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Abstract—New fractional boundary conditions (FBC) on plane
boundaries are introduced. FBC act as intermediate case between
perfect electric conductor and perfect magnetic conductor. In certain
sense FBC are analogue of commonly used impedance boundary
conditions with pure imaginary impedance. The relation between
fractional order and impedance is shown. Plane wave diffraction
problem by a strip described by FBC is formulated and solved
using new method which extends known methods. Numerical results
for physical characteristics are presented. Analyzing the scattering
properties of the fractional strip new features are observed. FBC has
one important special case where the fractional order equals to 1/2.
For this special case the solution of diffraction problem can be found
in analytical form for any value of wavenumber. Also for small values of
wavenumber monostatic radar cross section has new specific resonances
which are absent for other values of fractional order.

1. INTRODUCTION

During last fifteen years N. Engheta has been developing the method of
fractional operators to solve a wide class of problems in electromagnetic
theory [1–3]. Engheta explored such fractional operators as fractional
derivative, fractional integral and fractional curl operator. The
fractional derivative is denoted as Dν

yf(y) and defined by the integral
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of Riemann-Liouville [4]

Dν
yf(y) ≡ −∞D

ν
yf(y) =

1
Γ(1 − ν)

d

dy

∫ y

−∞

f(t)
(y − t)ν

dt, (1)

where the fractional order ν is changed between 0 < ν < 1, Γ(ν) is the
Gamma function.

Engheta introduced the concept “Fractional paradigm in
electrodynamics” [3] which means the following: if the function f(y)
and its first derivative f ′(y) describe two canonical states of the
electromagnetic field, then the fractional derivative of this function
Dν

yf(y) describes an intermediate state of the field between the
canonical states, i.e.,

Dν
yf(y) =


f(y), ν = 0,

Dν
yf(y), 0 < ν < 1

f ′(y), ν = 1

(2)

Fractional operators in electromagnetics were studied by many authors.
Fractional dual solutions obtained by fractional curl operator and
corresponding sources were discussed in [5–8]. Then fractional field
was analyzed in various electromagnetic problems: wave propagation in
chiral media [9–11], waveguides [12], reflection and scattering problems
[13–17].

Following the fractional paradigm in electromagnetics the new
fractional boundary conditions (FBC) are introduced. The FBC can be
considered as intermediate conditions between the well known Dirichlet
and Newmann boundary conditions. In a two-dimensional case FBC
for the function U(x, y) on the boundary y = 0 can be defined as
follows,

Dν
yU(x, y)|y=0 = 0 (3)

In the case of diffraction problem of a plane wave the function U(x, y)
denotes the component Ez(x, y) or Hz(x, y) of the electric or magnetic
field depending on the polarization.

Let us assume that U(x, y) describes the z-component of the
electric field, i.e., U(x, y) ≡ Ez(x, y). FBC (3) describes an
intermediate boundary between the Perfect Electric Conductor (PEC)
and the Perfect Magnetic Conductor (PMC). Indeed, if ν = 0
then Dν

yEz(x, y)|ν=0,y=0 = Ez(x, y)|y=0 = 0 and this corresponds to
the PEC boundary, and if ν = 1 we obtain Dν

yEz(x, y)|ν=1,y=0 =
∂/∂yEz(x, y)|y=0 = 0 that describes the PMC boundary [18].
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In a particular case FBC (3) can describe the special kind of
impedance boundary [18] if the following relation is supposed

Dν
yEz(x, y)|y=±0 =

[
Ez(x, y) ±

ην
ık

∂

∂y
Ez(x, y)

] ∣∣∣∣
y=±0

= 0 (4)

where ην is an impedance. The fractional derivative (1) can be
simplified if applied to plane waves in the exponential form, i.e.,
Dν

ye
−ıky = (−ık)νe−ıky. If Ez(x, y) describes a plane wave incident to

the boundary y = 0 by the angle θ0, i.e., Ez(x, y) = e−ık(x cos θ0+y sin θ0),
where k = 2π/λ is the wave number, then from equation (4) the
relation between fractional order ν and impedance ην can be derived
as

ν =
1
ıπ

ln
(

1 − ην sin θ0
1 + ην sin θ0

)
, ην =

1
ı sin θ0

tan
πν

2
(5)

The same relation was obtained by N. Engheta [5, 16]. As it follows
from (5) for values of the fractional order 0 < ν < 1 the special
impedance ην is always a pure imaginary value.

2. PROBLEM FORMULATION

A two-dimensional problem of electromagnetic wave diffraction by
a plane strip with FBC (3) is in the focus of our study. Let us
assume that an E-polarized plane wave, described by the function
U0(x, y) ≡ E0

z (x, y), is an incident field scattered by a strip located
at the plane y = 0 and infinite along the axis z. The width of the strip
is 2a. The incident field U0(x, y) is coming from the half space y > 0
and can be described by the following expression:

U0(x, y) = e−ık
(
xα0+y

√
1−α2

0

)
(6)

where α0 = cos θ0, θ0 is the incidence angle. Here the time dependence
is assumed to be e−ıωt and deprecated throughout the paper. The
scattered field is denoted by the function Ur(x, y) , then the total field
U(x, y) is a sum of the incident and scattered fields, i.e.,

U(x, y) = U0(x, y) + Ur(x, y) (7)

The solution U(x, y) should satisfy the following conditions:
- the Helmholtz equation everywhere outside the strip:

∂2U

∂x2
+
∂2U

∂y2
+ k2U = 0;



446 Veliev, Ivakhnychenko, and Ahmedov

- the radiation condition [19] at infinity:

lim
r→∞

√
r

(
∂Ur

∂r
− ıUr

)
= 0, r =

√
x2 + y2;

- the Meixner’s condition [19] on the edges of the strip;
- FBC on the strip surface:

Dν
ky[U0(x, y) + Ur(x, y)]|y=0 = 0, −a < x < a (8)

Here for convenience the fractional derivative is applied with respect
to the non-dimensional variable ky. Following [1, 20] we can write
the representation of the Ur(x, y) through fractional Green’s function
(FGF) Gν :

Ur(x, y) ≡
∫ a

−a
f1−ν(x′)Gν(x− x′, y)dx′ (9)

where FGF Gν is defined in the two-dimensional case as follows

Gν(x− x′, y) = − ı

4
Dν

kyH
(1)
0

(
k
√

(x− x′)2 + y2

)
(10)

Here H(1)
0 (x) is the Hankel function of the first kind. The function

f1−ν(x) that describes the potential density in the integral (9), is the
discontinuity of the fractional derivative of U(x, y) on the plane y = 0:

f1−ν(x) = D1−ν
ky U(x, y)|y=+0 −D1−ν

ky U(x, y)|y=−0, x ∈ (−a, a) (11)

It will be shown later that electrical and magnetic surface currents can
be derived from the function f1−ν(x).

The scattered field expression (9) is a particular case of more
general representations obtained in the papers [20, 21], where for the
fractional derivative of the function U(�r ) that satisfies the Helmholtz
equation was derived as

Dβ
kyU(�r ) =

∮
S0

[Dν
ky0
G(�r, �r0)∇0D

β−ν
ky0

U(�r0)

−Dβ−ν
ky0

U(�r0)∇0D
ν
ky0
G(�r, �r0)]ds0 (12)

Here 0 ≤ ν ≤ 1, 0 ≤ β ≤ 1, �r is outside S0, and G(�r, �r0) is the Green’s
function of free space. If β = 0 in (12) we obtain

U(�r ) =
∮
S0

[Dν
ky0
G(�r, �r0)∇0D

−ν
ky0
U(�r0)

−D−ν
ky0
U(�r0)∇0D

ν
ky0
G(�r, �r0)]ds0 (13)
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It follows from (13) that if the function U(�r ) satisfies FBC (8) then the
presentation (9) is valid for the surface S0 that represents a contour
of the strip. The “fractional potential” in (9) can be considered as
intermediate potential between the simple layer potential (ν = 0,
f1−ν(x)|ν=0 = f1(x) = f ′(x)) and the double layer potential (ν = 1,
f1−ν(x)|ν=1 = f0(x) = f(x)). In particular cases when the fractional
order (FO) ν = 0 or ν = 1, the above presentations (9), (11) can be
reduced to the form that usually used for the boundary conditions of
the Dirichlet and Newmann type [18, 19]:

U(x, y) =


− ı

4

∫ a

−a
f (1)(x′)H(1)

0

(
k
√

(x− x′)2+y2

)
dx′, ν = 0

ı

4

∫ a

−a
f(x′)

∂

∂y
H

(1)
0

(
k
√

(x− x′)2+y2

)
dx′, ν = 1

(14)

f1−ν(x) =


∂U(x, y)

∂y

∣∣∣∣
y=+0

− ∂U(x, y)
∂y

∣∣∣∣
y=−0

, ν = 0

U(x,+0) − U(x,−0), ν = 1

(15)

3. SOLUTION TO THE PROBLEM

In order to find the function f1−ν(x) we satisfy the total field to FBC
(8):

lim
y→0

Dy
ky

∫ a

−a
f1−ν(x′)Gν(x− x′, y)dx′ = − lim

y→0
Dy

kyU0(x, y) (16)

The fractional differential-integral equation (16) is the main equation
of the boundary value problem, but it is more convenient to reduce the
equation to the pure integral equation (IE) using the Fourier transform
(FT) of the function f1−ν(x). In order to derive the integral equation
we assume that f1−ν(x) is zero outside the interval [−a, a]. Then
for the function f1−ν(x) and its FT F 1−ν(α) we have the following
expressions

f̃1−ν(ξ) =
ε

2π

∫ ∞

−∞
F 1−ν(α)eıεαξdα, f̃1−ν(ξ) = af1−ν(aξ)

F 1−ν(α) =
∫ 1

−1
f̃1−ν(ξ)e−ıεαξdα (17)

Here in (17) the dimensionless coordinate ξ = x
a is introduced, and the

frequency parameter is ε = ka. We use the spectral representation of
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the Hankel function H
(1)
0 (k

√
(x− x′)2 + y2) [19]

H
(1)
0 (k

√
(x− x′)2 + y2) =

1
π

∫ ∞

−∞
eık((x−x′)α+|y|

√
1−α2) dα√

1 − α2
(18)

where the branch of the multi-valued function
√

1 − α2 is chosen so
that the radiation conditions are satisfied (Im

√
1 − α2 > 0).

Then using (18) we obtain the expression for the FGF Gν(x−x′, y)

Gν(x− x′, y) = − ıe
±ıπν/2

4π

∫ ∞

−∞

eık((x−x′)α+|y|
√

1−α2)

(1 − α2)(1−ν)/2
dα (19)

where upper sign in the exponential function is used for y > 0, and the
lower one is used for y < 0. Using the formula (19) we can derive the
presentation for the scattered field (9)

Ur = Er
z(x, y) = − ıe

±ıπν/2

4π

∫ ∞

−∞
F 1−ν(α)

eık(xα+|y|
√

1−α2)

(1 − α2)(1−ν)/2
dα (20)

Substituting the expression (17) and (19) into the fractional
differential-integral equation (16) we obtain the dual integral equations
(DIE) for the Fourier transform F 1−ν(α)

∫ ∞

−∞
F 1−ν(α)

eıεαξ

(1−α2)(1−ν)/2
dα=−4π

eıπ(1−ν)/2e−ıεα0ξ

(1−α2
0)−ν/2

, ξ ∈ [−1,1]

∫ ∞

−∞
F 1−ν(α)eıεαξdα = 0, |ξ| > 1

(21)

The simplified versions of the system of DIE (21) if ν = 0 and ν = 1
were studied in [19, 22–24], where various methods were proposed to
solve the problem. It can be noted that the system of DIE (21) for
ν = 0 describes the problem of diffraction of E-polarized wave on a
plane PEC infinitely thin strip, while for ν = 1 the system describes
the diffraction problem on a PMC strip.

4. DUAL INTEGRAL EQUATIONS

Usage the system of DIE (21) is more general approach and it includes
some particular cases described by DIE obtained in previous studies.
To solve these DIE we propose the generalized method based on the
previous work published in [24].
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Before describing the approach we consider one interesting case
when the fractional order ν = 0.5. F 1−ν(α) from the system (21) is
the Fourier transform of the function

f̃0.5(ξ) = −2ıε(1 − α2
0)

1/4e−ıεα0ξ+ıπ/4 (22)

and F 1−ν(α) equals to

F 0.5(α) = −4ı(1 − α2
0)

1/4eıπ/4 sin ε(α+ α0)
α+ α0

(23)

It means that for the fractional order ν = 0.5 the system of DIE has
an analytical solution in the form (22), (23).

Now we build a solution of (21) in the general case of 0 < ν < 1.
The function f̃1−ν(ξ) must satisfy the edge conditions for ξ → ±1.
For special cases ν = 0 and ν = 1 the edge conditions have the form
[19, 24]

f̃1−ν(ξ) =


O

(
(1 − ξ2)−1/2

)
, ν = 0

O
(
(1 − ξ2)1/2

)
, ν = 1

, ξ → ±1 (24)

The equations (24) are well-known Meixner’s edge conditions in
diffraction problems [19]. In general case we assume that f̃1−ν(ξ)
satisfy the edge conditions in the following form [24]

f̃1−ν(ξ) = O
(
(1 − ξ2)ν−1/2

)
, ξ → ±1 (25)

In order to satisfy the conditions (25) we use the Gegenbauer
polynomials series representation for f̃1−ν(ξ):

f̃1−ν(ξ) = (1 − ξ2)ν−1/2
∞∑

n=0

fν
n

1
ν
Cν

n(ξ) (26)

Here fν
n are unknown coefficients, Cν

n(ξ) are Gegenbauer polynomials,
which in special cases ν = 0 or ν = 1 are expressed as [27]

lim
ν→0

Cν
n(ξ)
ν

=


2
n
Tn(ξ), n 
= 0

1, n = 0

lim
ν→1

Cν
n(ξ)
ν

= C1
n(ξ) = Un(ξ) (27)



450 Veliev, Ivakhnychenko, and Ahmedov

where Tn(ξ) and Un(ξ) are Chebyshev polynomials of the first and
second type, respectively. We may say that Gegenbauer polynomials
are the intermediate polynomials between Chebyshev polynomials of
the first and second kind.

Using Equation (26) we can obtain the presentation for F 1−ν(α)

F 1−ν(α) =
2π

Γ(ν + 1)

∞∑
n=0

(−ı)νxν
n

Jn+ν(εα)
(2εα)ν

(28)

where Jn+ν(x) are Bessel functions, and xν
n = Γ(n+2ν)

Γ(n+1) f
ν
n .

The first equation in (21) multiplied by e−ıεβξ and integrated by ξ
from −1 to 1 can be rewritten in the more convenient form as follows∫ ∞

−∞
F 1−ν(α)

sin ε(α− β)
α− β

(1 − α2)ν−1/2dα

= −4πeıπ(1−ν)/2(1 − α2
0)

ν/2 sin ε(β + α0)
β + α0

(29)

Substituting (28) into (29) and taking into account the properties
of discontinuous integrals of Weber-Shafheitlin [25] and the formula
[19, 26]

1
π

∫ ∞

−∞

Jn+ν(εα)
αν

sin ε(α− β)
α− β

dα =
Jn+ν(εβ)

βν
(30)

we can show that homogenous equation in the system (21) is satisfied
and the coefficients fν

n can be found as a solution of infinite system of
linear algebraic equations (ISLAE)

∞∑
n=0

(−ı)nxν
nC

ν
kn = γν

k , k = 0, 1, 2, . . . (31)

with the following matrix elements

Cν
kn =

∫ ∞

−∞
Jn+ν(εα)Jk+ν(εα)(1 − α2)ν−1/2 dα

α2ν
(32)

and
γν
k = −2Γ(ν + 1)(2ε)νı1−ν(1 − α2

0)
ν/2Jk+ν(εα0)

α0
(33)

Since coefficients fν
n are found, the potential density function f̃1−ν(ξ)

and F 1−ν(α) can be calculated using the formulas (26) and (28),
respectively.
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Now we will show that the ISLAE (31) can be reduced to ISLAE of
the Fredholm type of the second kind. For this purpose let’s introduce
the function δν(α)

δν(α) ≡ |α|2ν−1eıπ(ν−1/2)

[(
1 − 1

α2

)ν−1/2

− 1

]
δν(−α) = δν(α)

δν(α)|ν=1/2 = 0 (34)

For α → ∞ the function δν(α) behavior is described by the
following expression:

δν(α) = O
(
(ν − 1/2)α2ν−3

)
, α→ ∞ (35)

It follows from (34) that

(1 − α2)ν−1/2

α2ν
=
δν(α)
α2ν

+
eıπ(ν−1/2)

|α| (36)

Taking the expression (36) into account the matrix elements Cν
kn

can be represented as the sum

Cν
kn = C1ν

kn + C2ν
kn (37)

where

C1ν
kn = eıπ(ν−1/2)

[
1 + (−1)k+n

] ∫ ∞

0
Jk+ν(εα)Jn+ν(εα)

dα

α

C2ν
kn =

[
1 + (−1)k+n

] ∫ ∞

0
Jk+ν(εα)Jn+ν(εα)δν(α)

dα

α2ν
(38)

The integral in the expression for the coefficient C1ν
kn is evaluated

analytically [26]:

C1ν
kn = eıπ(ν−1/2) 1

k + ν
δkn (39)

where δkn is the Kronnecker symbol.
Finally, we obtain the ISLAE:

xν
k +

∞∑
n=0

xν
nC̃

2ν
kn = γ̃ν

k , k = 0, 1, 2, . . . (40)

where

C̃2ν
kn = (−1)n−k

[
1 + (−1)k+n

]
(k + ν)e−ıπ(ν−1/2)C2ν

kn

γ̃ν
k = ık(k + ν)e−ıπ(ν−1/2)γν

k (41)
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It can be shown that
∞∑

k=0

∞∑
n=0

|C̃2ν
kn|2 <∞,

∞∑
k=0

|γ̃ν
k |2 <∞ (42)

It means that ISLAE (40) is SLAE of the Fredholm type of second
kind and the unknown coefficients fν

n can be calculated with any given
accuracy using the reduction method of solving infinite SLAEs [24].

It can be shown that in a particular case ν = 0.5 ISLAE (40)
has a more simple form and can be solved analytically. Indeed, the
coefficient C̃2ν

kn|ν=0.5 = 0 in (40). Then the unknown coefficients f0.5
n

can be obtained in explicit analytical form

f0.5
n = x0.5

n = γ̃0.5
n = −ı

√
πε

2α0
eıπ/4(−ı)n (2n+ 1)

(1 − α2
0)−1/4

Jn+0.5(εα0) (43)

Substituting the coefficients f0.5
n into (26) and (28) we get

f̃1−ν(ξ)|ν=0.5 = 2
∞∑

n=0

f0.5
n C0.5

n (ξ) (44)

F 1−ν(α)|ν=0.5 = 4
√
π

∞∑
n=0

(−ı)nf0.5
n

Jn+0.5(εα)√
2εα

(45)

Using formulas [27]

2εe−ıεα0ξ =

√
2πε
α0

∞∑
n=0

(−ı)n(2n+ 1)Jn+0.5(εα0)C0.5
n (ξ) (46)

and [26]

∞∑
n=0

(−1)n(n+ 0.5)Jn+0.5(εα)Jn+0.5(εα0) =
√
αα0 sin ε(α+ α0)
π(α+ α0)

(47)

we finally obtain the same expression for f̃0.5(ξ) and F 0.5(α) as in (22),
(23).

5. PHYSICAL CHARACTERISTICS OF THE
SCATTERED FIELD

In this section we present the expressions for the radiation pattern
(RP), monostatic and bistatic radar cross sections (RCS), and densities
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of the surface currents. These expressions will be used to analyze the
electromagnetic characteristics of the scattered field.

Let’s derive the expression for the field Er
z(x, y) in the far-zone

kr → ∞. In the cylindrical coordinate system (r, φ), x = r cosφ, y =
r sinφ the scattered field (20) is

Er
z(r, φ) =

ı

4π
(±ı)ν

∫ ∞

−∞
F 1−ν(cosβ)eıkr cos(φ±β) sinν βdβ, (48)

where the upper sign is chosen for the values φ ∈ [0, π], and the lower
sign for φ ∈ [π, 2π]. If kr → ∞ we can use the method of stationary
phase to derive the expression for Er

z(x, y) as follows

Er
z(r, φ) ≈ A(kr)Φν(φ), kr → ∞, (49)

where

A(kr) =
√

2
πkr

eıkr−ıπ/4,

Φν(φ) = − ı

4
(±ı)νF 1−ν(cosφ) sinν φ (50)

The function Φν(φ) denotes the radiation pattern (RP) of the scattered
field that can be expressed via the coefficients fν

n

Φν(φ) =
πı(±ı)ν

2Γ(ν + 1)
tanν φ

∞∑
n=0

(−ı)nxν
n

Jn+ν(ε cosφ)
(2ε)ν

(51)

Using the physical optics (PO) approximation when ε = ka → ∞ we
can derive a simple expression for the function Φν(φ). Substituting the
formula

lim
ε→∞

sin ε(α− β)
α− β

= πδ(α− β) (52)

in the integral equation (29) the expressions for F 1−ν(β) and Φν(φ)
can be obtained in the following form

F 1−ν(β) ≈ −4ıν
(1 − α2

0)
(1−ν)/2

(1 − β2)1/2−ν

sin ε(β + α0)
β + α0

(53)

Φν(φ) ≈ (∓1)ν sinφ(
sin θ0
sinφ

)ν
sin ε(cosφ+ cos θ0)

(cosφ+ cos θ0)
(54)

In the particular case ν = 0.5 and for all values of ε = ka we have the
exact analytical expression:

Φ0.5(φ) = (∓1)1/2
√

sinφ sin θ0
sin ε(cosφ+ cos θ0)

(cosφ+ cos θ0)
(55)
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The formula for the bi-static RCS [30] σ2d(bistatic)
λ is derived from the

expression for RP Φν(φ) using the PO approximation

σ2d(bistatic)
λ

=
2
π
|Φν(φ)|2

=
2
π

sin2 φ

(
sin θ0
sinφ

)2ν [
sin ε(cosφ+ cos θ0)

(cosφ+ cos θ0)

]2

, ε = ka→ ∞ (56)

The formula for the monostatic RCS can be defined from the bistatic
RCS expression using the observation angle φ = θ0

σ2d(monostatic) =
2
π

sin2 θ0

[
sin ε(2 cos θ0)

(2 cos θ0)

]2

, ε = ka→ ∞ (57)

The surface currents are defined as the discontinuity of the field
components on the strip. For the E-polarization case the electric
currents have only z-components, �jν(e) = �zjν(e), and the magnetic
currents have only x-components, �jν(m) = �xjν(m).

jν(e) = −(Hx(x,+0) −Hx(x,−0)),

jν(m) = −(Ez(x,+0) − Ez(x,−0)) (58)

jν(e) =
ı

2π
cos

(
πν

2

)
Bν(x) =

 f0(x), ν = 0,

0, ν = 1

jν(m) = − 1
2π

sin
(
πν

2

)
Aν(x) =

 f (1)(x), ν = 1,

0, ν = 0
(59)

where

Aν(x) =
∫ ∞

−∞
F 1−ν(α)eıkαx(1 − α2)(ν−1)/2dα,

Bν(x) =
∫ ∞

−∞
F 1−ν(α)eıkαx(1 − α2)ν/2dα (60)

It is obvious from (59) that there are only electric (ν = 0) or magnetic
(ν = 1) currents for the limit cases of the fractional order ν = 0 or
ν = 1, however there are both electric and magnetic surface currents
for intermediate values 0 < ν < 1. This fact is the result of using
fractional Green’s function.
The ratio of two currents

j
ν(m)
x (x)

j
ν(e)
z (x)

= ı tan
(
πν

2

)
Aν(x)
Bν(x)

, x ∈ (−a, a) (61)
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In the PO approximation (ε → ∞) the integrals Aν(x), Bν(x) can be
expressed as

Aν(x) ≈ −4πı1+νe−ıkα0x, Bν(x) ≈ −4πı1+ν(1 − α2
0)

1/2e−ıkα0x (62)

and the ratio (61)

j
ν(m)
x (x)

j
ν(e)
z (x)

≈ 1
ı sin θ0

tan
(
πν

2

)
= ην (63)

It is well known that the value of the impedance in the impedance
boundary conditions can be expressed as the ratio of the surface current

components [18] j
ν(m)
x (x)

j
ν(e)
z (x)

.

For the value ν = 0.5 the equation (63) has an explicit form for
all values of ε:

j
ν(m)
x (x)

j
ν(e)
z (x)

∣∣∣∣∣
ν=0.5

=
1

ı sin θ0
(64)

The relation for the electric currents (63) proves the fact that the
fractional boundary conditions are similar to the impedance boundary
conditions and in the PO approximation the ratio of the surface
currents is the same as for the impedance strip. The fractional
boundary conditions result in the presence of both the electric and
magnetic surface currents on the strip and the ratio of the currents is
equal to the impedance in the PO approximation. In general case of
arbitrary value of ε the impedance can be introduced as the ratio (61)
that can be calculated numerically by solving the diffraction problem.

6. NUMERICAL RESULTS

We used the reduction method to solve the ISLAE (31) numerically and
calculated the values of the coefficients fν

n . The physical characteristics
such as the monostatic RCS, the bistatic RCS and the fractional
potential density f̃1−ν(ξ) have been analyzed using the formulas (26),
(51).

Figures 1–3 show the comparison of the monostatic RCS for
different values of the fractional order ν and frequency parameter
ε. The results for ν = 0 and ν = 1 are in perfect agreement with
the results obtained in [28–30]. The results for ν = 0.5 obtained
numerically by solving ISLAE are in a good agreement with the results
obtained using the analytical formulas.

All the curves for the monostatic RCS for all values of ν have
similar behavior and have the same value for the incident angle
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Figure 1. Monostatic RCS as a function of the incidence angle for
the frequency parameter ε = π and different values of fractional order
ν.

Figure 2. Monostatic RCS as a function of the incidence angle for the
frequency parameter ε = 2π and different values of fractional order ν.
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Figure 3. Monostatic RCS as a function of the incidence angle for
the frequency parameter ε = 2 and different values of fractional order
ν.

θ0 = 90◦. All the curves have minimums for certain values of θ0,
however there are resonances observed for ν = 0.5 near these angles.

It should be noted that for small values ε (see Fig. 3 for ε = 2)
the monostatic RCS for ν = 0.5 has a specific resonance that is not
observed for the other values of ν. Using the equation (23) for ν = 0.5
the resonance angles θr can be found from the following formula

2ε cos θr = πn, n = 1, 2, . . .

cos θr =
πn

2ε
, | cos θr| < 1 (65)

It means that resonances start to exist from the value ε = π/2 that
corresponds to 2a = λ/2. In this case the FBC (8) describe the
impedance boundary with the value of the impedance η0.5 = −ı 1

sin θr
.

For example, for the value ε = 2 (see Fig. 3) the resonance angle is
θr = arccos(π/4) ≈ 38◦ corresponded to the impedance η0.5 ≈ −1.61ı.

Figures 4 and 5 present the bistatic RCS for the value ε = 2π and
the incident angles θ0 = 90◦ and θ0 = 60◦.

Figures 6 and 7 show the fractional potential densities f̃1−ν(ξ).
The currents for values ν = 0 and ν = 1 correspond to the electric
current j

0(e)
z on PEC and the magnetic current j

1(m)
x on PMC,

respectively. It is interesting to note that the fractional density for
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Figure 4. Bistatic RCS as a function of the observation angle for
the frequency parameter ε = 2π, incident angle θ0 = 90◦ and different
values of fractional order ν.

Figure 5. Bistatic RCS as a function of the observation angle for
the frequency parameter ε = 2π, incident angle θ0 = 60◦ and different
values of fractional order ν.
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Figure 6. Fractional potential density f̃1−ν(ξ) as a function of
coordinate for the frequency parameter ε = 2π, incident angle θ0 = 90◦
and different values of fractional order ν.

Figure 7. Fractional potential density f̃1−ν(ξ) as a function of
coordinate for the frequency parameter ε = 2π, incident angle θ0 = 60◦
and different values of fractional order ν.
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intermediate case ν = 0.5 has no singularity as it is described by the
formula (22).

7. CONCLUSION

In this study new FBC have been introduced. FBC are characterized
by the value of the fractional order ν between 0 and 1. The problem
of diffraction of plane wave by a strip with FBC has been formulated
and has been reduced to dual integral equations (DIE). To solve DIE
known method has been extended. For the limit cases ν = 0 and ν = 1
FBC describe PEC and PMC, respectively. Fractional boundary can
be treated as impedance boundary with impedance of special kind.
The relation between fractional order and impedance is shown. Like
impedance boundary fractional boundary supports both electric and
magnetic currents. Specific properties of the scattered field by such
boundary are analyzed and numerical results for monostatic RCS,
bistatic RCS and fractional potential densities are presented. One
special case of the FBC where ν = 0.5 has interesting features. Indeed,
this intermediate case allows to obtain a solution in explicit form
and estimates new features for radar cross sections. We believe that
FBC can be a useful technique for the description of solutions to the
diffraction problems for specific boundaries in terms of the fractional
order.
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