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1. Introduction

Analysis of the diffraction by imperfectly conducting and absorbing strips is important in electromagnetic
theory, and it is relevant to many engineering applications such as antenna and radar cross section
(RCS) studies. This structure serves as a suitable model of finite metal-backed dielectric layers and
dielectric-coated wires. The diffraction by strips with impedance and related approximate boundary
conditions has been investigated thus far using function-theoretic and high-frequency methods [1-3]. In
[4], we have analyzed the plane wave diffraction by a two-dimensional (2-D) resistive strip using the
analytical-numerical approach based on the orthogonal polynomial expansion in conjunction with the
Fourier transform [5], where the efficient solution has been obtained for the same resistivity on both
sides of the strip. It is to be noted that our analytical-numerical approach is entirely different from
the methods employed previously for analyzing scattering problems related to the impedance strip. In
this two-part paper, we shall consider a 2-D strip with different impedances on its two surfaces as an
important generalization to our previous analysis, and solve the plane wave diffraction rigorously using
the analytical-numerical approach. The first part concerns the case of E polarization.

Applying the boundary condition to an integral representation of the scattered field, the problem
is formulated as simultaneous integral equations satisfied by the electric and magnetic current density
functions. We shall then take the Fourier transform of the integral equations and expand the unknown
current density functions into the infinite series containing the Chebyshev polynomials. This leads to
two infinite systems of linear algebraic equations (SLAE) satisfied by the expansion coefficients. These
coefficients are determined numerically with high accuracy via appropriate truncation of the SLAE.
Evaluating the scattered field asymptotically, a far field expression is derived. We shall present illustrative
numerical examples on the monostatic and bistatic RCS, and discuss the far field scattering cha.racteristic;s,.,i
Some comparisons with Tiberio et al. [3] are also given to validate the present method.

The time factor is assux}md to be e™** and suppressed throughout the following analysis.

2. Formulation of the P\roblem

We consider the E-polarized plane wave diffraction by a 2-D impedance strip of zero thickness as shown
in Fig. 1, where {; and ( denote the normalized impedance of the upper and lower surfaces of the strip,
respectively. Let the total electric field E,(z,y) be

. E.(z,y) = Ei(z,y) + E2(=,3), eY)
where E%(z,y) is the incident field given by
Ei(z,y) = e~ HEaotyy1-00) - 4 = cosf (2)

for 0 < 6 < « with k [= w(poeo)!/?] being the free-space wavenumber. The total field satisfies the
boundary condition as given by

OE,(z,£0) ik B
By + G E,(z,+0) =0, |z|<a. (3)
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Fig. 1. Geometry of the problem.
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Using Green’s formula, we can express the scattered field E(z,y) in (1) as
%
Ei(z,y) = 2 /;a {fl(zi) o fz(zl)gg} Hé” (k\/ (z - 2')? +y2) dz’ (4)

with Hél)(~) being the Hankel function of the first kind, where fi(z) and f, (z) are the unknown electric
and magnetic current density functions, respectively, which are defined by

8E.(z,+0) 9Es(z,~0)

fl(m) = ay ay ] fZ(z) = Ez(za +0) - EZ(I! —0) (5)
Taking into account the boundary condition as given by (3), we obtain from (1), (2), and (4) that
Z " i 1 o ! !
T hi(@) + Zafa(z) = 2ieTheo0 4 1] fl(z')Hgl) (klz — 2']) de’, (6a)

. _ ~ikza ’ (1) — 2 /
= Z2£1(z) + kZ3 fa(z) = 2k4/1 — ofe™ °+ h oay / f2(z")Hy (k (-2 +y ) , (6b)
where
y e 20162 - (¢ = ¢2) Do 2
G+¢’ G+¢é G+¢
Equations (6a,b) are the integral equations to this diffraction problem.

(7)

3. Solution of the Integral Equations

We multiply both sides of (6a,b) by e~***# and integrate with respect to  for —a < z < a. Carrying out
some manipulations with the aid of the Fourier integral representation of the Hankel function, it follows

that
Z Fy(B) _ 48ink(ae+pB) 1 [ sink{a—~B) do
220 s zp(p) = uTpe ) +ﬁ) +1r/_m RS I (8a)
ZgFl 2R\ (B) e sink(ap +8) 1 sin n(a B)
=+ Z3F2(f) = 44/1 —————-———(ao T / F(a)———=v/1 - a?da, (8b)
where
1 . 1 .
Fi(a) = a/l f1(an)e™**"dn, Fz(a) fz'(an)e"“"‘"dn 9)
with & = ka and © = an. It can be shown that f 2(z) in (5) are expa.nded in the form

fi(e) = ———1(——/—¥{f0+221’lﬂ;(—)}, fa() =41~ (%) anvn(f), (10)

where T, (-) and Upn(:) denote the Chebyshev polynomial of the first and second kmds, respectively. In
(10), fa? for n.=0,1,2,- - - are unknown coefficients to be determined. Substituting (10) into (8a,b) and
applying some propertles of the Weber—Schafheitlin discontinuous integrals, we derive the two infinite
systems of linear algebraxc equatlons (SLAE) as in

Zz zld‘,’,,,, cmn)+Z22z dby =g, (11a)
n=0 n=0
-Z,Zx;d +Zz (Z3d n + bmn) = 44/1 = &3 7m (11b)
n=0 n=0
form =0,1,2,---, where
=f3, o =2(=)"fi/n forn=1,2,3,---; 22 = (=i)*"(n+1)f2 forn=0,1,2,---, (12)
Im
T = (-1 ImtilE), (1)
Qg
B = {1 + (1)K} E- [ k2K pL___ 2p %
Ll o e ( er+K+2) - Z1"(p+z)
o~ {Cr — ¥(p + K +2)}65,
+"2sz=% T+ K1) 22k%| )}, (m+mn: even), (142)
-0 VS [ a2k - 8% 2p 2p
¢mn={1+(-1) }— K Zmn e | KEI‘(p+1)
(2K {CPO ‘I’(p+K+1)}J0 2p 5 (14b)
; TG+K+D) K , (m+mn: even),
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T(K +1/2)

& = {1+ (-1)*¥}

WK —m+1/2)0(K +3/2)T(K —n+3/2)’ (15a)
_ T(K +1/2)

don = {1+ (—1)2K}4F(K "+ 3/2)0(K + 52T (K —n +3/2)’ (15b)

sl = (_1)pI‘(P+K+ 1/2)T(p+ K + /2 + )T(p+ K + X/2 +3/2)
= T+ Ol@+n+ A+ )Tp+m+2)T(p+2K + 2 +2)’ (16a)
5 = T(-p+ K)I(p+1/2)T(p+ A/2+ 1)I(p+ A/2 + 3/2) -
P Tp-K+nt A+ I (p-K+m+ 2T+ K +r+2) (16b)

Cor=2lna+¥(p+ K +1/2)+¥(p+ K +A/2+ 1)+ ¥(p+ K +1/2+3/2)

—¥(p+1)-T(p+n+A+1)-¥(p+m+2)-¥(p+2K +2+2), (17)
=0, ug=1for K>1 with K = (m+n)/2. (18)

In the above, T'(-) and Jm+1(-) denote the gamma function and the Bessel function, respectively, and
¥(-) is the logarithmic derivative of the gamma function. The unknowns z}® can be determined with
high accuracy by solving (11a,b) numerically via a truncation procedure.

4. Scattered Far Field

Substituting the asymptotic representation of the Hankel function into (4) and carrying out some ma-
nipulations with the aid of (10), we derive the scattered far field with the result that

EZ(r, ) ~ \/ ;r%;e"(’“'“"/*)@(tﬁ), kr — oo, (19)
where (7, ¢) is the cylindrical coordinate defined by z = 7cos ¢, y = rsin¢ for -7 < ¢ < 7, and
. 0 o0
_im 7 w 2
B(¢) = — ,,;, T, Jn(kcos¢) + i tan ¢ ,,z._.o zoJnt1{Kcos d). (20)

5. Numerical Results and Discussion

We shall now investigate the far field scattering characteristics of the strip via numerical computation of
the RCS. Figure 2 illustrates the monostatic RCS as a function of incidence angle 8 for ka = 5.0,15.0. In
order to investigate the effect of the surface impedance on the scattered far field, four different cases have
been considered as in ((1,¢z) = (0.0,0.0), (1.5, 3.0), (1.5,1.5), (3.0,3.0), where {; 2 = 0.0 corresponds to
a perfectly conducting strip. Comparing the results for the impedance strip with those for the perfectly
conducting strip, the RCS is reduced for the case of the impedance strip as expected. From the three
RCS curves for the impedance strip, it is seen that the backscattered far field is not much affected by
the impedance of the strip surface in the shadow region except near § = 0°. Shown in Fig. 3 is the
bistatic RCS as a function of observation angle ¢ for 8 = 60° and ka = 5.0,15.0. It is seen that the
RCS level of the impedance strip is lower than the perfectly conducting case for —180° < ¢ < —150°
and —-60° < ¢ < 180°, whereas all the four curves are close to each other for —150° < ¢ < —60°. It
is therefore inferred that the scattered far field in the neighborhood of the incident shadow boundary
(¢ = ~120°) does not depend on the surface impedance of the strip. Figure 4 shows comparison with
the results obtained by Tiberio et al. [3] using the geometrical theory of diffraction (GTD) together with
the Maliuzhinetz method, where the bistatic RCS is illustrated as a function of observation angle ¢ for
6 = 180°, ka = 10.0, and ({1,¢{2) = (4.0,0.0). It is seen from the figure that our RCS results are in
excellent agreement with the results presented in [3].
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