y)"z "n - :1++.7 s n>0
d&? r 1
27 [ VI= VI e Unu)y = —x(n + )Un() (42)
-1

Here U,(y) are the Chebyshev’s polynomials of the second kind.

1 2)
1 Cen(arccosé, g) Men" (0,9)

H® (ele - €' de = Cen(arccos€',g)  (43)

5_ - e Mel2(0,q)
€2
0= ., {Cenfarccos,g)5o ace the Mathiew's functions.
71\’0 (lz - yDL_%(2y)dy = LML—%(QI)C—: (44)
vl ATy

Here {L,—.%(.?x)c"},‘?:o are the Lagerr polynomials; Ko(z) is the MacDonald’s
function.

1 v ¥
/ Ci(y)dy _ Tnt+v) Ci (45)
J lz =yl /T=y)= T+ 1) T()cos 3 ’

These spectral relation ship may be used in solving the different scattering problems
with both the Dirichlet and Neumann boundary conditions. In particular, in view of
(44) IE of the Viener-Hopf type can be solved in explicit form.

2.2 Solution of DSE and DIE by the method of O.P.

Let show that DSE(4) and DIE (5) can be solved by the method of O.P. For sim-
plicity reason it is worth considering only DIE (5). Solution of this system is formulated
on more general assumptions. Namely, p(a) function is to be the Fourier transform of
p(h) function that satisfies the condition

<v<l (46)

o) =

- — p2yw-l
pn) ~, (A=),

—34=



At v = r function p, satisfies the classical Meiksner condition for infinitesimally thin

screens. In particular, condition (46) appears in the problem of wave scattering on
cylindrical object with the edges.

So, to DIE (5) is formulated on the following assumptions:

i) the unknown function p(a) is the Fourier transform of p(n) function satisfying
condition (46):

ii) k(a) function may be represented in the form:

ka)= 1 [1-6(la)],  &(al) ~ Ola|™*,  s>0 (47)
|Ol| la|—oo
iii) the given function f;(n) is continuous and f'(n) € L2[—1,1;(1 — 7%)*~1]; here
L,[-1,1;(1 — n*)*] is the Hilbeert space where scalar product is defined with weight
factor (1 —n?)*~ L. :
_In order to satisfy (46) the function p(n) is represented as uniformly converging
series

<v<l ©(48)

N -

pm) =1 -n)"" Y pmCon ¥ (n),

m=0

el ; : ;
where pm are the un,nowns coefficients; Crm * (1) are the Gegenbaier polynomials which

set a basis in Ly[—1,1;(1 — 7?1

In view of (48) we get the follc;wing representation for the Forier transform:

pa)= [ pn)eeedn =

2n R s ale=D) Predu—talee] 1
e = mPm : e N1 ) s 4
e PR S -
where
gl-1/2) F(m +2v-1)
o Fim+1)

Let substitute (49) and (47) into DIE (5) taking inti account that the continuous
functions e**®" and f2(n) in this equation may be represented as expansions in terms
of Gegenbauer polynomials

icav 2 e 1 = -k 1 T 1
e = (5) F(l—g)?t <k+u—-§> JH,__%(ea)Ck 2(n); §<V<1
=a
fa(n) =3 fCLTE () (50)
k=0

Then after interchanging the orders of summation and integration in deduced equa-
tion and using the discontinuous integrals by Weber-Schafheitlin [16] we may conclude
that, first, uniform equation of DIE system (5) is satistied identically and, second, for
definition of unknown {p,}5%, the infinite SLAE of the following taking place:

i Zm L+ (-1 N =1, k=12, (51)

m=0



The following notation

Cam, gemb_ 2 (2P A (v 4 g)
Zm —( 1) mem F(V— %)? I‘v—;(e) = € P(QV)
(v=%) _ Ji 2 _ da i e
(-1) Ny =2 J"—%(Ea)azu—l " k=m=0
Nem = 0
() -diP), kampo

v—1 T do
cld =k, () / T3 (€0) iy (€0) s =
0

I (v + 1T (4m)
= i k+m#0
T (v + 250) T (v - BT (20 + E2) ‘

(=4) _ g i -
dkm - Av—%(e) 5(a)‘]k+v—%(ea)‘]m+u—%(Ea)ag,, y k +m ?é 0
0 -

S S

k—V—-;

It can be proved that the ISLAE (51) is the Fredholm equation of the second kind,
and its approximate solution can be obtained by the truncation method to an arbitrary
accuracy.

Conclusions.

Comparision of the nethods solutions to DSE (4) and DIE (5) on the basis of the
Riemann-Hilbert problem method with the method of O.P. gives a clear evidence that
the last is simple enongh and more general. This shows its worth through, in particular,
the fact that the first is the method solution only for the scattering problems where
p(n) function satisfies the condition (46) at v = %

Pay attention that the problem of wave scattering on polygonal cylinder has been
investigated over a wide range of the parameters data by means of the method of O.P.

As well the method of O.P. holds a key to solution of IE with the kernel of the
Bessel functions. These equations appear in the problems of wave scattering on the
screens like a disk.
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