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1. Introduction

The problem of diffraction by resistive strips has received much attention recently in connection
with the radar cross section (RCS) reduction of targets. This structure serves as a suitable model of
thin dielectric slabs and coating of finite length. Some of the resistive/impedance strip problems have
been analyzed thus far by means of high-frequency and numerical techniques [1, 2]. In [3], we have
rigorously solved the E-polarized plane wave diffraction by a resistive strip using the analytical-
numerical approach [4] which is entirely different from the previous methods employed to treat the
impedance-related problems. The purpose of this paper is to analyze the diffraction problem involving
the same strip geometry as in [3] for the H-polarized plane wave incidence. The method of solution is
again based on the analytical-numerical approach.

Applying the boundary condition to an integral representation of the scattered field, the problem is
formulated as an integral equation satisfied by the unknown current density function. Expanding the
current density function in terms of the Gegenbauer polynomials by taking into account the edge
condition, our problem is reduced to the solution of an infinite system of linear algebraic equations
(SLAE) satisfied by the unknown expansion coefficients. These coefficients are determined numeri-
cally with high accuracy via truncation of the SLAE. The scattered field is evaluated asymptotically
and the far field expression is derived. Numerical results on the total scattering cross section as well as
the monostatic and bistatic RCS are presented and the far field scattering characteristics are discussed.

The time factor is assumed to be e ™' and suppressed throughout this paper.

2. Formulation of the Problem

We consider the H-polarized plane wave diffraction by a resistive strip of zero thickness as shown

in Fig. 1, where the H polarization implies that the incident magnetic field is parallel to the z-axis. Let
the total magnetic field H,(x,y) be

H,(zr,y)=H;(z,y) + Hi(x,y), (1)
where H,(x,y) is the incident field given by
H; (.I', y) — e—ik(zcos@+ysin0)' 0<O<r (2)

with k[=w(eouo)'“] being the free-space wavenumber. The total field satisfies the impedance-type
boundary condition, as given by [5, 6]

E (x,+0)=FE(r,-0) = (Z/2)[H,(x,+0) - H,(x,-0)], |r|<], (3)
Y

® H:

Fig. 1. Geometry of the problem.
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where ( is the resistivity and Z is the intrinsic impedance of free space. Using Green’s formula, we
can express the scattered field H;(x,y) in (1) as

. aH(l)k/ A2 . 2
Hiwy) = [ far———a——— C D T 4)

where H{''(-) denotes the Hankel function of lhe fll’St kmd and f(- ) is the unknown current density
function defined as

f@) =H (@, +0) - H,(z, -0). (3)
Taking into account the boundary condition as given by (3), we obtain from (1), (2), and (4) that

kR{f(x) = 2k sin e ~17* 080 4 (6)
Equation (6) is the integral equation to this diffraction problem.
3. Solution of the Integral Equation
Using the integral representation of the Hankel function, it follows that
1 [~ : , d
H{'(kd (@ —1')?+y? _=-—f explik[(x —1")a + 4 1- a?y|)}——, (7)
T J —® /1 - a2 _

where a =Rea +ilma (=0 +i1). The proper branch for J 1 —a? is chosen such thatIm J 1-a4>0

as |g| — o. Substituting (7) into (6) and taking the finite Fourier transform of the resultant equation
over the interval |r| <[, we obtain the following integral equation in the spectral domain:

4 pSInEB+cosf) 1 f= sin /c(a — B)
(F(B)_4Sln9mfc08+cost9) B ——————F(a)J1 -a?a. _ (8)
where
I ..
F@= [ fae ™dn, =kl ©)

Taking into account the edge condition for a resistive half—p]ane [6], the current density function can
be expanded in terms of the Gegenbauer polynomlal C,(-) as

f =41 —-nz)jf,,c},(n), 7l <1, (10)
n=0

where f, for n=0, 1, 2, --- are unknown coefficients. Substituting (10) into (9) and applying some
properties of the Weber—Schafheitlin discontinuous integrals to (8), we derive the infinite system of
linear algebraic equations (SLAE) as in

=E(Am‘n+(an)fm m=0,1,2,---, (11)
n=0
rm=4tan0(-1)"7J,.,(x cos ), ' I (12)
A =[1+ED""=0)"( + DI, (13)
1+ (D™ (=i)en + pr (P2

, (14)

_§_+m-—n)r(m+g+l+2)

)] (m +n: even), (15)

C,=2Ink+VYPp+K+1/2)+VPp+K+3/2)-¥@p+1)
-TPp+m+2)-Vp+n+2) -V + 2K +3) (18)
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with K = (m +n)/2. In the above, I'(-) and | m+1(*) denote the gamma function and the Bessel func-
tion, respectively, and ¥(-) is the psi function defined by

1 1
w(z)=—0+n (n+1"n+z)’ 2#0,—1 -2, --- (19)

SLAE satisfied by the unknown coeffi-

0, 1, 2, ---. By solving (11) numerically via appropriate truncation, these coefficients
are determined with high accuracy.

4. Scattered Far Field _
Taking into account the asymptotic expansion of the Hankel function for large argument, the scat-
tered far field is found to be

2 iy
H;(r,o)~ | ;E;e'(k' "®(p), kr— o, (20)
where (7, @) is the cylindrical coordinate defined by £=rcos¢, y =rsin ¢ for -nsS¢ =nm, and
/4 : _
Plo)=tang 2, G0+ Df T (k cOS ), (21)
n=0

>. Numerical Results and Discussion
We shall now show numerical results on the total scattering cross section (TSCS) o, and the RCS
O to discuss the far field scattering characteristics. Figure 2 illustrates the normalized TSCS o,/4l as a
function of normalized frequency k[, where the incidence angle and the resistivity are chosen as @ =
457, 90° and {=0.1+170.27, respectively. The results for a perfectly conducting strip (= 0) have also
been added for comparison. It is seen from the figure that the resistive strip gives a lower TSCS level
than the perfectly conducting case. Shown in Figs. 3 and 4 are numerical examples of the the mono-
static RCS as a function of incidence angle @ and the bistatic RCS as a function of observation angle
, respectively, where the normalized value ¢/A with 2 being the free-space
ted 1n decibels. The results for the resistive strip with {=0.1+70.27 and the perfectly conducting strip
({'=0) are again presented and in the bistatic RCS computations, the incidence angle is fixed as 6 =
45°. It is noted from the figures that the monostatic RCS and the bistatic RCS show the largest values
along the reflected shadow boundaries at 8 =90° and @ = 135", respectively. We also observe some
oscillations in the RCS characteristics for the strip width 2a = 41. Comparing the results for the resist-
Ive and perfectly conducting strips, it is seen that the RCS is reduced for the resistive case.
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