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Abstract-In this study, the diffraction of a plane wave by an infinitely
long strip, having the same impedance on both faces with a width of 2a
is investigated. The diffracted field is expressed by an integral in terms
of the induced electric and magnetic current densities. Applying the
boundary condition to the integral representation of the scattered field,
the problem is formulated as simultaneous integral equations satisfied
by the electric and magnetic current density functions. By obtaining
the Fourier transform of the integral equations the unknown current
‘density functions can be expanded into the infinite series containing
the Chebyshev polynomials. This leads to two infinite systems of linear
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algebraic equations satisfied by the expansion coefficients. These coef-
ficients are determined numerically with high accuracy via appropriate
truncation of the systems of linear algebraic equations. Evaluating the
scattered field asymptotically, a far field expression is derived. Some
illustrative numerical examples on the monostatic and bistatic radar
cross section (RCS) are presented and the far field scattering charac-
teristics are discussed.
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1. INTRODUCTION

The solution of canonical problems such as half-plane, cylinder or
sphere are important in the sense of diffraction theory and strip is
one of the most important ca¥dnical structures. First of all, due to its
geometry, strips are frequently used to investigate the multiple diffrac-
tion phenomenon. Furthermore, especially in remote sensing, a large
number of practical problems can be simulated by conducting, resistive
or impedance strips. On the other hand, diffraction by a slit in an in-
finite conducting plane can be reduced to a perfectly conducting strip
problem by using the duality principle. Scattering from gaps or cracks
that may exist on the surface of an obstacle, which is entirely or par-
tially filled with some material can provide a significant contribution to
the overall scattering pattern. In such problems the gaps or cracks may
be simulated by strips and/or slits. Therefore, due to its conformity
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to many practical problems, strips have been extensively invest'igated
by many authors by using different analytical and numerical methods
[1-9].

The development in numerical techniques for the solution of the
scattering problems has always been parallel to the developments in
computer technology. Although numerical methods may be consid-
ered as more straightforward compared to analytical methods, due to
the matrix inversion procedure for the analysis, computer capacity re-
stricts the size of the problem that can be handled. Generally, for
the obstacles which have a maximum dimension of a few wavelengths,
numerical methods can provide accurate solutions. Although the inte-
gral equations are usually solved by numerical methods, they can also
be converted to a set of algebraic equations by using some analytical
methods. Then the obtained matrix equation can be solved by stan-
dard matrix inversion algorithms. The time required for the solution of
this matrix equation is proportional to the size of the resultant matrix.
So for large bodies, especially for RCS estimation the time required can
be enormously large; therefore, the size of the matrix must be kept as
small as possible.

It is a well known fact that the electrical size of the body limits the

tractability of numerical methods while the geometrical complexity of _

the object restricts the applicability of the analytical methods. For the
asymptotic solution of a problem in the high-frequency region, hybrid
methods are used besides techniques based upon the extension of clas-
sical optics. Hybrid methods incorporating both numerical and high
frequency asymptotic techniques may have the potential to enlarge the
class of electromagnetic scattering problems that can be treated.

The hybrid approach can be formulated as a field-based analysis
where the GTD (geometrical theory of diffraction) solution for the
field associated with edge or surface diffraction are used as the start-
ing point. These solutions serve as the ansatz to the MM (moment
method) formulation and represent the parts of a scatterer not con-
forming to a canonical geometry which is not amenable to a GTD
solution itself [10, 11]. Alternatively currént-based formulation is pos-
sible where the analysis proceeds from ansatz solutions for the currents
obtained from physical optics and PTD (physical theory of diffraction)
[12, 13].

Although there are many powerful analytical techniques, the main
advantage of numerical techniques is that they may be applied to a
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scatterer of arbitrary shape and are generally only limited by the size
of the scatterer. But this limitation is a practical problem. Theoret-
ically, a set of linear equations which describe the scattering problem
can be generated but the obtained set may be too large to be solved.
Fortunately, the developments in computer technology make possible
the solution of many electromagnetics problem for a desired degree of
accuracy. In contrast, the asymptotic techniques work best when the
scatterer size is large compared to the wavelength. Unfortunately the
difficulty of the problem increases when the complex shaped bodies
are of interest. Use of analytical and numerical methods together may
overcome these restrictions. The numerical methods are limited to
the bodies having a maximum dimension of less than few wavelengths,
whereas the analytical methods yield accurate results for the scatterer
much larger than those of one wavelength. So, these methods may be
combined to solve the scattering problems involving scatterers of in-
termediate size and size in the resonance region. Additionally by using
analytical-numerical methods the computation time may be reduced
to a reasonable level. -

An alternative method was developed by Veliev et al. {14], where the
solution comprises any preassigned accuracy. The scattered ficld was
represented using the Fourier transform of the corresponding surface
current density which offers a number of advantages for constructing
the solution of the problem. A hybrid technique based on the semi-
inversion procedure for equation operators and the method of moments
was used to obtain the desired solution. The essentials of the solution
and its application to the wave scattering by polygonal cylinders and
flat conducting strip structures are given by Veliev and Veremey [15].
This analytical-numerical method, using a spectral approach, reduces
the problem to a system of linear algebraic equations for the unknown
Fourier coefficients of the current density function. Appropriate trun-
cation of the infinite system of equations can yield the solution with
any desired accuracy. It should be noted that the applicability of the
truncation method cannot always be justified, and the matrix elements
associated with the system of linear algebraic equations usually decay
slowly with an increase of their index.

The aims of the present study are to obtain a solution which may
work in a wide frequency range and to reduce the computation time to
a reasonable level. In this study, diffraction by an impedance strip is
investigated by using the analytical-numerical technique proposed by
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Veliev and Veremey [15]. In Section 2, the formulation of the problem
for E-polarized case is given. By expressing the electric and magnetic
current as infinite series in terms of Gegenbauer polynomials, two in-
tegral equations in spectral domain for electric and magnetic currents
are derived. In Section 3, the integral equations are reduéed to a sys-
tem of linear algebraic equations for both currents with some unknown
coeflicients. In Section 4 some physical quantities are represented in
terms of the unknown coefficients which will be determined by solv-
ing the system of linear algebraic equations. In Section 5 the results of
branch-cut integrals are presented and the curves for both far field and

RCS are represented. The results are compared with some previously
obtained results.

2. FORMULATION OF THE PROBLEM

The scatterer is a strip of width 2a where same impedance is as-
sumed to be imposed on both sides. The geometry of the problem is
illustrated in Fig. 1, where i denotes the normalized impedance of the
strip.

Since the strip is uniform along the z-axis, the problem can be re-
duced to a two dimensional problem. The time dependence of the fields
is assumed as exp(—iwt) and suppressed throughout the analysis. The
incident field is given as a linearlyg polarized plane wave

Ei(z,y) = exp [—ik (mao +ydey/1— 03)] . 1)

where og = cosflp with y denoting the incidence angle. The total
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field will be expressed as the sum of the incident and scattered fields
for all y, such as,

E,(z,y) = Ei(z,y) + Ei(z,). (2)

On the strip, the total field must satisfy the Leontovich boundary
condition which is frequently called as impedance boundary condition,
given by,

{2%2 (.y)} ly=t0=0 for |zl<a.  (3)

where k is the propagation constant.

By considering the magnetic and electric currents which are denoted
by fe(z) and fn(z) respectively, the integral representation of the
total electric field can be obtained as [16}:

Bulo ) =Bl )~1 [ {1ele ) mle) S o TR b

(4)
where
fe(x) H (1: +0) HE(ZII, _0)) (5)
and,
Im(z) = Ey(z,+0) — E,(z, -0). (6)

2.1. Application of Boundary Conditions

If we rewrite the Leontovich boundary condition for y = +0 and
y = —0, and if we subtract and add these two equations we can obtain
the following expressions:

fila) + ;’“ {Ba(z,+0) + Ex(z,~0)} = 0, 1)
and
fm(z) + {BE,,a(;: :3) ly=+0 +3Eza(;:,y) |y=—0} =0 (8)
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The expressions of the total electric field for y = +0 and for y=-0

can be obtained from (4) and if the resultant equations are substituted
into (7) and by considering the following equation [16)

(hm + 11m> fola H(gl) (k\/ z—1a')?+y? )

y—=+0  y—-0
it yields that,
n i B npr(1) / !
~ i fe(2) = 2B3(2,0) - 5 o Je(e)Hy (k| 2 — 2" |)dz’.  (10)

In a similar way, an integral equation for fy(z), is obtained from
(8) and (4) as follows: .

/1 _ ~2,—tkzag _(2
Sm(®) =20\/1 - age Jr4k (ygnloml—*—o) By

[ a5 1 (E=TEFR) a )

2.2. Fourier Transformation of the Integral Equatibns

Substituting the integral representation of Hankel function

oQ
H(()l) (k\/(a: — /)2 4 (y - y’)2) = .71;/ (-2 Yaty—y' |VI=a7)
[o o]

V1i—a?
(12)
into (10) with the following variable changes
t=al, z'=a(, and €=ka (13)
yields that,
sm{(ﬂ-i— ap) | 1 e Fo(t) sin&(t—p)
F jo— e 0
CRES ekt e = e

where

1 . .
F.(8) = / RO, with () =afulag).  (19)
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This is the integral equation of fe(z) in spectral domain for the E-
polarized case.

In a similar way, by using the after-mentioned variable changes given
in (13) and integral representation of Hankel function in (12), in (11)
the integral equation of fi(z) in spectral domain for the E-polarized
case is obtained as follows:

L) =41 - TpEEE ) L [ Tl

E(B + ap)
(16)
where

+1 . o
Fon(B) = / QeI it flQ) = fulad). (17

3. REDUCTION OF INTEGRAL EQUATIONS TO
SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

The solution of the integral equations for electric (F.) and magnetic
(Fm) current densities will be reduced to the solution of two uncoupled
systems of linear algebraic equations. The first step of the reduction
process is to express the current densities in Fourier transform domain
and obtain a general spectral expression for currents. Then by us-
ing the constraints implied by edge conditions, electric and magnetic
current density expressions will be obtained in the transform domain.
Finally, they will be written in the form of infinite system of linear
algebraic equations involving Gegenbauer polynomial coefficients as
unknowns.

3.1. General Expressions for Current Density Functions in
Transform Domain

Since it is necessary to express the current functions in spectral
domain, the Fourier transform [7(8) of the current density function
f(¢) must be found as

- / P r 0B, (18)
-1

The current density function F(¢) is defined for | ¢ |< 1 and it
is zero elsewhere. Let f(¢) be represented by a uniformly convergent
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series, such as,

FO=(1-¢)"S faCiti(0) (19)

n=0

1
where C;+§(( ) denote the Gegenbauer polynomials and v is a con-
stant related to the edge condition. The value of v in (19) will be
determined by enforcing the functions such as to satisfy the edge con-
ditions for electric and magnetic current densities separately. For the
electric current density function fe(C ), and the magnetic current den-
sity function f,(¢), from Meixner's edge conditions [17], v can be

determined for ( — 0 as,

J©=0(¢c) and In(@=0(¢2). ()

The order relations given above for electric and magnetic current den-
sitics can be obtained respectively as v = —1/2 and v = 1/2 by con-
sidering the asymptotic behavior of Gegenbauer polynomials together
with (19). The Fourier transform of the current density function can
be derived as follows:

2m =, T(n+2v+1)J ntv+1 B
F(B) = =——i~ —1)"
O 7 PP S e
This completes the calculation for the Fourier transform of a cur-
rent element represented in terms of Gegenbauer polynomials given by
(19). Since no restriction is imposed on the current series expression
during the derivation, it is obvious that this representation is valid for
both electric and magnetic currents. Now considering the edge con-
ditions separately for electric and magnetic current components, the
corresponding spectral expressions in the Fourier domain can easily be
obtained. First, the magnetic current density will be obtained simply
from (21) by substituting v = 1/2, which yields

Fn(B r; "(n+1)fm Jé‘;‘ (22)
and from (19)
fo=(1=¢)* S fmcl(c) (23)

n=0
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or

fnl©) 243 mu(0) @

n=0

where Uy, (¢) is the Chebyshev polynomial of second type and U,(¢) =
Calg)-

Similarly, by inserting v = —~1/2 in (21) the Fourier transform of
the electric current density function can be derived as

F.() = nfJ0(éB) + 27rZ B _ipaep) (25)
and from (19)
RO =(1-¢)73 Y ££050) (26)
n=0
fe = (1 = Cz)—% {f& & zz%Tn(O} (27)
n=1

where Tp(¢) is the Chebyshev polynomial of first type, and 2T €)=
nCY(¢). As seen from these equations the unknown coefficients appear
in both current density functions and Fourier transform of them are
identical.

%

3.2. System of Linear Algebraic Equations for f;

In a convenient form, the Fourier transform of f,(¢) for v = —3
was obtained as -
Fo(B) =y XnJn(£P) (28)
n=0
where
Xy = ée) for n=0 (29)
and
fe
X = 2(~'i)"-;1'5 for n#0. (30)

If (28) is substituted into (14), the problem is reduced to that of finding
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the unknowns f¢ with n=0,1,2,--- as follows:

L. siné(B + o)
LS e

smE - B)
an / o ﬁJn<£t)dt (31)

n—O =0

In order to be able to express (31) in a more convenient form for
numerical calculations, both sides of the equations will be multiplied

by
Jl+1' (gﬁ)
ﬁT
and by integrating each term with respect to 8 from —oo to oo

Juer(E0)In(éB) |
- x, [ 2xrlCl)nlel) g
"’rnz:; / BT

[Jl+r(£010) 0 JI+T(Et) Jn(gt)
= dim(-1)f =20 o +Zx /ww - mdt (32)

is obtained. Th;i;lt(;gral on the left-hand side of (32) is denoted as

for 1=0,1,2---

n=0

d,l:’;l - / Jl+‘r(€ﬁ?r‘]n(§ﬁ) (33)
-0 B
and the integral on the right hand side is named as
® Jur(€)Jn(€t) 1 '
DE'l ___/ I+ ,
in o \/1—-—_t_2dt (34)
So,
o0 oo
Y Xndf! =+F'+ ) XaDfi! (35)
n=0 . n=0
is derived with Jir (€ costo)
E1 ; 1J1+7\§ €08 Tg
= 4i(-1) ———.
9 = ai(-1f B (36)
Now (35) can be rearranged simply as
fe o]
—vE =" Xn (ndfy! + DY) (37)

n=0
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which gives an infinite system of linear algebraic equations for f7.

3.3. System of Linear Algebraic Equations for f7*

The Fourier transform of fr(¢) for v = % was obtained as,

,B) = "ZY n+1 Eﬂ) (38)
n=0
where
Y, = ()" (n+ 1) 7. (39)

If this equation is substituted into (16)

JIn lfﬂ sin&(8 + ao)
_ZY,, + = 1—a3—-—————€(ﬁ+ao)

_Zy {/ smft;ﬂ) Jn+1(§t)\/_—tg‘dt} (40)
n=0 .

is derived. By multiplying both sides of (40) by B~1J;41(€8) and
integrating each term with respect to § from —oo to oo, it yields

that o Lo :

”2=2Yn(Dt’,{2+—d,’i’), 1=0,1,2- (41)
n=0 n

which is the system of linear algebraic equations for f7*, where

/ Jns1(€6) Jz+1(£ﬁ)dﬂ (42)

n—O

= - (-1)4 Jt+1(fao) (43)
and
- | Jn+1(et>J[+1<£t)—-ﬂI”dt. (44)

4. FIELD ANALYSIS

The total field expression in (4), involving the electric and magnetic
current densities as unknowns is the fundamental formula for field anal-
ysis. As stated in (4), the scattered field expression was given as

Bty = -5 [ {1)+ fule g | B (V=P ) o

Solution of the plane wave diffraction problem 327

The asymptotic expression of Hankel function for large argument is
used to get the scattered far field as follows:

: ] ke, ’ ind - ’ e .
B200) = 3y e [ 7€)+ SRt} e et

(45)
Then, let the scattered field be expressed as
E3(r,0) mA(kr)¢(0) (46)
where,
2 ipex
— = 1(kr;)
A(kr) e (47)
and,
B(0) = be(6) + ém(6). (48)

In this case ¢(f) represents the far field total radiation pattern. The
integrals in (45) are the Fourier transforms of the current density func-

tions and by using (28) and (38) the ¢.(f) and ¢m(f) can be obtained
as follows:

= —Z—i XnJn(ecosf) (49)
and, )
$m(6) = is%‘fw f;yn gl conty "*éf:’f):;’s 2 (50)
The total scattering cross section can be calculated as
T =R (00} (51)

where 0 is the incident angle. It is obvious that the calculation of
the RCS requires to know the values of X, and Y,. It should be
clear that the determination of X, and Y, is reduced to numerical

- evaluation of DE!, DE2 dfl and ae.

In? in)»

5. NUMERICAL ANALYSIS

As shown in the previous section the analysis of the scattered field is
reduced to the numerical evaluaiion of the functions d{il’z and fo‘m .
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The integral expressions of these terms given by equations (33), (42),
(34) and (44) are not convenient for numerical calculations. Therefore,
these integrals must be evaluated in terms of some well known functions
which are convenient for n®¥herical calculations. Therefore by using
some analytical methods these integrals are evaluated as follows:

b+ (-1fminr ()

o _1(E) .
in Te\2 n—-l+1 l-n+1+27 n+l+2r+1 (52)
F 2 L 2 r 2

8¢(~1)"F :
ey U R i e (59)

l+n

r(k+ 524 3)

DEl — {1+(_1)l+71} €l+n+)\+7- < h)\,T€2k ( 2 2
in kin

. k=0 r<k+l+_"+1>

2

{‘%ﬂ-l i ( A+%ﬁ>l“<k+l)r<k+'\—+ﬁ>
—i —

2
2T l+n
k=0 et L8 | bt 2 e { b ke

/\+’r
2

F<k+ +1>

X
P<k+l—3;——+,\+1+1)r(—k+HT"+n+r+1)

l+n+1
o r(er i)

. £2k+A+TWn _ Z B kln
=02"I‘<k+——~—l;n+1)

x{21n§+q;(k+l_"'_7‘_4”_l>+q/<k+£+_”"'_’_;.ﬂ)

£2k+l+n+/\+7’

2

! "
+‘Il(k+—j—7—H2_—-t—T+l>—\I/(k+l)—\Il( +I+T”+1)

-Pk+i+74+1)

__\Il(k+n+>\+1)—\\ll(k+l+n+>\+T+1)}}} (54)
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where 7 =1, A =0 and W, = 0, for [ +n = 0, W, =1, for
{4 n # 0. Similarly,

gintritr e A7 2K

o ={1 “”’*"}{“‘4—”5"“” (ks 52 2)

2
ten_y _L_ k+2‘_+lil
2 2 2
+id Y = 4
k=1 " Dlk+2)0 ( +—-+m+T+1

,\
r(es 235 4)
P<k+ﬂ+,\+r+1> ( +——~+n+A+1>

T (k Y e )
hA,Tﬁ'lk+l+n+A+T

. §2k+/\+’r _ i — kin
£ 4r b (k l+n >

X

LY
b

1 l+n+A+7+1
x{21n§+w(k+————m+;’+ >+\I/<k+-—————————2 )

w<k+l+"+)‘+T+1>—‘I’(k+1)

7
—\Il(k+l—-;£+2>—\11(k+l+1+1)

_\Il(k+n+)\+1)—\Il(k+l+‘n+>\+'r+l)}}} (55)

is obtained, where r=1,A=1 and
I'(2)
——— 56
(2" (56)
I'(.) denotes the Gamma function and,
l A 2
F(k+ l+n+A+r+1)F(k+ +n+A+T+ )
AT 2 2
h

Vein=(— b Db+ 1)C(k+1+n+A+7+ DT (k+n+A+ 1)1‘(k+l+7+(}_))7')

¥(z) =
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5.1. Asymptotic Expressions

The asymptotic expressions of the far field radiation pattern can be
easily derived by using the following assumptions
J
Bim 1(§c0)
o

-
i =5 +0(" (58)

and,
lim siné(t — f)
gm0 t—f
For high frequency asymptotic expression, substitute (60) into (14) and
(16) to get,

= 6(t ~ f). (59)

- 1=02 sinf¢(8 + ao)]
=4 "
RO =S V=R fta -
and,
_ V1i—a@ sinfé(8+ ao)] .
Fin(B) Ml+q’iﬁﬁhﬂﬂ+%)' (61)
So the far field radiation pattern due to electric and magnetic currents
as £ — oo is derived from (49) and (50) as
#(60) =i V1-62 sinlé(B+ )] . V1-B%/1=a2 sin[¢(--ay))
- 1+9/1-8%2  B+og 14+ny/1-p2  &(B+a)
(62)

where f = cos(f) . For the low frequency asymptotic expressions, (37)
can be rewritten as

—" % Xo (ndgy + Dgg') + O(€?) (63)
and by using (59) in (36)
"~ 2E + 0 (£7). (64)

If the expressions of df and D{}' are derived from (52) and (54) and
the resultant expressions are substituted into (37) one can get that,

28 -+ 0 (¢2) (65)

%n+—§[n+i(’y+ln§>]

K== ffg
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where v = 0.5772. By the same way, it is easily derived from (41)

that,
y, = _86mv1-of (66)
8¢ — <31
8
Finally by substituting (66) and (67) into (49) and (50) respectively,
the low frequency asymptotic expressions of far field radiation patterns
are obtained as:

¢m =0 (%) (67)
and,
80) = 9u(0) =~y +O (). (68)
n+3 [7r+z('y+ln§)]

6. CONCLUSION

The method used in this approach is a hybrid method named as
analytical-numerical method. As in general, the aim of using hybrid
methods is to eliminate the disadvantages of the analytical methods
which operate well at high frequencies and of the numerical methods
which operate well at low frequencies. In other words its aim is, to
obtain an accurate solution for a wide frequency range. By using this
method some physical quantities such as magnetic current density Fig.
2a and Fig. 2b, electric current density Fig. 3a and Fig. 3b along the
strip and scattered far field Fig. 4, etc.., may be obtained without any
modification on the computer programs.

By comparing the figure obtained by Herman and Volakis {5] and

. the Fig. 4a obtained by using this method it may be concluded that our -
" results are much close to the results obtained by using the method of

moment. For = 0.1-140.27 and n = 0.14+10.27 the results are almost
same in both figures. But for n = 1.1 Herman's result is different than
the result obtained by using method of moment. Probably this may
be explained by the accuracy of this method for different values of the
strip impedance and for different values of the incidence angle.

It is well known that the electromagnetic dual to a resistive strip
is a magnetically conductive strip supporting only a magnetic current.
For an impedance strip both electric and magnetic currents are rep-
resented. It is obvious that these currents are uncoupled. Therefore,
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Figure 2a. Magnetic current density versus z/a for n = 0.1 +i0.27,
0=90°. (*) ka=0.1m, (+) ka=m, (0) ka =257, (-) ka=57x.
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Figure 2b. Magnetic current density versus z/a for = 0.0 + 1.1,
ka=m. (o) 8 =45°. (*) 6=30°, (+) 0 =15°.

from the solution of the impedance strip we can easily obtain the results
for-a resistive strip by considering only the electric current and for a
conductive strip by considering only the magnetic current. Echowidth
versus incidence angle graphics are represented for both resistive strip
Fig. 4b and conductive strip Fig. 4c to compare with Volakis results
[5].

As shown in Section 5 both low and high frequency asymptotics can
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Figure 3a. Electric current density versus z/a for 8 = 90°, ka =
027. (+) n=0.1+140.27, (*) n=0.1-10.27, (o) n=10.0.

24

Figure 3b. Electric current density versus z/a for § = 90°, ka = 5.
(+) n=0.0+11.1, (*) n=0.1-140.27, (o) n=00.

N

be derived easily. For ka = 5, high frequency asymptotics are given

for both n = 0.1 +40.27 and 7 = 0.1 —40.27 Fig. 6a and Fig. 6b.
The configuration which was considered in this study was the sim-

ple impedance strip illuminated normally by a plane wave. The reason
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Figure 4a. Backscattered echowidth from a 0.5\ wide impedance - "Figure 4c. Backscattered echowidth from a 0.5A wide conductive
strip. (-) 7=0.1-10.27, (*) n=1.1, (o) n=0.1+10.27. strip. (*) 7=0.1+140.27, (*) n=0.1-i0.27, (+) n=1.1.
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Figure 5. Scattered far field versus incidence angle for n = il.1,
ka=2m. (0) §=90°, (+) 0 =45°, (%) 6=0°.

Figure 4b. Backscattered echowidth from a 0.5\ wide resistive strip.

(+) n=14,(*) n=—i4, (o) n=4.
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Figure 6a. Comparison of the results for an impedance strip. 7 =
0.1+10.27 and ka = 57. (*) high frequency asymptotics and (-) real
values.

Figure 6b. Comparison of the results for an impedance strip. 7 =
0.1 —140.27 and ka = 57 . (*) high frequency asymptotics and (-) real
values.
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for choosing the canonical strip structure was its conformity to many
practical problems. Although the strip geometry is frequently used to
investigate the multiple diffraction phenomena, the method which is
being applied here yiclds the total field and does not gives the opportu-
nity of such analysis. This may be considered as a disadvantages of the
method used in this approach compared with the analytical methods.
On the other hand the superiority of the used method with respect to
both numerical and analytical methods in various aspects.

The analytical steps applied in the method give null elements in the
matrix which is required to be calculated for the analysis. Naturally
this results a considerable reduction in the calculation time. Therefore
it is much easier to make investigations with respect to the different val-
ues of the physical parameters. Especially in the resonant regions the
analysis can be easily accomplished by choosing very small frequency
intervals. It is also important to note that the diagonal elements of
the matrices reveal the characteristics of the physical parameters.
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