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1. Introduction 

Tools of fractional calculus including fractional operators and transforms have been utilized 

in physics by many authors (Hilfer, 2000). Fractional operators defined as fractionalizations 

of some commonly used operators allow describing of intermediate states. For example, 

fractional derivatives and integrals (Oldham & Spanier, 1974; Samko et al., 1993) are 

generalizations of derivative and integral. Fractional curl operator defined in (Engheta, 

1998) is a fractionalized analogue of conventional curl operator used in many equations of 

mathematical physics. A fractionalized operator generalizes the original operator. The idea 

to use fractional operators in electromagnetic problems was formulated by N. Engheta 

(Engheta, 2000) and named “fractional paradigm in electromagnetic theory”. 

Our purpose is to find possible applications of the use of fractional operators in the 

problems of electromagnetic wave diffraction. In this paper two-dimensional problems of 

diffraction by infinitely thin surfaces are considered: a strip, a half-plane and a strip 

resonator (Fig.1). Assume that an incident field is an E-polarized plane wave, described by 

the function  

 ( cos sin )( , ) ik x yi i
zE zE x y ze θ θ− += =

  
, (1) 

 

 
       a)              b)          c) 

Fig. 1. Geometry of the diffraction problems: a) strip, b) half-plane, c) two parallel strips. 
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where θ  is the incidence angle, 
2

k
π

λ
=  is the wavenumber. Here, the time dependence is 

assumed to be i te ω−  and omitted throughout the paper. There are three structures 

considered in this paper: 

- a strip located in the plane 0y =  ( [ , ]x a a∈ − ) infinite along the axis z (Fig. 1a); 

- a half-plane ( 0y = , 0x ≥ ) (Fig. 1b); 

- two parallel strips infinite along the axis z (a strip resonator). The first strip is located at 

y l= , [ , ]x a a∈ − , and the second one is at y l= − , [ , ]x a a∈ −  (Fig. 1c). 

One may ask what new features are that the fractional operators can bring to the theory of 
diffraction. The concept of intermediate states, obtained with the aid of fractional 
 

derivatives and integrals, yields to various generalizations of commonly used models in 

electrodynamics such as: 

• Intermediate waves. For instance, intermediate waves between plane and cylindrical 

waves (Engheta, 1996, 1999) can be obtained using fractional integral of scalar Green’s 

function: 

2 2

1
( , ; ) ( ( , ; ) ( , ; ))

2
y yG x y k D G x y k D G x y kα α α− −

−∞ −∞ −≡ − , 0 1α≤ ≤ , 

where G2 is two-dimensional Green’s function of the free space. Gα describes an 

intermediate case between one- and two-dimensional Green’s functions and have the 

following behavior in the far-zone (Engheta, 1999): 

| |
/4

1

2
~ cos ( sin| |) ( )

4 2 2 | |

ik x
ik ii i e

G k e
k k k y

α α ρ π
α α

πα π
ϕ α

π ρ
− −

−

 
+ Γ    ,  2 2k k x yρ = + →∞ , 0ϕ ≠ . 

This function consists of two waves: a cylindrical wave and a non-uniform plane wave 

propagating in the x  direction and behaving with y  as 1| |y α − . 

• Fractional Green’s function Gα  defined as a fractional derivative (integral) of the 

ordinary Green’s function of the free space - kyG D Gα α
−∞≡ . α denotes the fractional 

order and varies from 0 to 1 ( 0 1α≤ ≤ ). In two-dimensional case Gα  is expressed as 

 
(1) 2 2
0( ', ') ( ( ') ( ')

4
)ky

i
G x x y y D H k x x y yα α− − = − − + − .  (2) 

• Fractional Green’s theorem which involves fractional derivatives of ordinary Green’s 

function and fractional derivatives of the considered function on a boundary of a 

domain (Veliev & Engheta, 2003). The corresponding equations will be presented later 

in this paper. 

• Fractional boundary conditions (FBC) defined via fractional derivatives of the 

tangential electric field components ( , )U x y . For an infinitely thin boundary S  located 

in the plane y d= , FBC are defined as 

( , )| 0y y SD U x yα
∈ = , y d→ ± . 
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The order of the fractional derivative α  is assumed to be between 0 and 1. Fractional 

derivative Dα  is applied along the direction normal to the surface S . Fractional boundary 

conditions describe an intermediate boundary between the perfect electric conductor (PEC) 

and the perfect magnetic conductor (PMC), obtained from FBC if the fractional order equals 

to 0 and 1, respectively.  

We will use the symbol yD fα  to denote operator of fractional derivative or integral yD fα−∞ , 

which is defined by the integral of Riemann-Liouville on semi-infinite interval (Samko et al., 

1993): 

( )1
( )( )

(1 ) ( )

x

x

f t dtd
D f x

dx x t

α
αα∞

−∞

=
Γ − − ,    0 1α< < , 

where (1 )αΓ −  is Gamma function. 

This paper is devoted to the problems of diffraction by a strip, a strip resonator and a half-

plane characterized with fractional boundary conditions with 0 1α≤ ≤  expressed as 

( , ) 0ky zD E x yα = , 0y → ± ,   x L∈ ,     

where ( , )L a a= −  for a strip and (0, )L = ∞  for a half-plane. For convenience, fractional 

derivative is applied with respect to dimensionless variable ky . The function ( , )zE x y  

denotes z-component of the total electric field, ( , ) i s
z z zE x y E E= + , that is the sum of the 

incident plane wave ( , )i
zE x y  and the scattered wave ( , )s

zE x y . 
In case of a strip resonator we have two equations to impose fractional boundary conditions: 

( , ) 0ky zD E x yα = , 0y l→ ± ,   ( , )x a a∈ − ,     

( , ) 0ky zD E x yα = , 0y l→ − ± ,   ( , )x a a∈ − . 

From the one hand, introduction of new boundary conditions should describe a new 

physical boundary world, and from the other hand they must allow to build an effective 

computational algorithm to solve the stated problems with a desired accuracy. Simple 

mathematical description of the scattering properties of surfaces is a common problem in 

modeling in diffraction theory.  

One of the well-studied boundaries, which can be treated as an intermediate state between 

PEC and PMC, is an impedance boundary defined by the equation 

( ) ( ( ))n E r n n H rη× = × ×
     

, r S→


, 

where n


 is the normal to the surface S . The value of the impedance η  varies from 0 for 

PEC to i∞  for PMC. 
There are many papers devoted to diffraction by impedance boundaries. Impedance 

boundary conditions (IBC) have been used for the modeling of the scattering properties of 

good conductors, gratings, etc. In each case there are formulas to define the value of the 

impedance as a function of material parameters. IBC are approximate BC and therefore they 

have limitations in usage and cannot describe all diversity of boundaries. 
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Further approximation of IBC can be made with the aid of derivatives of higher but integer 
orders or generalized boundary conditions (Hope & Rahmat-Samii, 1995; Senior & Volakis, 
1995). A general methodology to obtain exact IBC of higher order in spectral domain is 
presented in (Hope & Rahmat-Samii, 1995), where flat covers (and also surfaces with 
curvature) consisting of homogeneous materials with an arbitrary (linear, bi-anisotropic) 
constitutive equations. It is possible to obtain exact IBC in the spectral domain that can be 
often done in an analytical form very often. However, it is not always possible to get IBC in 
the spatial domain in an exact form. That is why it is necessary to approximate IBC in the 
spectral domain in order to apply inverse Fourier transform. 
Another boundary condition that generalizes the perfect boundaries like PEC and PMC was 
introduced in (Lindell & Sihvola, 2005a). The corresponding surface was named perfect 
electromagnetic conductor (PEMC) and the mentioned condition is defined as 

0H ME+ =
 

. 

For 0M = , PEMC defines a PEC boundary and for M = ∞  we get a PMC. The physical 

model of PEMC boundary was proposed in (Lindell & Sihvola, 2005b) where it was shown 

that the PEMC condition can simulate reflection from an anisotropic layer for the normal 

incidence of the plane wave. Diffraction by a PEMC boundary has not been considered yet. 

Further generalization of PEMC can be made using concept of the generalized soft-and-hard 

surface (GSHS) (Haninnen et al., 2006): 

0a E⋅ =


, 0b H⋅ =
 

, 

where a


, b


 are complex vectors that satisfy equations 0n a n b⋅ = ⋅ =
  

 and 1a b⋅ =


. GSHS 

can transform an incident plane wave with any given polarization into any other 

polarization of the reflected plane wave if the vectors a


, b


 are chosen appropriately 

(Haninnen et al., 2006). 

Fractional boundary conditions (FBC) can be compared with impedance boundary 

conditions (IBC). First of all FBC are intermediate between PEC and PMC as well as IBC. 

The value of fractional order 0α =  ( 1α = ) corresponds to the value of impedance 0η =  

( iη = ∞ ), respectively. For other values of 0 1α< <  the deeper analysis is needed. 
Physical analysis of the strip with FBC shows that the induced surface currents behave 
similarly to the currents on an impedance strip. Due to specific properties the strip with FBC 
is compared with the well-known impedance strip. It can be shown that for a wide range of 
input parameters the “fractional strip” behaves similarly to the impedance strip if the 
fractional order is chosen appropriately (Veliev et al., 2008b). The proposed method used for 
a “fractional strip” has some advantages over the known methods applied to the analysis of 
the wave scattering by an impedance strip. 
The purpose of this work is to build an effective analytic-numerical method to solve two-
dimensional diffraction problems for the boundaries described by fractional boundary 

conditions with α ∈ [0,1]. The method will be applied to two canonical scattering objects: a 
strip and a half plane. The method is based on presenting the scattered field via fractional 
Green’s function, 

1( , ) ( ') ( ', ) '
L

s
zE x y f x G x x y dxα α− −≡  , 
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where 1 ( )f xα−  is the unknown function and (1) 2 2
0( ', ) ( ( ')

4
)ky

i
G x x y D H k x x yα α− = − − +  is 

the fractional derivative of the Green’s function defined by equation (2). This presentation 
leads to the following dual integral equations (DIE) with respect to the Fourier transform 

1 1( ) ( ) ikq

L

F q f e dξα α ξ ξ−− −=   of the function 1 ( )f xα−  

/2(1 ) cos1 2 1/2

1

( ) (1 ) 4 sin ,  ,

( ) 0,              ,

L L

L

ikd q i ikd

ikd q

F q e q dq e e L

F q e dq L

ξ π α ξ θα α α

ξα

π θ ξ

ξ

∞ − −− −

−∞

∞ −

−∞

 − = − ∈
= ∉




 

where Ld a=  for ( , )L a a= − , 1Ld =  for (0, )L = ∞ . 
In the case of a strip resonator, we obtain more complicated set of integral equations which 
will be presented later in this paper. 

The method generalizes the known method used for the PEC and PMC strip and half plane. 

As will be shown later, this method allows obtaining a solution for the value 0.5α =  in the 

explicit analytical form. For other values of [0,1]α ∈  the scattering problems are reduced to 

solving of the infinite systems of linear algebraic equations (SLAE). In order to discretize the 

DIE the function 1 ( )f xα−  is represented as a series in terms of orthogonal polynomials: 

Gegenbauer polynomials for the strip and Laguerre polynomials for the half-plane. These 

representations result in a special kind of the edge conditions for the fractional current 

density function 1 ( )f xα− . The physical characteristics of the considered scattering objects 

can be found with any desired accuracy by solving SLAE. 

2. Diffraction by a strip with fractional boundary conditions 

Assume that an E-polarized plane wave is characterized with the function 
( cos sin )( , ) ik x yi i

zE zE x y ze θ θ− += =
  

. The total field ( , )zE zE x y=
 

 must satisfy fractional boundary 

conditions 

 ( , ) 0ky zD E x yα = , 0y → ± ,   x L∈ ,   (3)  

where ( , )L a a= −  for a strip. For convenience, fractional derivative kyDα
−∞  is applied with 

respect to a dimensionless variable ky . The function ( , )zE x y denotes the z-component of the 

total electric field ( , ) i s
z z zE x y E E= +  that is the sum of the incident plane wavе ( , )i

zE x y  and 

the scattered field ( , )s
zE x y . Solution to the diffraction by the screen 

{( , ) : 0, }S x y y a x a= = − < <  is to be sought under the following conditions: 

- The total field E


 must satisfy the Helmholtz equation everywhere outside the screen 

 
2 2

2
2 2

( , ) 0zk E x y
x y

 ∂ ∂
+ + =  ∂ ∂  . (4) 

- The scattered field ( , )s
zE x y must satisfy Sommerfeld radiation condition at the infinity 
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 lim 0
s

sz
r z

E
r iE

r
→∞

 ∂
− =  ∂  , 2 2r x y= +   (5) 

- The total field E


 must satisfy the edge condition, i.e. the finiteness of energy in every 
local area near the edges of the screen (Honl et al., 1961). 

- The total field ( , )zE x y  must satisfy the boundary conditions (3). 

The method is based on representation of the scattered field with the aid of the fractional 
derivative of the Green’s function: 

 1 ( ') ( ', ) '( , )
L

s
z f x G x x y dxE x y α α− −≡  .    (6)  

In (6), the function 1 ( )f xα−  is the unknown function called the density of the fractional 

potential, and Gα  is the fractional derivative of two-dimensional the Green’s function of the 

free space defined by equation (2). 

For the limit cases of the fractional order with 0α =  and 1α =  representation (6) 

corresponds to the single-layer and double-layer potentials commonly used to present the 

scattered fields in diffraction problems: 

(1)' 2 2
0

(1) 2 2
0

( ') ( ( ') ) ',           0
4

( ') ( ( ') ) ',         1
4

( , )

a

a

a

a

s
z

i
f x H k x x y dx

i
f x H k x x y dx

y

E x y

α

α

−

−


− − + =

=  ∂− − + =
∂




 

More general representations (6) can be derived from the fractional Green’s theorem (Veliev 
& Engheta, 2003) which generalizes the ordinary Green’s theorem. 

2.1 Fractional Green’s theorem 

Consider a function ( )rψ


, which satisfies inhomogeneous scalar Helmholtz equation with 

the source density given by the function ( )rρ


: 

 2( ) ( ) 4 ( )r k r rψ ψ πρΔ + = −
  

.  (7) 

Besides, define 0( , )G r r
 

 as the Green’s function of the Helmholtz equation: 

 2
0 0 0( , ) ( , ) 4 ( )G r r k G r r r rπδΔ + = − −

     
.  (8) 

Here, 0( )r rδ −
 

 is the three-dimensional Dirac delta function, r


 and  0r


 are the position 

vectors for the observation and source points, respectively, 
2 2 2

2 2 2x y z

∂ ∂ ∂
Δ = + +

∂ ∂ ∂
is the 

Laplacian, and k  is a scalar constant. After applying fractional derivatives to equations (7) 

and (8) with respect to the x  variable, multiplying the first equation with 0( , )xD G r rν
−∞

 
, and 

the second with ( )xD rµψ−∞


, subtracting one from another, integrating this over all source 
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coordinates 0 0 0, ,x y z  inside S , and finally using the Green’s theorem, we obtain the 

following representation: 

 

00

0 00 0

0 0 0

0 0 0 0 0 0 0

( ) ( , )

1
[ ( , ) ( ) ( ) ( , )] ,    ( ) 4

0,           

xx
V

x xx xx
S

D r D G r r dv

D G r r D r D r D G r r ds r VD r

r V

β ν ν

ν β ν β ν νβ

ρ

ψ ψψ π

−
−∞ −∞

− −
−∞ −∞ −∞ −∞−∞

 ++ ∇ − ∇ ∈= 
∉




  

         



  (9) 

where µ ν β+ = . Operator 0∇  denotes the operator of gradient in respect of variable 

0 0 0 0( , , )r x y z


. Here it was used the property of the fractional derivative of the Dirac delta 

function: 

 
00 0 0( ) ( ) ( )x x

V

F r D r r dv D F rν νδ−∞ −∞− =    
, (10) 

We use the uniform symbol xDα
−∞  (or xDα ) to denote both fractional derivatives and 

fractional integrals, and it defines a fractional derivative for 0 1α< <  and a fractional 

integral for 0α < . 
Equation (9) is a generalization of well-known Green’s theorem for the case of fractional 

derivatives. 

Consider some important particular cases, which can be obtained from (9). 

In the case of excitation in a free space so that the volume V  is the whole space, the surface 

integrals in (9) vanish, and we have: 

 
00 0 0 0( ) ( ) ( , )x xx

V

D r D r D G r r dvβ β ν νψ ρ−
−∞ −∞ −∞=     .  (11) 

Originally function ( )rψ


 characterizes the field excited by the source with the volume 

density ( )rρ


. From the other hand, for 0β =  representation (11) means that the field ( )rψ


 

is expressed through the distribution of fractional sources with density 0( )D rν ρ−   inside the 

volume V  and by using fractional integral of conventional Green’s function 0( , )D G r rν . 

Assuming ( ) 0rρ =


, we can obtain some other important representations: 

 

0 0

0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1
[ ( , ) ( ) ( ) ( , )] ,    if  , 0

4

( )

1
[ ( , ) ( ) ( ) ( , )] ,    if  0 

4

x x
S

x

x x
S

D G r r r r D G r r ds

D r

G r r D r D r G r r ds

β β

β

β β

ψ ψ ν β µ
π

ψ

ψ ψ ν
π

−∞ −∞

−∞

−∞ −∞


∇ − ∇ = =

=  ∇ − ∇ =




      



      




 (12) 

From this representation we see that the fractional derivative of function ( )rψ


 is expressed 

either via the value of the function and its first derivative at the boundary and the fractional 
derivatives of Green’s function, or by the fractional derivatives of the function at the 
boundary and the usual Green’s function. 
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If ν µ= − , i.e. 0β = , we obtain a representation for the function ( )rψ


 itself: 

 
0 0 0 00 0 0 0 0 0 0

1
( ) [ ( , ) ( ) ( ) ( , )]

4 x x x x
S

r D G r r D r D r D G r r dsµ µ µ µψ ψ ψ
π

− −
−∞ −∞ −∞ −∞= ∇ − ∇        . (13) 

This expression means that the function ( )rψ


 is represented through its fractional derivatives 

at the boundary and the fractional derivatives of Green's function. The equation (13) can be 

useful in scattering problems. If we have boundary conditions for the function ( )rψ


 on the 

surface S  as 
000 0( )| 0r SxD rµψ−∞ ∈∇ =

 (or 
00 0( )| 0r SxD rµψ−∞ ∈ =

) then one of the surface integrals in 

(13) vanishes and we get a simple presentation for ( )rψ


. This fact will be used to present the 

scattered field in all diffraction problems considered in this paper (6). Equations (12), (13) 
generalize the Huygens principle in such a sense that the fractional derivative of the function 

( )rψ


, which characterizes a wave process, is presented as a superposition of waves radiated 

by elementary "fractional" sources distributed on the given surface. “Fractional” potentials, 

00 0 0 0 0( ) ( , )xx
S

D r D G r r dsβ ν νψ−−∞ −∞∇     , 
0 00 0 0 0( , ) ( )x x

S

D G r r D r dsν β νψ−−∞ −∞∇     , can be treated as a 

generalization of well-known single and double layer potentials. 

2.2 Solution to integral equations 

Substituting the expression (6) for ( , )zE x y  into fractional boundary conditions (3) we get 

the equation 

 1

0 0
lim ( ') ( ', ) lim ( , ) ' i

ky ky z
Ly y

D f x G x x y dx D E x yα α α α−

→ →
− = − ,                 (14) 

It is convenient to use the Fourier transform of the fractional potential density 1 ( )f xα−  

11 1 1

1
( ) ( ) ( )ikq ikqF q f e d a f a e dξ ξα α αξ ξ ξ ξ

∞ − −− − −

−∞ −
≡ =  , 

where a new function 1 ( )f α ξ−  is introduced: 

1 1( ) ( )f af aα αξ ξ− −≡  ,    | | 1ξ < , 

1 ( ) 0f α ξ− ≡  ,    | | 1ξ ≥ . 

Then the scattered field is expressed via the Fourier transform 1 ( )F qα−  as 

 
2

/2
( | | 1 ) ( 1)/21 2( , ) ( ) (1 )

4

i
ik xq y qs

z

e
E x y i F q e q dq

πα
αα

π

±
∞ + − −−

−∞
= − − ,  (15) 

where the upper (lower) sign is chosen for y>0 (y<0). Here, in (15), the following 
representation for the fractional Green’s function was used: 

2
( ) /2

(( ') | | 1 )(1) ( 1)/22 2 2
0( ', ) ( ( ') ) (1 )

4

sign y i
ik x x q y q

ky

e
G x x y iD H k x x y i e q dq

πα
αα α

π

∞ − + − −

−∞
− = − − + = − −  (16) 
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It can be shown that the equation (14) can be reduced to dual integral equations (DIE)  

 

/2(1 ) cos1 2 1/2

1

( ) (1 ) 4 sin ,  | | 1,

( ) 0,              | | 1,

Lika q i ikd

ika q

F q e q dq e e

F q e dq

ξ π α ξ θα α α

ξα

π θ ξ

ξ

∞ − −− −

−∞

∞ −

−∞

 − = − <
= >




         (17) 

For the limit cases of the fractional order α = 0 and α = 1 the equations (17) are reduced to 
the well known integral equations used for PEC and PMC strips (Honl et al., 1961; Veliev & 
Veremey, 1993; Veliev & Shestopalov, 1988; Uflyand, 1977), respectively. In this paper the 
method to solve DIE (17)  is proposed for arbitrary value of α ∈[0,1]. 
DIE (17) can be solved analytically for one special case of α = 0.5. In this case we get the 
solutions for any value of k as 

 0.5 1/2 cos /4( ) 2 sin ikx if x ik e θ πθ − += − ,  (18) 

 0.5 /4 1/2 sin ( cos )
( ) 4 sin

cos
i ka q

F q ie
q

π θ
θ

θ

+
= −

+
.  (19) 

In the case of arbitrary α  the solutions can be obtained numerically. First, we modify the 

equations (17). After multiplying by ikae τξ−  and integrating in ξ  from -1 to 1, the first 

equation in (17) can be rewritten in the following form: 

 /2(1 )1 2 1/2sin ( ) sin ( cos )
( ) (1 ) 4 sin

cos
ika q ka

F q q dq e
q

π αα α ατ τ θ
π θ

τ τ θ

∞ −− −

−∞

− +
− = −

− + .  (20) 

In order to discretize this equation, we present the unknown function 1 ( )f α ξ−  as a 

uniformly convergent series in terms of the orthogonal polynomials with corresponding 

weight functions which allow satisfying the edge conditions: 

 ( ) ( )
1/21 2

0

1
( ) 1 n n

n

f f C
αα α αξ ξ ξ

α

−−
∞

=

= −  , (21) 

where ( )nC xα  are the Gegenbauer polynomials and nf
α  are the unknown coefficients. 

Gegenbauer polynomials can be treated as intermediate polynomials between Chebyshev 

polynomials of the first and second kind: 

0

2
( ), 0( )

lim

1, 0

nn T nC
n

n

α

α

ξξ

α→


≠

=  =
,    1

1

( )
lim ( ) ( )n

n n

C
C U

α

α

ξ
ξ ξ

α→
= = . 

The Fourier transform 1 ( )F qα−  is expressed as the series 

 1

0

( )2 ( 2 )
( ) ( )

( 1) ( 1) (2 )

n n
n

n

J kaqn
F q i f

n kaq

α αα
α

π α

α

∞
− +

=

Γ +
= −
Γ + Γ +

 ,  (22) 

where ( )nJ kaqα+  is the Bessel function. 
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It must be noted that the edge conditions are chosen in the following form 

 ( )1 2 1/2( ) (1 )f Oα αξ ξ− −= − , 1ξ →± .  (23) 

For special cases of 0α =  and  1α =   the edge conditions have the form as 

 
( )
( )

2 1/2

1

2 1/2

(1 ) ,      0
( )

(1 ) ,       1

O
f

O

α
ξ α

ξ
ξ α

−

−
 − =

= 
− =

 ,     1ξ → ±     (24) 

These are well-known Meixner edge conditions in diffraction problems (Honl et al., 1961). 
Substituting (22) into (17) and taking into account the properties of discontinuous integrals 
of Weber-Shafheitlin (Bateman & Erdelyi, 1953) and the following formula (Prudnikov et al., 
1986) 

 
( ) sin ( ) ( )1 n nJ q q J

dq
qq

ν ν
ν ν

ε ε β εβ

π β β

∞ + +

−∞

−
=

− ,  (25) 

one can show that the homogenous equation in the set (17) is satisfied identically.  

The first equation of (17) written in the form (20) can be reduced to an infinite system of 

linear algebraic equations (SLAE) with respect to the unknown coefficients nf
α : 

 
0

( 2 )
( )

( 1)
n

mn n m
n

n
i C f B

n
α α αα∞

=

Γ +
− =

Γ +
 ,    0,1,2,..,m = ∞   (26) 

where the matrix coefficients are expressed as 

2 1/2

2

(1 )
( ) ( )mn n m

q
C J kaq J kaq dq

q

α
α

α α α

−
∞

+ +−∞

−
=  , 

/2(1 ) ( cos )
2 ( 1)(2 ) sin

(cos )

i m
m

J ka
B ka e π αα α α α

α

θ
α θ

θ
− += − Γ + . 

It can be shown that the SLAE (26) can be reduced to SLAE of the Fredholm type of the 

second kind (Veliev et al., 2008a). Then the coefficients nf
α  can be found with any desired 

accuracy (within the machine precision) using the truncation of SLAE. The fractional density 
1 ( )f xα−  is computed by using (21) and the scattered field (6) and other physical 

characteristics can be obtained as series in terms of the found coefficients nf
α . 

In order to solve the diffraction problem on a plane screen with fractional boundary conditions 

and obtain a convenient SLAE we applied several techniques. First of all, the fractional Green’s 

theorem presented above allowed searching the unknown scattered field as a potential with 

the fractional Green’s function. The order of the fractional Green’s function is defined from the 

fractional order of the boundary conditions. In general, the fractional derivative of Green’s 

function may have a complicated form, but we used the Fourier transform where application 

of the fractional derivative maps to a simple multiplication by ( )iq α . Finally, utilization of the 

orthogonal Gegenbauer polynomials along with the specific form of the edge conditions 
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allowed to reduce integral equations to SLAE in a convenient form. One can compare the 

method presented for fractional boundary conditions with the known methods applied to 

solve diffraction by an impedance strip. The impedance strip requires to consider two 

unknown densities in presentation of the scattered field as a sum of single- and double-layer 

potentials. The usage of two unknown functions leads to more complicated SLAE in spite of 

the SLAE obtained for fractional boundary conditions.  

2.3 Physical characteristics 

We consider such electrodynamic characteristics of the scattered field as the radiation 

pattern (RP), monostatic radar cross-section (MRCS) and surface current densities 

depending on the coefficients nf
α . The scattered field ( ),s

zE x y  in the far-zone kr →∞  in the 

cylindrical coordinate system ( ),r φ , cos , sinx r y rϕ ϕ= =  ,  is expressed as 

( ) ( ) ( ) ( )1 cos
sin, cos

4

ikrs
z

i
E r i F e d

α α ϕ β αϕ β β β
π

+∞
−

−∞

±
= ±  , 

where the upper sign is chosen for [ ]0,ϕ π∈ , and the lower one when [ ],2ϕ π π∈ . Using the 

stationary phase method for kr →∞  we present ( ),s
zE x y  as 

 ( ) ( ) ( ),s
zE x y A kr α ϕ≈ Φ , kr →∞ ,  (27) 

where 

( ) /42 ikr iA kr e
kr

π

π
−=  , ( ) ( ) ( )1 cos sin

4

i
i F
αα ααϕ ϕ ϕ−Φ = − ± . 

The function ( )α ϕΦ  describes RP and can be expressed via the coefficients nf
α  as 

( )
( )
( )

( )
( )
( )

( )

( )0

2 cos
tan

2 1 1 2

n

n

n

n
i

i i n J ka
f

n ka

α

α α

α

αα π
ϕ

α ϕ
ϕ

α

∞

=

+
−

± Γ +
Φ =

Γ + Γ +
 . 

In physical optics (PO) approximation ( 1ka ) ( )α ϕΦ  has a simpler form. Using the 

following formula 

 
( )

( )
sin

lim
ka

ka α β
πδ α β

α β→∞

−
= −

−
,  (28) 

in IE (20)  we get the following expressions for ( )F qα  and ( )α ϕΦ : 

( )
( )( )

( )1

2

1

1 2 /2
1

sin cossin
4

cos

ka q
F q i

qq

α
αα

α

θθ

θ

−
−

−
−

−
≈ −

−
 , 

( ) ( )
( )sin cos cossin

1 sin
sin cos cos

kaα
α

α ϕ θθ
ϕ ϕ

ϕ ϕ θ

+ 
Φ ≈  

+   . 
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In the special case of 0.5α =  and arbitrary value of ka  we get an analytical expression for 

the RP 

( ) ( )
( )1/20.5 sin cos cos

1 sin sin
cos cos

ka ϕ θ
ϕ ϕ θ

ϕ θ

+
Φ =

+
 . 

Bi-static radar cross section (BRCS) is expressed from RP ( )ϕΦ  as ( ) ( ) 22 2dσ
ϕϕ

λ π
Φ= . MRCS 

2
mono
Dσ  is defined as   ( ) ( ) 22

2

2mono d
D θ θ

π

σ
σ

λ
= Φ= . 

We have the following representations in PO approximation 

( )
22

22 ,
sin cos cos2 sin

sin
sin cos cos

d ka
α

σ ϕ θθ
ϕ

λ π ϕ ϕ θ

+  
=   

+     1ka , 

( )
2

2
2 sin 2 cos2

sin
2 cos

D
mono ka θ

σ θ
π θ

 
=    ,    1ka . 

It must be noted that the density function 1 ( )f xα−  in the integral (6) does not describe the 

density of physical surface currents on the strip for 0 1α< < . The function 1 ( )f xα−  is 

defined as the discontinuity of fractional derivatives of E-field at the plane 0y = : 

 1 1 1
0 0( )  ( , )| ( , )|ky z y ky z yf x D E x y D E x yα α α− − −

−∞ =+ −∞ =−= − , ( , )x a a∈ − . (29) 

For the limit cases of 0α =  and 1α =  the equation (29) is reduced to well-known 

presentations for electric and magnetic surface currents, respectively, i.e. 

0 0

1

( , ) ( , )
| | ( , 0) ( , 0),     0

( )

( , 0) ( , 0),                     1

z z
y y x x

z z

E x y E x y
H x H x

y y

f x

E x E x

α

α

α

=+ =−

−

∂ ∂
− = + − − =

∂ ∂
= 

+ − − =

 

In order to obtain physical surface currents from 1 ( )f xα−  we have to apply additional 

integration. In case of E-polarized incident plane wave we have the following induced 

currents on a strip: electric current ( ) ( )e e
zj zjα α=

 
 and magnetic current ( ) ( )m m

xj xjα α=
 

 

expressed from 1 ( )f xα−  as 

( ) 1 2 /2( ) 2 cos ( ) (1 )
2 4

e
z

ikaxi
j x i F q q dqeα α απα

π
−

+∞

−∞

 
= − −    , 

( ) 1 2 /2 1/2( ) 2sin ( ) (1 )
2 4

m
x

ikaxi
j x F q e q dqα α απα

π
− −

+∞

−∞

 
= − −    . 
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The detailed analysis of the scattering properties of the strip with fractional boundary 
conditions one can find in papers (Veliev et al., 2008a; Veliev et al., 2008b). 

2.4 H-polarization 

In the case of the H -polarized incident plane wave ( )0,0,i i
zH H


, where 

( ) ( )cos sin
,

ik x yi
zH x y e

θ θ− +
= , the method proposed above can be applied as well. We define 

fractional boundary conditions as  

( ) ( ) ( )1 1
0 0, , ,| | 0ky z y ky y

i s
z zH x y x y x yD D H Hα α− −

→± →±
 = + =  ,  ( ),x a a∈ − . 

The case of 0α =  corresponds to diffraction of the H -polarized plane wave on a PEC strip, 

while the case of 1α =  describes diffraction of the H -polarized plane wave on a PMC strip. 

As before, we represent the scattered field via the fractional Green’s function 

( ) ( ) ( )1, ,
a

s
z

a

H x y f x G x x y dxα α−

−

′ ′ ′≡ − . 

After substituting (18) into fractional boundary conditions (19) we get the equation 

( ) ( ) ( )11 1

0 0
lim , lim ,

a
i
z

a

ky ky
y y

D f x G x x y dx D H x yα αα α−

−

− −

→ →
′ ′ ′− = − . 

This equation can be solved by repeating all steps of the E -polarization case after changing 

α  to 1 α− . 

3. Diffraction by a half-plane with fractional boundary conditions 

Another problem studied in this paper is the diffraction by a half-plane with fractional 
boundary conditions. The method introduced to solve the dual integral equation (DIE) for a 
finite object (a strip) will be modified to solve DIE for semi-infinite scatterers such as half-
plane. There are many papers devoted to the classical problem of diffraction by a half-plane. 
The method to solve the scattering problem for a perfectly conducting half-plane is 
presented in (Honl et al., 1961). Usually, it is solved using Wiener-Hopf method. The first 
application of the method to a PEC half-plane can be referred to the papers of Copson 
(Copson, 1946) and independently to papers of Carlson and Heins (Carlson & Heins, 1947). 
In 1952 Senior first applied Wiener-Hopf method to the diffraction by an impedance half-
plane (Senior, 1952) and later oblique incidence was considered (Senior, 1959). Diffraction by 
a resistive and conductive half-plane and also by various types of junctions is analyzed in 
details in (Senior & Volakis, 1995). We propose a new approach for the rigorous analysis of 
the considered problem which generalizes the results of (Veliev, 1999) obtained for the PEC 
boundaries and includes them as special cases. 

Let an E -polarized plane wave ( ) ( )cos sin
,

ik x yi
zE x y e

θ θ− +
=  (1) be scattered by a half-plane 

( 0 , 0y x= > ). The total field i s
z z zE E E= +  must satisfy fractional boundary conditions 

   ( ), 0ky zD E x yα = , 0 , 0y x→ ± > ,      (30) 

and Meixner’s edge conditions must be satisfied for 0x→ . 
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Following the idea used for the analysis of diffraction by a strip we represent the scattered 
field using the fractional Green’s function 

 ( ) ( ) ( )1

0

, ,s
zE x y f x G x x y dxα α

∞
− ′ ′ ′≡ − ,   (31) 

where ( )1f xα−  is the unknown function, Gα  is the fractional Green’s function (2).  

After substituting the representation  (31) into fractional boundary conditions (30) we get 

the equation 

 ( ) ( ) ( ) ( )212 1 2
0

0 0
0

lim lim ,
4

i
ky ky z

y y

i
D f x H k x x y dx D E x yα α α

∞
−

→ →

−  ′ ′ ′− + = −   , 0x > .   (32) 

The Fourier transform of ( )1f xα−  is defined as 

( ) ( ) ( )1 1 1

0

ikq ikqxF q f e d f x e dxξα α αξ ξ
∞ ∞

− −− − −

−∞

= =  , 

where ( ) ( )1 1f fα αξ ξ− −≡  for 0ξ >  and ( )1 0f α ξ− ≡  for 0ξ <  .  

Then the scattered field will be expressed via the Fourier transform 1 ( )F qα−  as 

 
2

/2
( | | 1 ) ( 1)/21 2( , ) ( ) (1 )

4

i
ik xq y qs

z

e
E x y i F q e q dq

πα
αα

π

±
∞ + − −−

−∞
= − − .  (33) 

Using the Fourier transform the equation (32) is reduced to the DIE with respect to 1 ( )F qα− : 

 

( ) ( ) ( )

( )

1/2 /2 11 2 cos

1

1 4 sin , 0 ,

0 , 0.

iik q ik

ik q

F q e q dq e e

F q e dq

α π αξα α ξ θ

ξα

π θ ξ

ξ

∞
− −− −

−∞

∞
−

−∞


− = − > = <




  (34) 

The kernels in integrals (34) are similar to the ones in DIE (17) obtained for a strip if the 

constant Ld  is equal to 1 ( (0, )L = ∞  in the case of a half-plane). 

For the limit cases of the fractional order 0α =  and 1α =  these equations are reduced to 

well known integral equations used for the PEC and PMC half-planes (Veliev, 1999), 

respectively.  In this paper the method to solve DIE (5) is proposed for arbitrary values of 

[0,1]α ∈ . 

DIE allows an analytical solution in the special case of 0.5α =  in the same manner as for a 

strip with fractional boundary conditions. Indeed, for 0.5α =  we obtain the solution for any 

value of k  as 

( ) ( )0.5 1/2 /42 sin cosiF q e q
k

π π
θ δ θ= − + , 
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( )0.5 1/2 /4 cos2sin i ikxf x e eπ θθ −= − . 

The scattered field can be found in the following form: 

( ) ( )cos sin/2 /4 1/2, sin , 0.5
2

ik x ys i i
z

i
E x y e e e

k

θ θπα π α θ α
− +± −= = ,   for 0   ( 0)y y> < . 

In the general case of 0 1α< <  the equations (34) can be reduced to SLAE. To do this we 

represent the unknown function ( )1f α ξ−  as a series in terms of the Laguerre polynomials 

with coefficients nf
α : 

 ( ) ( )1 1/2 1/2

0

2x
n n

n

f x e x f L xα α α α
∞

− − − −

=

=  .   (35) 

Laguerre polynomials are orthogonal polynomials on the interval (0, )L = ∞  with the 

appropriate weight functions used in (35) . It can be shown from (35) that ( )1f α ξ−  satisfies 

the following edge condition: 

 ( ) ( )1 1/2f Oα αξ ξ− −= , 0ξ → .              (36) 

For the special cases  of α = 0 and α = 1, the edge conditions are reduced to the well-known 
equations (Honl et al., 1961) used for a perfectly conducting half-plane. 
After substituting (35) into the first equation of (34) we get an integral equation (IE) 

 ( ) ( ) ( )
1/2

1/2 1/2 2

0 0

2 1ikqt ik qt
n n

n

f e t L t e dt e q dq R
αξα α α ξ

∞ ∞∞ −−− − −

= −∞

 
× − =      , (37) 

where ( ) ( )/2 1 cos4 sin
i ikR e e
π α α ξ θξ π θ− −= −  is known.  

Using the representation for Fourier transform of Laguerre polynomials (Prudnikov et al., 
1986) we can evaluate the integral over dt  as 

(1 )1/2 1/2 1/2 1/2
1/20 0

( 1)( 1 / 2)
(2 ) (2 )

( 1) ( 1)

n
ikqt t ikqt

n n n

ikqn
e t L t e dt e t L t dt

n ikq

α α α α
α

α∞ ∞− − +− − − − −
+ +

−Γ + +
= =

Γ + +   

After some transformations IE (37) is reduced to  

 
( )

( )
( )

( )
( ) ( )

1/2
2

1/2
0

11 / 2
1

1 1

n
ik q

n n
n

ikqn
f q e dq R

n ikq

α ξα
α

α
ξ

∞∞ −

+ +
= −∞

−Γ + +
− =

Γ + +
  , 0ξ > .  (38) 

Then we integrate both sides of equation (38) with appropriate weight functions, as 

( ) ( )1/2 1/2

0

2me L dξ α αξ ξ ξ
∞

− − −⋅ . Using orthogonality of Laguerre polynomials we get the 

following SLAE: 

0
n mn m

n

f C Bα α α
∞

=

= ,   0,1,2 ,...,m = ∞ , 
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with matrix coefficients 

( )
( )

( )

( )
( )

1/2
1/2

2
1/2

11 / 2
1

1 1

m n

mn n m

ikqn
C q dq

n ikq

α
αα

α

α
− − −∞

−

− − −
−∞

+Γ + +
= −

Γ + −
 , 

( )

( )
/2

1/2

|sin | 1 cos
4

1 cos

m
i

m m

ik
B e

ik

α
α π α

α

θ θ
π

θ

−
+ +

−
=

+
. 

It can be shown that the coefficients nf
α  can be found with any desired accuracy by using 

the truncation of SLAE. Then the function ( )1f xα−  is found from (35) that allows obtaining 

the scattered field (33). 

4. Diffraction by two parallel strips with fractional boundary conditions 

The proposed method to solve diffraction problems on surfaces described by fractional 

boundary conditions can be applied to more complicated structures. The interest to such 

structures is related to the resonance properties of scattering if the distance between the strips 

varies. Two strips of the width 2a infinite along the axis z are located in the planes y l=  and 

y l= − . Let the E -polarized plane wave ( ) ( )cos sin
,

ik x yi
zE x y e

θ θ− +
=  (1) be the incident field. The 

total field i s
z z zE E E= +  satisfies fractional boundary conditions on each strip: 

   ( ), 0ky zD E x yα = , 0y l→± ± ,     ( , )x a a∈ − ,              (39) 

and Meixner’s edge conditions must be satisfied on the edges of both strips ( y l= ± , 

x a→ ± ). 

The scattered field ( , )s
zE x y  consists of two parts 

 1 2( , ) ( , ) ( , )s s s
z z zE x y E x y E x y≡ + ,       

where 

 1( , ) ( ') ( ', ) '
ajs

z j j ja
E x y f x G x x y dxα α−

−
≡ − , 1,2j = .  (40) 

Here, Gα is the fractional Green’s function defined in (2). y1,2 are the coordinates in the 
corresponding coordinate systems related to each strip, 

1y y l= − , 
1x x= , 

2y y l= + , 
2x x= . 

Using Fourier transforms, defined as 

11 1 1

1
( ) ( ) ( )ikq ikq

j j jF q f e d a f a e dξ ξα α αξ ξ ξ ξ
∞ − −− − −

−∞ −
≡ =  , 

1 1( ) ( )j jf af aα αξ ξ− −≡ , 1,2j = , 
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the scattered field is expressed as 

 
2/2

[ | | 1 ] ( 1)/21 1 2
1( , ) ( ) (1 )

4

i
ik xq y l qs

z

e
E x y i F q e q dq

πα
αα

π

±
∞ + − − −−

−∞
= − − , y l>  ( y l< ), (41) 

 
2/2

[ | | 1 ] ( 1)/22 1 2
2( , ) ( ) (1 )

4

i
ik xq y l qs

z

e
E x y i F q e q dq

πα
αα

π

±
∞ + + − −−

−∞
= − − , y l> −  ( y l< − ).  (42) 

Fractional boundary conditions (30) correspond to two equations 

 ( , ) 0ky zD E x yα = , 0y l→ ± , ( , )x a a∈ − .    (43) 

 ( , ) 0ky zD E x yα = , 0y l→ − ± , ( , )x a a∈ − .    (44) 

After substituting expressions (41) and (42) into the equations (43) and (44) we obtain 

 
2

( cos sin )1 2 1/2 /2
1

[ 2 1 ]1 2 1/2
2

( ) (1 ) 4 sin

( ) (1 )

ikxq ik x li

ik xq l q

F q e q dq ie e

F q e q dq

θ θα α πα α

α α

π θ
∞ − +− −

−∞

∞ + −− −

−∞

− = − −

− −


 ,   (45) 

 
2

( cos sin )1 2 1/2 /2
2

[ 2 1 ]1 2 1/2
1

( ) (1 ) 4 sin

( ) (1 )

ikxq ik x li

ik xq l q

F q e q dq ie e

F q e q dq

θ θα α π α α

α α

π θ
∞ − −− −

−∞

∞ + −− −

−∞

− = − −

− −


 .  (46) 

Multiplying both equations with e–ikxτ and integrating them in ζ on the interval [–a,a], the 
system (45), (46) leads to 

 

2

1 2 1/2 /2 sin
1

2 11 2 1/2
2

1 2 1/2 /2
2

sin ( ) sin ( cos )
( ) (1 ) 4 sin

cos

sin ( )
( ) (1 )

sin ( ) sin ( cos )
( ) (1 ) 4 sin

i ikl

i kl q

i

ka q ka
F q q dq ie e

q

ka q
F q e q dq

q

ka q ka
F q q dq ie

q

α α πα α θ

α α

α α πα α

τ τ θ
π θ

τ τ θ

τ

τ

τ τ θ
π θ

τ τ

∞ − − −

−∞

∞ −− −

−∞

∞ − −

−∞

− +
− = − −

− +

−
− −

−

− +
− = −

− +





2

sin

2 11 2 1/2
1

cos

sin ( )
( ) (1 )

ikl

i kl q

e

ka q
F q e q dq

q

θ

α α

θ

τ

τ

∞ −− −

−∞

 −
−− − − 

 (47) 

Similarly to the method described for the diffraction by one strip, the set (47) can be reduced 

to a SLAE by presenting the unknown functions 1 ( )jf xα−  as a series in terms of the 

orthogonal polynomials. We represent the unknown functions 1 ( )jf α ξ−  as series in terms of 

the Gegenbauer polynomials: 

( ) ( )
1/2 ,1 2

0

1
( ) 1 j

j n n

n

f f C
α αα αξ ξ

α
ξ

−−
∞

=

−=  , 1,2j = . 
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For the Fourier transforms 1 ( )jF qα−  we have the representations (22). Substituting the 

representations for 1 ( )jF qα−  into the (47), using the formula (25), then integrating 

( )
(.) mJ ka

d
m
α
α

τ
τ

∞ +

−∞  for 0,1,2,..m = , we obtain the following SLAE: 

11, 1, 12, 2, 1,

0 0

21, 1, 22, 2, 2,

0 0

( 2 ) ( 2 )
( ) ( )

( 1) ( 1)

( 2 ) ( 2 )
( ) ( )

( 1) ( 1)

n n
mn n mn n m

n n

n n
mn n mn n m

n n

n n
i C f i C f B

n n

n n
i C f i C f B

n n

α α α α α

α α α α α

α α

α α

∞ ∞

= =

∞ ∞

= =

 Γ + Γ +
− + − =

Γ + Γ +
Γ + Γ + − + − = Γ + Γ +

 
 

, 0,1,2,..m =  

where the matrix coefficients are defined as 

11, 22, 2 1/2( ) ( )
(1 )m n

mn mn

J ka J ka
C C dα α αα α

α α

τ τ
τ τ

τ τ

∞ −+ +

−∞
= = − , 

212, 21, 2 1 2 1/2( ) ( )
(1 )i klm n

mn mn

J ka J ka
C C e dα α τ αα α

α α

τ τ
τ τ

τ τ

∞ − −+ +

−∞
= = − , 

1, 2 sin 2, /2 sin ( cos )
2 ( 1)sin (2 )

(cos )

ikl i ikl m
m m

J ka
B e B ie e kaα θ α πα α θ α α

α

θ
α θ

θ
− − += = − Γ + . 

Consider the case of the physical optics approximation, where 1ka . In this case we can 

obtain the solution of (47) in the explicit form. Indeed, using the formula (28) we get 

 

2

2

1 2 1/2
1

/2 sin 1 2 1 2 1/2
2

1 2 1/2
2

/2 sin 1 2 1 2 1/2
1

( )(1 )

sin ( cos )
4 sin ( ) (1 )

cos

( )(1 )

sin ( cos )
4 sin ( ) (1 )

cos

i ikl i kl

i ikl i kl

F

ka
ie e F e

F

ka
ie e F e

α α

πα α θ α τ α

α α

πα α θ α τ α

π τ τ

τ θ
π θ π τ τ

τ θ

π τ τ

τ θ
π θ π τ τ

τ θ

− −

− − − −

− −

− − −

 − =
+= − − − +

− = +
= − − −

+

 (48) 

Finally, we obtain the solution as 

 

2

2

2

2

sin 2 1 sin
1 /2
1 2 1/2 4 1

sin 2 1 sin
1 /2
2 2 1/2 4 1

sin ( cos ) 1 ( )
( ) 4 sin

cos (1 ) (1 )

sin ( cos ) 1 ( )
( ) 4 sin

cos (1 ) (1 )

ikl i kl ikl
i

i kl

ikl i kl ikl
i

i kl

ka e e e
F ie

e

ka e e e
F ie

e

θ τ θ
α πα α

α τ

θ τ θ
α πα α

α τ

τ θ
τ θ

τ θ τ

τ θ
τ θ

τ θ τ

− −
−

− −

− −
−

− −

 + − = + − −
+ −

= + − −

 (49) 

Having expressions for 1 ( )jF qα−  we can obtain the physical characteristics. The radiation 

pattern of the scattered field in the far zone (27) is expressed as 
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1 2( ) ( ) ( )α α αϕ ϕ ϕΦ = Φ +Φ , 

where 

/2 1 cos
1 1( ) (cos )sin

4
i ikli

e F eα π α α α ϕϕ ϕ ϕ± − −Φ = − , 

/2 1 cos
2 2( ) (cos )sin

4
i ikli

e F eα π α α α ϕϕ ϕ ϕ± −Φ = − . 

5. Conclusion 

The problems of diffraction by flat screens characterized by the fractional boundary 
conditions have been considered. Fractional boundary conditions involve fractional 
derivative of tangential field components. The order of fractional derivative is chosen 
between 0 and 1. Fractional boundary conditions can be treated as intermediate case 
between well known boundary conditions for the perfect electric conductor (PEC) and 
perfect magnetic conductor (PMC). A method to solve two-dimensional problems of 
scattering of the E-polarized plane wave by a strip and a half-plane with fractional 
boundary conditions has been proposed. The considered problems have been reduced to 
dual integral equations discretized using orthogonal polynomials. The method allowed 
obtaining the physical characteristics with a desired accuracy. One important feature of the 
considered integral equations has been noted: these equations can be solved analytically for 
one special value of the fractional order equal to 0.5 for any value of frequency. In that case 
the solution to diffraction problem has an analytical form. The developed method has been 
also applied to the analysis of a more complicated structure: two parallel strips. Introducing 
of fractional derivative in boundary conditions and the developed method of solving such 
diffraction problems can be a promising technique in modeling of scattering properties of 
complicated surfaces when the order of fractional derivative is defined from physical 
parameters of a surface. 
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