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Fractional green’s function and fractional boundary con-

ditions in diffraction of electromagnetic waves on plane

screens

E.I. Veliev, T.M. Ahmedov, M.V. Ivakhnychenko

Abstract. Proposed method to solve difference-integral equation of a special type, arising in
problems of diffraction by boundaries is described by fractional boundary condition (FBC). The
method is considered on two boundaries – a strip and a half-plane with FBC when the fractional
order varies from 0 to 1. The proposed method is based on application of orthogonal polynomi-
als. Gegenbauer polynomials orthogonal on interval (−1, 1) are utilized for a strip, while Lager
polynomials orthogonal on interval (0,∞) are used for a half-plane. One important feature of the
considered integral equations is noted: these equations can be solved analytically for one special
intermediate value of the fractional order (FO) α = 0, 5 and it can be done for any value of the
frequency.
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1. Introduction

Let us assume that an E-polarized plane wave, described by the function ~Ei = ~zEi
z (x, y)

= ~ze−ik(x cos θ+y sin θ), is an incident field scattered by a strip or a half-plane located at the
plane y = 0 and infinite along the axisz. θ is an incidence angle, k = 2π/λ is a wave
number. The time dependence is assumed to be e−iω t and argued throughout the paper.

Solution of a diffraction problem on a plane screen S is to be solved under the following
conditions:

- The total electric field ~E = ~zEz (x, y) satisfies Helmholtz equation outside the screen

(

∂2

∂x2
+

∂2

∂y2
+ k2

)

Ez (x, y) = 0;

- The scattered electric field Es
z(x, y) satisfies the radiation condition at the infinity:

lim
r→∞

√
r

(

∂Es
z

∂r
− iEs

z

)

= 0, r =
√

x2 + y2;
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- Meixner’s edge conditions;
- The total field Ez (x, y) satisfies suitable boundary conditions on the screen.
Classic electromagnetic theory deals with ordinary derivatives and integrals. Maxwell

equations are the main equations that relate electric and magnetic fields via curl operator
which is expressed by ordinary derivatives. Classic models and concepts in electromag-
netics can be generalized by utilizing fractional operators.

Fractional operators have found many applications in various problems of electromag-
netics. These operators are defined as fractionalizations of some commonly used operators.
For example, fractional derivatives and integrals [20], [14] are generalizations of derivative
and integral. Fractional curl operator defined by N. Engheta [5] is a fractionalized ana-
logue of conventional curl operator. The detailed description of fractional calculus one can
find in books [20], [14].

Fractionalization of operators is interesting from theoretical and practical points of
view. Fractional Fourier transform and its applications were studied by V. Namias, A.
W. Lohmann, D. Mendlovic and H. M. Ozaktas [9],[? ],[15]. Fractionalization of Hankel
transform was considered in [13]. Differential equations of fractional order are discussed
in book [16], where was noted that the classical solution to diffraction problem on a wedge
can be expressed using the fractional derivative of the order 1/2.

It was shown by A.Turski [21] that Helmholtz equation has four eigen solutions, each is
expressed using the fractional derivative of the order 1/2. It must be noted that the kernel of

Riemann-Liouville integral when the fractional order equal to 1/2 is similar to the integral
kernel frequently used in reflection problems. In some cases application of fractional
derivatives allows to reduce the problem to more simple equations. For instance, it can
be done for parabolic Schrdinger equation and wave equation in parabolic approximation
[12].

It is possible to introduce fractional Green’s function Gα by using fractional derivatives
that is defined as fractional derivative of the ordinary Green’s function of the free space.
In two-dimensional case (0 ≤ α ≤ 1) Gα can be expressed as [4]:

Gα
(

x− x′, y
)

= −i/4Dα
kyH

(1)
0

(

k

√

(x− x′)2 + y2
)

,

where H
(1)
0 (x) is Hankel function of the first kind of zeroth order.

We use the symbol Dα
y f throughout the paper to denote operator −∞D

α
y f which is

defined by the integral of Riemann-Liouville on semi-infinite interval [20]:

−∞D
α
y f (y) =

1

(1− α)

d

dy

∫ y

−∞

f (t)

(y − t)α
dt,

where Γ (α) is Gamma function, f ∈ L1. Fractional Green’s function Gα corresponds
to one-dimensional and two-dimensional Green’s functions for special cases of fractional
order (FO) α = 0 and α = 1, respectively [4].

Fractional Green’s function can be used to generalize Green’s theorem. The idea was
formulated by E.I.Veliev and N.Engheta [24]. The source-free case of fractional Green’s
theorem is expressed as [23]:
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−∞D
µ+ν
x ψ (r) =

1

4π

∮

S

[

−∞D
ν
x0
G (r, r0) grad0−∞D

µ
x0
ψ (r0)−

−−∞D
µ
x0
ψ (r0) grad0−∞D

ν
x0
G (r, r0)

]

ds0, (1)

where the point r is inside the surface S. −∞D
β
xψ (r) = 0 when r is outside S. Special

cases of fractional Green’s theorem were studied in [23]. Green’s theorems are useful tools
to present functions which describe scattered fields in scattering problems. Scattered field
outside a scattering object, where boundary conditions are introduced, is usually of major
interest. The scattered field is presented as integral over the object’s surface with an
unknown density function.

If one completes the equation (1) with boundary conditions (BC) and conditions on
the infinity (~r → ∞) then the representation for −∞D

α
xψ (r) can be obtained that is true

for outer domain. This representation will be used in this paper for representation of a
scattered field. Fractional Green’s theorem yields to consideration of boundary conditions
with fractional derivative.

Fractional Green’s theorem will be used to present the scattered field via fractional
Green’s function. This representation yields to the fractional order difference-integral
equation (FODIE). The method to solve this FODIE is proposed for the cases when the
FO α ∈ [0, 1]. For the limit cases of FO α = 0 and 1 the equation is reduced to known
integral equations used for perfect electric conductor (PEC) and perfect magnetic con-
ductor (PMC) boundaries, respectively. The proposed method generalizes known method
used for PEC and PMC strip and half-plane. As will be shown later the method allows
obtaining a solution for one value α = 0, 5 in an explicit analytical form.

The purpose of this work is to build an effective analytic-numerical method to solve
two-dimensional problems of scattering by boundaries described by fractional boundary
conditions (FBC) with FO α ∈ [0, 1]. The proposed method is applied to model scattering
objects – a strip and a half plane.

The method is based on presenting the unknown function as a series of orthogonal
polynomials: Gegenbauer polynomials for a strip and Lager polynomials for a half-plane.
The degree of polynomials and the weight functions depend on the FOα. These representa-
tions result in special type of edge conditions. The FO is chosen so that it allows satisfying
edge conditions. FODIE can be reduced to coupled integral equations (CIE) using Fourier
transform. Then, using the properties of discontinuous integrals of Weber-Schafheitling
(for a strip) and Fourier representation for Lager polynomials (for a half-plane), the CIE
are reduced to the infinite system of linear algebraic equations (SLAE) in respect to un-
known coefficients in series of orthogonal polynomials. SLAE allows obtaining the solution
with any desired accuracy using the reduction method. Physical characteristics of the con-
sidered scattering objects can be obtained from the coefficients found by solving SLAE.

2. Strip with fractional boundary conditions

Let us consider a two-dimensional problem of diffraction of E-polarized plane wave on
a strip with FBC
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Dα
kyEz (x, y) = 0, y → ±0, −a < x < a. (2)

Here, for convenience, the fractional derivative is applied with respect to dimensionless
variable ky. An infinitely thin strip of width 2a is located in the plane y = 0 and infinite
along the axis z. The incident field ~Ei = ~zEi

z (x, y) is described by expression Ei
z (x, y) =

e−ik(x cos θ+y sin θ), where θ is the incidence angle, k = 2π/λ is the wave number. Time
dependence is assumed to be e−iωt and deprecated throughout the paper. The scattered
field is defined by the function ~Es = ~zEs

z (x, y). The total field ~E = ~zEz (x, y) is a sum
of the incident field and scattered field: Ez = Ei

z + Es
z . The solution of the problem, i.e.

function Ez (x, y), must satisfy the following conditions:

1) Helmholtz equation outside the strip;

2) Radiation conditions of Zommerfeld at the infinity (for the scattered field only
Es

z (x, y));

3) Edge conditions (for y = 0, x→ ±a);

4) Fractional boundary conditions (FBC) (2).

We present the scattered field Es
z (x, y) via the fractional Green’s function

Es
z (x, y) ≡

∫ a

−a
f1−α

(

x′
)

Gα
(

x− x′, y
)

dx′, (3)

where f1−α (x) is an unknown function named density of the fractional potential. The
representation (3) comes from application of fractional Green’s theorem (1). For special
values of FO α = 0 and α = 1, the representation (3) is reduced to known representations
for single and double-layer potentials, commonly used to solve scattering problems for BC
of Dirichlet and Neumann types, respectively .

We get the following FODIE after substituting Ez (x, y) into FBC (2):

lim
y→0

Dα
ky

∫ a

−a
f1−α

(

x′
)

Gα
(

x− x′, y
)

dx′ = − lim
y→0

Dα
kyE

i
z (x, y) , (4)

where the right part of the equation is the known function and f1−α (x) is an unknown
function to be found.

It is convenient to use Fourier transform. Let us introduce dimensionless variable
ξ = x/a and a new function f̃1−α (ξ) ≡ af1−α (aξ) for ξ ∈ [−1, 1] and f̃1−α (ξ) ≡ 0 for
|ξ| > 1. The Fourier transform of the function f1−α (x) is defined as:

F 1−α (q) ≡
∫ 1

−1
f̃1−α (ξ) e−ikaξ qdξ, f̃1−α (ξ) =

ka

2π

∫ ∞

−∞
F 1−α (q) eikaξ qdq.

Using the spectral representation for the Hankel function H
(1)
0

(

k
√

(x− x′)2 + y2
)

like [7], [8]:
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H
(1)
0

(

k

√

(x− x′)2 + y2
)

=
1

π

∫ ∞

−∞
e
ik
[

(x−x′)q+|y|
√

1−q2
]

dq
√

1− q2
,

where Im
√

1− q2 > 0 , we obtain for the fractional Green’s function Gν (x− x′, y) ex-

pression Gα (x− x′, y − y′) = −ie±iπα/2

4π

∫∞
−∞ e

ik
[

(x−x′)q+|y−y′|
√

1−q2
]

(

1− q2
)(α−1)/2

dq.
Taking into account this we get the representation for the scattered field via the Fourier
image F 1−α (q):

Es
z (x, y) = −ie

±iπα/2

4π

∫ ∞

−∞

F 1−α (q) e
ik
(

qx+|y|
√

1−q2
)

(1− q2)(1−α)/2
dq.

Now FODIE (4) is reduced to the CIE in respect to the unknown function F 1−α (q):

{

∫∞
−∞ F 1−α (q) eikaξ q

(

1− q2
)α−1/2

dq = −4πeiπ/2(1−α) sinα θe−ikaξ cos θ , ξ ∈ [−1, 1] ,
∫∞
−∞ F 1−α (q) eikaξ qdq = 0 , |ξ| > 1.

(5)
It should be noted that CIE (5) for α = 0 results in CIE for a scattering by E-polarized

plane wave on a PEC infinitely thin strip, while for α = 1 CIE describes the problem of
diffraction on a PMC strip. CIE (5) is more general and includes other CIE considered
earlier.

Let us analyze one special case α = 0, 5, when the equation (5) has an analytical
solution for any value of the frequency parameter ka. Indeed, it is easy to obtain the
solution from (5) in the following form

f̃0,5 (ξ) = −2ika sin1/2 θ e−ika ξ cos θ+iπ/4, F 0,5 (q) = −4i sin1/2 θ eiπ/4
sin ka (q + cos θ)

q + cos θ
.

Let us know solution of the CIE (5) for general cases of 0 < α < 1. We require f̃1−α (ξ)
to have the following behavior on the edges

f̃1−α (ξ) = O
(

(

1− ξ2
)α−1/2

)

, ξ → ±1, (6)

since f̃1−α (ξ) must satisfy edge conditions for ξ → ±1. As special cases α = 0 and α = 1
these conditions have the form

f̃1−α (ξ) =







O
(

(

1− ξ2
)−1/2

)

, α = 0,

O
(

(

1− ξ2
)1/2

)

, α = 1,
ξ → ±1. (7)

The conditions (7) are well-known as Meixner’s edge conditions [6].
We will search f̃1−α (ξ) as a series by Gegenbauer polynomials which are orthogonal

on the interval (−1, 1):
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f̃1−α (ξ) =
(

1− ξ2
)α−1/2

∞
∑

n=0

fαn
1

α
Cα
n (ξ) , (8)

where fαn are unknown coefficients, for case when f̃1−α (ξ) satisfies the edge conditions (6).
It can be noted that Gegenbauer polynomials Cα

n (ξ) are reduced to Chebyshev polynomials
of the first and second kind Tn (ξ), Un (ξ) [1] when α = 0 and α = 1, respectively,

lim
α→0

Cα
n (ξ)

α
=

{

2
nTn (ξ) , n 6= 0 ,
1 , n = 0 ,

lim
α→1

Cα
n (ξ)

α
= C1

n (ξ) = Un (ξ) . (9)

From (9) we can say that the Gegenbauer polynomials are intermediate polynomials
between Chebyshev polynomials of the first and the second kind.

After application of Fourier transform to the series (8) and utilizing the property [8]:

∫ 1

−1

(

1− ξ2
)α−1/2

Cα
n (ξ) eibξ qdξ =

2π (−i)n (n+ 2α)

(n+ 1) (α)

Jn+α (bq)

(2bq)α
,

we obtain the representation for F 1−α as a series by Bessel functions:

F 1−α (q) =
2π

(α+ 1)

∞
∑

n=0

(−i)n fαn
(n+ 2α)

(n+ 1)

Jn+α (kaq)

(2kaq)α
. (10)

We modify the equation (5) by multiplying both parts by e−ikaξτ and integrating by ξ
from -1 to 1. Finally, we obtained

∫ ∞

−∞
F 1−α (q)

sin ka (q − τ)

q − τ

(

1− q2
)α−1/2

dq = −4πeiπ/2(1−α) sinα θ
sin ka (τ + cos θ)

τ + cos θ
.

(11)
After substituting expression (10) into integral equation (11) and using the following

relation for Bessel functions [8], [6]:

1

π

∫ ∞

−∞

Jn+α (εq)

qα
sin ε (q − β)

q − β
dq =

Jn+α (εβ)

βα
,

we get SLAE to find the coefficients fαn :

∞
∑

n=0

(−i)n (n+ 2α)

(n+ 1)
fαnC

α
kn = γαk , k = 0, 1, 2, ..., (12)

with the matrix coefficients defined as

Cα
kn

∫ ∞

−∞
Jn+α (kaq) Jk+α (kaq)

(

1− q2
)α−1/2 dq

q2α
,

γαk = −2 (α+ 1) (2ka)α i1−α sinα θ
Jk+α (ka cos θ)

cos θ
.
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Let us show that SLAE (12) can be reduced to SLAE of Fredholm type of the second
kind. We introduce function δα (β) as follows:

δα (β) = |β|2α−1 eiπ(α−1/2)

[

(

1− 1

β2

)α−1/2

− 1

]

, (13)

δα (−β) = δα (α) , δα (β)
/

α=0,5
= 0.

The function δα (β) has the following behavior at the infinity (β → ∞):

δα (β) = O
(

(α− 1/2) β2α−3
)

, β → ∞.

It results from [4] that

(

1− β2
)α−1/2

β2α
=
δα (β)

β2α
+
eiπ(α−1/2)

|β| . (14)

Taking into account the expression (14) matrix coefficients Cα
kn can be presented as a sum

Cα
kn = C1α

kn +C2α
kn ,

C1α
kn = eiπ(α−1/2)

[

1 + (−1)k+n
]

∫ ∞

0
Jk+α (kaq)Jn+α (kaq)

dq

q
,

C2α
kn =

[

1 + (−1)k+n
]

∫ ∞

0
Jk+α (kaq)Jn+α (kaq) δα (q)

dq

q2α
.

The integral in C1α
kn is expressed analytically [8, 211]: C1α

kn = eiπ(α−1/2) 1
k+αδkn, where δkn

is Kronecker symbol. Finally, we get modified SLAE

fαn +

∞
∑

n=0

fαn C̃
α
kn = γ̃αk , k = 0, 1, 2, ..., (15)

where

C̃2α
kn = (−1)n−k

[

1 + (−1)k+n
] (n+ 2α)

(n+ 1)

(k + 1)

(k + 2α)
(k + α) e−iπ(α−1/2)C2α

kn ,

γ̃αk = ik (k + α) e−iπ(α−1/2) (k + 1)

(k + 2α)
γαk .

It can be shown that the coefficients [7], [11] satisfy equations

∞
∑

k=0

∞
∑

n=0

∣

∣

∣
C̃2α
kn

∣

∣

∣

2
<∞ ,

∞
∑

n=0

|γ̃αk |2 <∞.
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It means that SLAE (15) is of Fredholm type of the second kind and the unknown
coefficients fαk can be found with any given accuracy using the reduction method of solving
infinite SLAE.

For the special case of the FO α = 0, 5 SLAE (15) is reduced to more simple system.
Indeed, we have C̃2α

kn�α=0,5 = 0. SLAE can be solved analytically

f0,5k = γ̃0,5k = ik (k + 0, 5) γ0,5k = −i
√

π k a

2 cos θ
eiπ/4 (−i)k (2k + 1) sin1/2 θ Jk+0,5 (ka cos θ) .

Substituting f0,5n into (8) and (10) we get the representations

f̃1−α (ξ)

/

α=0,5

= 2

∞
∑

n=0

f0,5n C0,5
n (ξ), F 1−α (q) =

2π

(3/2)

∞
∑

n=0

(−i)n f0,5n

Jn+0,5 (kaq)√
2kaq

.

Using the formulas [1, 185]:

2kae−ika cos θξ =

√

2πka

cos θ

∞
∑

n=0

(−i)n (2n+ 1) Jn+0,5 (ka cos θ)C
0,5
n (ξ) ,

and [8, 667]:

∞
∑

n=0

(−1)n (n+ 1/2)Jn+0,5 (εq0) Jn+0,5 (ε q) =

√
qq0

π (q + q0)
sin ε (q + q0) ,

we get the representations for f̃0,5 (ξ) and F 0,5 (α) which is confirmed with the expressions
obtained above. After the coefficients fαn are found, the function of potential density
f̃1−α (ξ) and its Fourier transform F 1−α (q) can be obtained from equations (8) and (10),
respectively.

Then we can obtain such electrodynamic characteristics of the scattered field as radi-
ation pattern (RP), monostatic radar cross-section (MRCS), total scattering cross-section
(TCS) and surface current densities. The scattered field Es

z (x, y) in the far-zone kr → ∞
in the cylindrical coordinate system (r, ϕ), x = r cosϕ , x = r sinϕ , is expressed as

Es
z (r, ϕ) =

i

4π
(±i)α

∫ +∞

−∞
F 1−α (cos β) eikr cos(ϕ±β) sinα β dβ,

where the upper sign is chosen for ϕ ∈ [0, π], and the bottom one when ϕ ∈ [π, 2π]. Using
the stationary phase method for kr → ∞ we present Es

z (x, y) as

Es
z (x, y) ≈ A (kr) Φα (ϕ) , kr → ∞,

where

A (kr) =

√

2

πkr
eikr−iπ

4 ,Φα (ϕ) = − i

4
(±i)α F 1−α (cosϕ) sinα ϕ.
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The function Φα (ϕ) describes RP and can be expressed via the coefficients fαn as

Φα (ϕ) =
πi (±i)α
2 (α+ 1)

tanα ϕ

∞
∑

n=0

(−i)n fαn
(n+ 2α)

(n+ 1)

Jn+α (ka cosϕ)

(2ka)α
.

In physical optics (PO) approximation Φα (ϕ) ( k << 1) has more simple form. Using
the following formula

lim
ka→∞

sin ka (α− β)

α− β
= πδ (α− β) ,

in IE (11) we get the expressions for Fα (q) and Φα (ϕ):

F 1−α (q) ≈ −4iα
sin1−α θ

(1− q2)(1−2α)/2

sin ka (q − cos θ)

q − cos θ
,

Φα (ϕ) ≈ (∓1)α sinϕ

(

sin θ

sinϕ

)α sin ka (cosϕ+ cos θ)

cosϕ+ cos θ
.

For the special case α = 0, 5 and any value of ka we get an analytical expression for
the RP

Φ0,5 (ϕ) = (∓1)1/2
√

sinϕ sin θ
sin ka (cosϕ+ cos θ)

cosϕ+ cos θ
.

Cross section (CS) σ2d
λ is expressed from RP Φ (ϕ) as σ2d

λ (ϕ) = 2
π |Φ (ϕ)|2. MRCS σmono

2D

is defined as σmono
2D = σ2d

λ (θ) = 2
π |Φ (θ)|2. We have in PO approximation the following

representations

σ2d
λ

=
2

π
sin2 ϕ

(

sin θ

sinϕ

)2α {sin ka (cosϕ+ cos θ)

cosϕ+ cos θ

}2

, k << 1,

σmono
2D =

2

π
sin2 θ

{

sin ka (2 cos θ)

2 cos θ

}2

, k << 1.

Surface currents are defined as the discontinuity of field components on the strip bound-
ary

jα(e)z = − (Hx (x,+0)−Hx (x,−0)) , jα(m)
x = − (Ez (x,+0)− Ez (x,−0)) .

In E-polarization case the electrical current has only one non-zero component,z-component,
~jα(e) = ~zj

α(e)
z , while the magnetic current has only x-component, ~jα(m) = ~xj

α(m)
x . Physical

current can be expressed via the fractional potential density f̃1−α (ξ) using the integrals

jα(e)z = −2i cos
(πα

2

) i

4π

∫ ∞

−∞
F 1−α (q) eikqx

(

1− q2
)α/2

dq, (16)
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jα(m)
x = −2 sin

(πα

2

) i

4π

∫ ∞

−∞
F 1−α (q) eikβx

(

1− q2
)α/2−1/2

dq. (17)

It is evident from equations (16), (17) that there exists only one current – electrical
(α = 0) or magnetic (α = 1) for the limit values of the FO. There are two currents on the
strip for intermediate values 0 < α < 1. This fact yields from fractional Green’s theorem.

One can find detailed numerical results for physical characteristics of the strip with
FBC in [20, 21].

In case when we have H-polarized incident plane wave ~H i
(

0, 0,H i
z

)

, where H i
z (x, y) =

e−ik(x cos θ+y sin θ), the method proposed above can be applied. We define FBC as

D1−α
ky Hz (x, y)

/

y→±0
=D1−α

ky

[

H i
z (x, y) +Hs

z (x, y)
]

/

y→±0
= 0 , x ∈ (−a, a) . (18)

Case α = 0 corresponds to diffraction of H-polarized plane wave on a PEC strip, while
case α = 1 describes diffraction of H-polarized plane wave on a PMC strip.

As before we present the scattered field via fractional Green’s function

Hs
z (x, y) ≡

∫ a

−a
fα

(

x′
)

G1−α
(

x− x′, y
)

dx′. (19)

After substituting (18) into FBC (19) we get the equation

lim
y→0

D1−α
ky

∫ a

−a
fα

(

x′
)

G1−α
(

x− x′, y
)

dx′ = − lim
y→0

D1−α
ky H i

z (x, y) .

This equation can be solved by repeating all steps as for E-polarization case just
changing α to 1− α.

3. Half-plane with fractional boundary conditions

Here we will consider a problem of scattering of plane waves by a half-plane . The
method introduced to solve integral equation (IE) for a finite object (a strip) will be
modified to solve IE for semi-infinite objects such as half-plane. There are many papers
devoted to classical problem of diffraction by a half-plane. The method to solve the
scattering problem for a perfectly conducting half-plane is presented in [7]. Usually, it is
solved using Wiener-Hopf method. First application of the method to a PEC half-plane
can be referred to the papers of Copson [3] in 1946 and independently to papers of Carlson
and Heins in 1947 [2]. In 1952 Senior first applied Wiener-Hopf method to a diffraction by
an impedance half-plane [17] and later oblique incidence was considered [18]. Diffraction
problems by a resistive and conductive half-plane and also by different types of junctions
are analyzed in details in [19].

We propose a new approach for a rigorous analysis of the considered problem which
generalized results [22] for PEC boundaries and include them as special cases. The pro-
posed method allowed to reduce the problem to a SLAE to find unknown coefficients of
series used in representation of the scattered field.
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Let an E-polarized plane wave Ei
z (x, y) = e−ik(x cos θ+y sin θ), where θ is an angle of

incidence, to be scattered by a half-plane (y = 0 , x > 0). The total field Ez = Ei
z + Es

z

satisfies FBC

Dα
kyEz (x, y) = 0, y → ±0 , x > 0. (20)

Also Meixner’s edge conditions must be satisfied for x→ 0 [7].
We present the scattered field using the fractional potential

Es
z (x, y) ≡

∫ ∞

0
f1−α

(

x′
)

Gα
(

x− x′, y
)

dx′, (21)

where f1−α (x) is an unknown function, Gα is fractional Green’s function defined earlier.
After substituting the total field into FBC (20) we get FODIE:

−i
4

lim
y→0

D2α
ky

∫ ∞

0
f1−α

(

x′
)

H
(1)
0

(

k

√

(x− x′)2 + y2
)

dx′ = − lim
y→0

Dα
kyE

i
z (x, y) , x > 0.

(22)
The Fourier transform of f1−α (x) is defined as

F 1−α (q) =

∫ ∞

−∞
f̃1−α (ξ) e−ikq ξdξ =

∫ ∞

0
f1−α (x) e−ikβxdx,

f̃1−α (ξ) =
k

2π

∫ ∞

−∞
F 1−α (β) eikβ ξdβ,

where f̃1−α (ξ) ≡ f1−α (ξ)(ξ > 0), f̃1−α (ξ) ≡ 0 (ξ < 0) . Using the technique proposed
for a strip with FBC, FODIE (22) is reduced to CIE

{

∫∞
−∞ F 1−α (q) eikξ q

(

1− q2
)α−1/2

dq = −4πeiπ/2(1−α) sinα θe−ikξ cos θ , ξ > 0 ,
∫∞
−∞ F 1−α (q) eikξ qdq = 0 , ξ < 0.

(23)

For one special case α = 0, 5 CIE (23) has an analytical solution

f1/2 (x) = −2 sin1/2 θ eiπ/4e−ikx cos θ, F 1/2 (q) = −2 sin1/2 θ eiπ/4
π

k
δ (q + cos θ) .

In this case the scattered field can be obtained in the following form

Es
z (x, y) =

i

2k
e±iπα/2eiπ/4 sinα−1/2 θ eik(− cos θ x+|y| sin θ).

Let us go back to a general case 0 < α < 1. The function f̃1−α (ξ) must satisfy edge
conditions for ξ → 0. Let f̃1−α (ξ) satisfies the following condition

f̃1−α (ξ) = O
(

ξα−1/2
)

, ξ → 0. (24)
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For special cases α = 0 and α = 1 edge conditions reduce to well-known equations
[23], [6] for perfectly conducting boundaries. We present the function f̃1−α as a series by
Lagger polynomials with unknown coefficients fαn [10]:

f̃1−α (x) = e−xxα−1/2
∞
∑

n=0

fαnL
α−1/2
n (2x) . (25)

The representation (25) guarantees that f̃1−α satisfies the edge conditions (24). After
substituting (25) into the first equation of (23) we get IE

∞
∑

n=0

fαn

∫ ∞

−∞

[
∫ ∞

0
e−ttα−1/2Lα−1/2

n (2t) e−ikqtdt

]

× eikξ q
(

1− q2
)α−1/2

dq = R (ξ) , (26)

whereR (ξ) = −4πeiπ/2(1−α) sinα θ e−ikξ cos θ is known. Using the representation for Fourier
transform of Lagger polynomials [8, 462] and making some transforms we reduce IE (26)
to

∞
∑

n=0

fαn
(n+ α+ 1/2)

(n+ 1)
×

∫ ∞

−∞

(ikq − 1)n

(ikq + 1)n+α+1/2

(

1− q2
)α−1/2

eikξq = R (ξ) , ξ > 0. (27)

To discretize the equation (27) we integrate both sides
∫∞
0 (·) e−ξξα−1/2L

α−1/2
m (2ξ) dξ and

get SLAE

∞
∑

n=0

fαnC
α
mn = Bα

m,m = 0, 1, 2 , ...,∞,

where the matrix elements are defined as

Cα
mn =

(n+ α+ 1/2)

(n+ 1)

∫ ∞

−∞

(ikq + 1)m−n−α−1/2

(ikq − 1)n−m−α−1/2

(

1− q2
)α−1/2

dq,

Bα
m = −4π eiπ/2(1−α) (−1)α+1/2 sinα θ (1− ik cos θ)m

(1 + ik cos θ)α+m+1/2
.

It can be shown that the unknown coefficients fαn can be found with any desired accuracy
by solving SLAE. f̃1−α (x) is expressed as the series (25) that allows to obtain the scattered
field (21).
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