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Abstract  –  In this paper, we analyze some applications of the fractional boundary conditions (FBC) in the

two-dimensional problems of wave reflection and diffraction. FBC are used to simulate reflection from

dielectric slab where the fractional order depends on the layer parameters. The diffraction of an E-

polarized electromagnetic field by a strip with FBC is studied. Numerical results are presented showing a

comparison of the physical characteristics of the strip with FBC and impedance strip.

I. INTRODUCTION

Tools of fractional calculus have found many applications in various problems of electromagnetics.
Fractional operators defined as fractionalizations of some commonly used operators allow describing the
intermediate states. Fractional paradigm was formulated by Engheta [1]. Following this idea, new fractional
boundary conditions (FBC) were introduced in papers [2, 3]. In this paper FBC are defined by fractional
derivatives of the tangential electric field components. For a boundary S located in the plane  in the E-

polarization case FBC are 
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Here, the operator  is defined by the integral of Riemann-Liouville [4],( )yD f y
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The order of the fractional derivative (fractional order, FO) is assumed to be between 0 and 1. FBC describe
an intermediate boundary between the perfect electric conductor (PEC) and the perfect magnetic conductor 
(PMC), obtained from FBC when FO equals to 0 and 1, respectively.

In this paper, FBC are applied in the modeling of the reflection from an infinite boundary and from a PEC-
backed dielectric layer. In both cases the relations to define FO, , are derived. Finally, plane-wave diffraction
by a fractional strip is studied. A fractional strip is introduced as strip with FBC involving fractional derivatives
of the field components. Due to specific properties the fractional strip is compared with the well-known
impedance strip. It is shown that for a wide range of input parameters the fractional strip has similar behavior as
the impedance strip if the FO is chosen appropriately. 

II. REFLECTION FROM BOUNDARIES DESCRIBED BY FRACTIONAL BOUNDARY CONDITIONS

Consider an incident E-polarized plane wave
2

0( 1( , ) ( , ) ik x yi iE x y zE x y ze 0 )  coming from the upper

space with , , where0 0 0 0cos 0,  is the incidence angle and 2 /k  is the wave number. The bottom

space is defined by parameters , . Time dependence is assumed to be1 1
i te . It is known that reflection

coefficient  in case of  [5]:R N
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Now we simulate the presence of the boundary by FBC where FO  depends on , . FBC result in 

the reflection coefficient
1 1

R :
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Comparing the coefficients (3) and (4) we find the equation to define FO
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It means that a half-space with parameters ,1 1  can be simulated by FBC with the FO  defined from (5) 

Similar way in case of normal incidence on a PEC-backed dielectric layer [5] of width  with parametersd ,

can be replaced with the fractional boundary with FO  defined from equation 

cot( ) cot( / 2)kd , 0 0: / / / , k    (6)

For the limit case  the fractional boundary corresponds to the layer where width satisfies the equation
.

1
/ 2kd

III. DIFFRACTION FROM A STIP

Consider a two-dimensional problem of electromagnetic wave diffraction by a strip located at the plane 0y

and infinite along the axis . The width of the strip is 2 . E-polarization case is discussed. An incident plane

wave is described by the function

z a
2

0( 1( , ) ( , ) ik x yi iE x y zE x y ze 0 )

s

. Boundary conditions are FBC (1) with

the surface . The function denotes the z-component of the total electric 

field

{( , , ) : 0, }S x y z y a x a ( , )zE x y

( , ) i

z zE x y E Ez  — a sum of the incident plane wave  and the scattered field .( , )zE x y ( , )s

zE x y

FBC yield to utilization of fractional Green’s function (FGF) G  [6] and the fractional Green’s theorem
[6]. In this case the scattered field can be presented as [2]
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where  is an unknown function which we name “fractional potential density”. FGF G1 ( )f x  is expressed in 

two-dimensional case as [2] as follows
2
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Following the method presented in the works [2, 3] we present the scattered field  via the Fourier 

transform
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Satisfying the function  FBC (1) we get IE [2]:( , )zE x y
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In order to solve the IE we represent the density function 1 ( )f x  by a uniformly convergent series [2]
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where ( )nJ  denotes Bessel function.. This presentation allows to satisfy the edge condition [7]. 

Substituting the series (11) into IE (10) after some transformation we can obtain [2] SLAE in respect to the 
coefficients nf . SLAE can be solved with the method of reduction, after that the fractional density 1 ( )f x  is

evaluated and the electric field is obtained. Other physical characteristics such as radar cross section and surface
current densities can be expressed as series in terms of the found coefficients nf .

An E-polarized plane wave incident on a fractional strip excites two surface currents – electric and 
magnetic. Similar current distributions are observed in the diffraction on an impedance strip: both boundaries
support electric and magnetic surface currents which are perpendicular to each other. As a result of comparison
of impedance boundary and fractional boundary in reflection problems discussed earlier we use the following
relation between  and 
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We consider the ratio ( )x  for the fractional strip:
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where electric and magnetic surface current densities are defined as ( ) ( ) ( ( , 0) ( , 0))e

z x xj x H x H x ,

; functions ( ) ( ) ( ( , 0) ( , 0))m

x z zj x E x E x ( )A x ,  can be obtained from fractional potential density 

function

( )B x

1 ( )f x  [2, 3]. The ratio may depend on the coordinate x  while the ratio  for

impedance strip is a constant by the definition. However, for one special value

( ) ( )( ) / ( )m e

x zj x j x

0.5 the IE can be solved

analytically [2] and the function ( )x  is a constant for any value of : 1
0.5 0( ) | sinx i . For the physical 

optics (PO) approximation ( ) we can use asymptotic formulas for the integrals in equation (13) and the

ratio ( )x  is expressed analytically 1
0( ) ~ sin tan( / 2)x i , . For finite boundaries in case of

PO approximation we get exactly the same relation between the fractional order and the impedance(12). For
arbitrary value of  the ratio ( )x  can be evaluated numerically. The less ( )x  varies from constant (12) for

 the more the fractional boundary has properties of an impedance boundary.a x a

Figure 1. Monostatic RCS versus the incidence
angle for . (1) fractional strip ;
(2) impedance strip for

2 0.25
0.25 ; (3) ;

(4) impedance  corresponding to .
0.75

0.75

Figure 2. The ratio ( )x  for the fractional

strip for , .0 90

Figure 2 presents the graphic of the ratio ( )x  for the fractional strip. For the wide range of the coordinate x the 

function ( )x  is close to the value of impedance (12). It means that approximately a fractional strip can be

treated as an impedance strip with pure imaginary impedance.
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