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B A D I A T I O N  OF AN E L E C T R O N  F L U X  M O V I N G  O V E R  g 

G R A T I N G  C O N S I S T I N G  OF C Y L I N D E R S  W I T H  L O N G I T U D I N A L  S L I T S  

E.  I .  V e l i e v ,  A.  I .  N o s i c h ,  
a n d  V. P .  S h e s t o p a l o v  

UDC 538.574.6 

The charac te r i s t i c s  of the radiation of an electron flux over a grating consist ing of cylinders 
with Longitudinal slits are  investigated. It is shown that the radiation energy increases  cons ide r -  
ably with the excitation of resonance conditions in the s tructure.  

The radiation of a two-dimensional  e lectron flux moving above a oeriodic s t ructure  formed by parallel  
cylinders with longitudinal slits is considered (Fig. 1). The cyl inder  walls are assumed to be infinitely thin and 
to possess  ideal conductivity. The cylinders have the radius a ,  the angular dimension of the slits is equal to 
20, the orientation angle of the slits relative to the 0y axis is equal to r and the grating period is equal to I. 

It is known [1,2] that a grating consisting of metal bars with a rectangular  c r o s s  section possesses  r e s o -  
nance propert ies .  This is connected with the fact that the flux excites operating conditions close to quasi in-  
tr insic conditions, which affects material ly the radiation energy.  The s t ructure  considered here is also a reso-  
nance s t ruc ture ,  while its geometry  offers  considerable scope for  optimizing the charac te r i s t i cs  of diffraction 
radiation. The solution obtained here makes it possible to explain the resonance propert ies  of the s t ructure  by 
describing them analytically and performing a numerical  analysis by means of a computer.  

The method used for  solving this problem is based on the resul ts  obtained in [2, 4]. It consists  in sepa ra t -  
ing in the integral equation of the f i rs t  kind, to which the solution of the above problem is reduced,  the integral  
operator  pertaining to a separate grating element and then t ransforming it by using the method of the R i e m a n n -  
HiLbert oroblem [3]. 
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1. R e d u c t i o n  o f  t h e  P r o b l e m  t o  a S y s t e m  of  L i n e a r  

A l g e b r a i c  E q u a t i o n s  of  the S e c o n d  K i n d  

As is known, in the absence  of the gra t ing ,  the intr insic e lec t romagnet ic  field of a monochromat ic  two-  
d imens ional  e lec t ron  flux with the veloci ty v = tic and the charge  density 

,o = Po ~ ( z  - -  p )  e ~ ( k y - ~ ) ,  (1)  

has the fo rm of an H-polar ized  nonuniform plane wave [5], 

H~ = 2 ~Po sign ( z  - -  p )  e - q  ! z - p  l + :ky (2) 

where  q = (k 0 /~)~1  - ~2 and k 0 = o3/c. (Here and below, the t ime dependence e -iwt is omitted.) The other field 
components ,  E~ and E~ a re  de termined f rom Maxwell ' s  equations. 

It  will  be subsequently n e c e s s a r y  to r ep re sen t  the field (2) in the fo rm of an expansion with respec t  to 
cyl indr ica l  functions in an r ,  ~ coordinate  sys tem.  In the range z < p, H~ is given by 

__ e"% (3)  

where Jn(x) a r e  ]3essel functions. 

The total  field excited by the flux is de termined by the unique, nonvanishing x -componen t  of the magnetic 
f ield,  which mus t  sa t is fy  the well-known conditions [2]. We shall  r e p r e s e n t  it in the following fo rm:  

H(y, z) = / 4 ~  (y, z) - -  Y(y, z). (4) 

We shal l  seek  the function V(V, z),  which desc r ibe s  the sca t te red  f ield,  in the fo rm of a superposi t ion of 
doub le - l aye r  potent ia ls ,  d is t r ibuted among the grat ing e lements  with the unknown cu r r en t  density ~ (V, z): 

V (y ,  z)  = ~ ~ t~(y~, z~) (Y - -  Ys, z - -  zs) dl~,  (5) 
O~ S 

whe re 

K(y.  z) = exp 

i 
-- ~ (6) 

2~z ,,=_r V f  1 - -  (-~ -t- n i  2 x  , 

['~ = l / ~ ,  H~l)(x) is the Hankel function, S is the contour of the ze ro  e lement  of the gra t ing ,  and u is the normal  
to its surface] .  

The second rep resen ta t ion  of the function K(V, z) is obtained by using Po i sson , s  summat ion  formula  and 
the ~-- b ranch  for  which I m ~ -  > 0; if Im~/~" = 0, then Rex/A > 0. 

It  follows f r o m  (5) that the sca t t e red  field const i tutes  a superposi t ion  of uniform and nonuniform plane 
waves ,  the ampli tudes  of which are  de te rmined  by the geomet ry  of the grat ing e lements  and the p a r a m e t e r s  of 
the e lec t ron  beam.  

The density of the sur face  cu r r en t  on the grat ing cyl inders  mus t  be such that the Neumann boundary con-  
dition is sa t i s f i ed ,  as wel l  as the Meixner  condition at the r ibs.  The f i r s t  condition leads to an in tegrcd i f fe ren-  
t ia t  equation with r e spec t  to the function ~ (V, z),  while the second condition de t e rmines  the c l a s s  of allowable 
solutions of this equation. It can be shown that it is sufficient to use L 2 for  such a c lass .  

:By represen t ing  the function p (y, z) in the f o r m  of a F o u r i e r  s e r i e s  with r e spec t  to the az imutha l  co o rd i -  
nate ~ and using the summat ion  theorem for  Besse l  functions,  we pass  f rom the in tegrodifferent ia i  equation 
to a s y s t e m  of functional equations with respec t  to F o u r i e r  coeff icients  for  the cu r r en t  ~m which a re  of the 
same  type as in the case  of plane wave dif f ract ion on a single cyl inder  with a sl i t  [6] or  on a grat ing consis t ing 
of such cyl inders  [4]. By separa t ing  in these equations the pa r t  connected with the zero  e lements  of the grat ing 
and t r ans fo rming  it by using the solution of the R i e m a n n - H i l b e r t  p rob lem [3], we obtain a sy s t em of F redho lm 
l inear  a lgebra ic  equations of the second kind: 
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where  

I%,= = ~ Amn~n + Bra ( r e = O ,  =El,...), (7) 
n ~  - c o  

A.,~ = = (ko,O' S; + Z' ( - -  1) .  exp  (@ ,%) e .  (., V) V,".]. 

oo 

A,,,. =- I n [ ( - -1 ) . exp ( in~o)~ .T~  + i=(koa)~J'., ~ (--1)P exp (ip%)J~G,,_,,,(~.,O)T~, 
p ~  - -  O 0  

-- W~(--u),  m = O  

T" = l ( _ l ) . ~ e x p ( _ i m % )  . - i  " , Vm--,(--U), m 4: O' 
m (8) 

B,,,=--iT:(koa) = ~ exp(in~,o)(--i)nf~T~(1- V l - ~ s ) " / ~  ", 
n ~ - o o  

~. = 1 + i ~(ko a) 2 j~ H(~,, 
I n l  

Gm(X' ~) = n=X ~ [ e x p ( i 2 = n - ~ ) +  ( - - 1 ) m e x p ( - - i 2 ~ n ~ ) ] H ~  

In these e x p r e s s i o n s ,  (k0a) is the a rgument  of the cyl indr ica l  functions,  while the W n and V n fimetions 
a r e  exp re s sed  in t e r m s  of Legendre polynomials  [3], and u = cos0. 

The ampl i tudes  of the three--dimensional  harmonics  a re  exp res sed  in t e r m s  of the unknowns/z m in the 
f o r m  of s e r i e s .  F o r  ins tance ,  over  the g r id ,  

2~p~ ~, ~,,,i 'd;.(koa)exp (--ira%), (9) 

x 1 /1  _ (-~ + ~-)' "="-= 

where  ~Pn = a r e e o s  [(1/fi) + ( n / ~ ) ]  is the radiat ion angle of the harmonic  with the number  n. 

2. A p p r o x i m a t e  S o l u t i o n  o f  t h e  I n f i n i t e  S y s t e m  of  E q u a t i o n s  

a n d  C h a r a c t e r i s t i c s  o f  D i f f r a c t i o n  R a d i a t i o n  

If we compare  the ma t r ix  e lements  Amn of s y s t e m  (7)with the analogous quantit ies in the prob lem of flux 
motion over  one cyl inder  with a longitudinal sl i t  [7], we notice that they dif fer  f rom each other  by the p resence  
of a s e r i e s  with the functions Gp(x ,  /3). These  functions actually desc r ibe  the mutual  effect  of cyl inders  in the 
grat ing.  It follows f rom the asymptot ic  expres s ions  for  Hankel functions that lira Gp(x, ~) = 0, and,  the re fore ,  

l - * o o  

s y s t e m  (7) al lows t rans i t ion  in the l imit  to the case  of an isolated cylinder.  

Since the Schlgmilch s e r i e s  for  Gp (8) converges  slowly, it is more  convenient to invest igate s y s t e m  (7) 
by represen t ing  Gp(~'., fi) in the fo rm of rapidly converging s e r i e s  with respec t  to e l emen ta ry  functions,  as was 

done in [8]. 

Analysis  of the thus obtained exp res s ions  shows that the ma t r ix  e lements  Amn may become infinite for  
ce r t a in  values  of the p a r a m e t e r s  zanc l  ~. This  occurs  at the .s l iding points,, if z [ ( l / /~ )  • 1] = n (n = 1 , 2  . . . .  ) 
and a lso  in the uninteres t ing ease  of the static charge  dis t r ibut ion for  fi = 0. 

It should be noted that,  as a r e su l t  of the substi tut ion 

6 p ( z , ~ ) = G p ( ~ , , ~ ) + % e x p  - - ~ p  + ~ _ e x p  ip , 

whe re 

s y s t e m  (7) is t r ans fo rmed  into a s y s t e m  suitable for  invest igations for  any values of w and fl (/3 • 0). 

Neve r the l e s s ,  with the exception of the above values of ~ and fl, s y s t e m  (7) is p re fe rab le  in atl  cases  be -  
cause  of the s impl ic i ty  of its e lements .  Since it is of the F redho lm type,  its solution can be obtained by using 
the cutoff method [9]. 
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~' [ Aran ~ 1  . It fOllOWS f rom es t imates  Let us es t imate  the norm of the matr ix  of sys tem (7) q = max 
r n + 0  n r ra 

n of the functions Vm [3], the functions Gp [2], and the asymptot ic  express ions  for  cyl indr ical  functions that 

q<]/'~-~'-~ C~(koa)2+C~ +C3Vl'--+U(koa) + C , ( l + u )  ~ , (10) 

where  C i a re  constants.  

Thus ,  for  a grat ing consist ing of sufficiently narrow str ips (u -~ -1 )  and in the case of a widely spaced 
grating (s = 2a/l << 1) consist ing of cyl inders  with a rb i t r a ry  sli ts - q  < 1 - w e  can,  t he re fo re ,  use the method 
of success ive  approximations for  the solution of sys tem (7). 

In the ze ro  approximat ion,  we obtain f rom (7) 

ir:(koa )' ~ exp(ip%)(--i)Pdp ~ % 
Fo . . . .  P= - ~  , ( i  i ) 

1 +ir~(k~176 t-t<~)'W~ ~-~(-I)'exp(ip%)J;G'W'] 
Fm = (--1)"exp(im ?~ { F~ [ J'~ Jr- J'Op=_~ (-- l) p 

X exp (ip~,o)J; GpVP-}-, ] + __~ooexp (ip , % ) j ; ( 1 - -  #'1----- .~ 2 

• 1 -- iml omv,,,-t~-' -- i~(koa)~(--1)mexp(--im%)J'~ ( - -1) ,  exp(ip%)J,a,_,~V~-~ �9 (12) 
/ /g  m p ~ c o  .z 

We shall now investigate in greater detail certain important particular cases. 

a) Grating Consisting of Narrow Strips. The following approximate expressions are obtained from (11) 
and (12) for the amplitudes of the diffraction harmonics produced by interaction between the flux and a grating 
consisting of narrow cylindrical strips: 

2~p0(koa) 2 cos ~ (0/2) (V-TZ - [~, sin .% i cos %) a r l  = - -  

{ [ ' 1} N cos (~ - -%)  exp [--q(p+a sin?0)] exp ikoa cos (? , - -%)--  ~cos~o . (13) 

The e r r o r  of these express ions  is of the order  of O[(koa/cos4(O/2)]. It follows f rom (13) that there  is no rad ia-  
lion in the d i rec t ion para l le l  to the grating s t r ips ,  which agrees  with the resul ts  obtained by other  authors [10]. 
This  is readi ly explained by the absence of a longitudinal cu r ren t  component at the s tr ips .  The fac tor  exp [-q x 
(p + a sin q)0)] ref lec ts  the fact that the efficiency of interact ion between the flux and the grating depends ex -  
ponential |y on the impact  pa ramete r .  Actual ly,  the harmonic amplitudes are  at the i r  maximum at ~00 = 270 ~ 
i .e . ,  when the strips are  c loses t  to the flux. It should a lso  be noted, that for  cr = 90, 270 ~ express ions  (13) 
coincide with an accuracy  to the phase fac tor  with those that can be obtained f rom [5] fo r  diffract ion radiation 
over  a plane na r r ow-s t r i p  grating. 

b._~) Widely Spaced Grat ing Cons i s t i ngofCy l inde r swi thNar row Slits. If the grid consis ts  of sufficiently 
widely spaced cyl inders  with narrow s l i t s ,  express ions  (11) and (12) are  also simplified cons iderably ,  and the 
amplitudes of the field harmonics  of diffract ion radiation assume the following form:  

= 2 ~ Po e-qp I ' 2 { ~oJo- (t~0 H(~ ) ' -  1)J'o ~ I m'---L ~ n  

x I - -  + 

X (--i)~'exp [im(~oW%)lV~[, + ~ Ira, J',~(-1)~exp(--im%) V~,Ll ( ~ ),,~} 

+ ao -s H U  + Go 1 + " (14) 

Express ion  (14) is determined with an accuracy  ofO[(a/l) 2 sin 2 (0/2)]. Analysis of this express ion  shows 
that the harmonic amplitudes have ex t remums  when the grat ing pa rame te r s  satisfy the equation 

309 



I Do (ko a, 0) I' = 0, (15) 

where  D o is the denominator  of exp res s ion  (11). 

By solving the cor responding  homogeneous p rob lem of f ree  osc i l la t ions ,  we can show that the resonance 
values of the p a r a m e t e r s  in (15) a re  c lose  to the roots of the d i spe r s ion  equation of the s t ruc ture .  These roots  
de t e rmine  the quas i in t r ins ic  operat ing conditions of the gra t ing ,  and they are  al l  complex.  Phys ica l ly ,  this 
means  that ,  in the case  of cy l inders  with nar row s l i t s ,  the gra t ing  const i tu tes  an open resonance  s t ruc tu re ,  
where  quas ina tura l  osci l lat ions a re  damped in the course  of t ime ("damped r e s o n a n c e s ,  [2]). The damping rate  
is de te rmined  by the negative imaginary  pa r t  of the resonance  values of the f requency p a r a m e t e r  x. 

F o r  k0a << 1, the d i spe r s ion  equation a s s u m e s  the following form,  

1-t-(k0a) ~ 1 - - ~  . . . .  Ima0 l n s i n - ~ + O  ~3s~sin ~ ----0. (16) 
4 

If ,  fo r  ins tance ,  the radia t ion conditions a re  sat isf ied only fo r  the - l s t  t h ree -d imens iona l  ha rmon ic ,  then 

lm Go(z, ~) = - -  2 1 n ~ X  - -  (z ~  ~,) 1.202 + O ( ~ ) ,  
r. 2 

whe re 

I ~ I - -  ~ - I  < - ~ ,  ~ = 1 . 7 8 1  . . . .  

The root of Eq. (16) is equal  to 

k o a =  ~ I n s l n  2 + Z ,  (17) 

where  the sma l l  complex addition ~ has the o rder  of O [ - l n s i n  2 (0/2)] -3/2. This  root of the d i spers ion  equation 
per ta ins  to the so--called outflowing sli t  wave in a round waveguide with a slit. The Q- fac to r  of the c o r r e s p o n d -  
ing r e sonance ,  defined as  tle ~/Im• has  the o r d e r  of O [ - l n s i n  2 (0/2)]. 

Analysis  of the d i spers ion  equation for  a r b i t r a r y  values of k0a shows that the flux exci tes  other  qu as i -  
intr insic  operat ing conditions if  k0a = 7r~s is c lose  to the roots  of de r iva t ives  of the Besse l  functions,  i .e . ,  
when the f requency is c lose  to the resonance f requencies  of a closed cy l inder ,  but differs  f rom them by a smal l  
addition. F o r  ins tance,  for  per turbed  s y m m e t r i c  H-osc i l l a t ions ,  the resonance frequency is equal to 

koa = ~o,. + 7., + i Z2 + O (~3), 

j;(.~o,n)=O, ~(t ~___?j__2~.~t,  Z2~2~2';., ' B= 1 ln_lsln_ ~ (18) 
" 2 

, t ,  , ,  

4 J0 N1 , do 
';1 = %,,~-- + 2 Im Go ~-~- + ~-~, ';2 = -- 2 (1 ~- Re a o) 

(V0m is the a rgument  of the cyl indr ica l  functions). 

The expres s ion  obtained indicates that the Q- fac to r  of the corresponding resonance has the o rde r  of 
O[ln2sin 2 (0/2)] ,  i .e . ,  it is l a rge r  than in the case  of resonance  cor responding  to a sl i t  wave. The shift  of the 
resonance  f requency (with r e spec t  to V0m) is caused by nonuniformit ies  in the fo rm of sl i ts  in the cyl inder  walls 
and a l so  by in terac t ion  between cy l inders .  It should be noted that ,  since the excit ing field is not uni form,  the 
radiat ion energy should be more  c r i t i ca l  with r e spec t  to the orientat ion angle ~0 near  resonances  than at  a d i s -  
lance f r o m  them. 

3. A n a l y s i s  o f  t h e  N u m e r i c a l  R e s u l t s  

The approximate  analyt ical  express ions  obtained by means of success ive  approximat ions  can only be used 
if substant ia l  cons t ra in t s  a re  imposed on the p a r a m e t e r s  0, ~ ,  and s. F o r  a more  detailed investigation of the 
radiat ion c h a r a c t e r i s t i c s ,  we pe r fo rmed  a numer ica l  ana lys i s  of the p rob lem by solving s y s t e m  (7) by means  
of an M-222 compute r ,  using the cutoff method. F igures  1-6 show some of the obtained ampli tude dependences 
for  the - 1 s t  three--dimensional  ha rmonic ,  emit ted into the upper (a_z) and lower (b-l) ha l f - space .  

The operat ing conditions where  the ent i re  energy  of diffract ion radiation is concentra ted in a single un- 
damped ha rmon ic ,  emit ted along the no rm a l  to the g r id ,  a re  of the g r e a t e s t  in te res t  in calculat ions.  It follows 
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f rom (6) that this occurs  for  the - l s t  harmonic if ~ = /3 < 1. It should be noted that,  for  those d iagrams which 
do not per tain to rotation with respect  to the orientation angle ~00, the effective impact pa rame te r  does not 
change,  i .e. ,  the spacing h between the flux and the grid remains constant. 

If the wave dimensions of the cyl inders  are  fixed (k0a = ~ s  = const) ,  the dependences of ]a_ll and Ib-ll  
(dashed curves)  on the angular  dimension of the slit 0 have a resonance cha rac te r  for  different orientation 
angles of the slit  q~0 (Fig. 1). The increase or reduction in the radiation energy is connected with the excitation 
near  the s t ructure  elements  of a field close to the quasi intr insic  field of the grat ing,  while the resonance values 
of 0 and k0a satisfy relationship (16). The cha rac te r  of the resonance depends essential ly on the orientation 
angle of the slit ~0. The calculation results  indicate that the variat ion of ~00 leads to changes in the phase and 
amplitude distr ibutions of the cur ren t  at the surface of a grat ing element ,  which affects the amplitudes of the 
emitted two-dimensionai  waves. The phenomenon indicates the nonuniformity of the excited field and is most  
strongly pronounced in the resonance case.  

If the slit  d isappears  (0 ~ 0), la-ll  and ]b_l] tend to finite (not equal) values corresponding to radiation 
over a grat ing consist ing of round bars .  As was to be expected,  the limiting values are independent of ~00. In 
the other limiting case ,  when 0 ~ 180 ~ i .e. ,  the grating consis ts  of narrow cylindrical  s t r ips ,  the amplitudes 
of the harmonics  tend to ze ro ,  while a lmost  equal amounts of energy are  emitted into the upper and lower half-  
spaces.  This agrees  with the resul ts  obtained in investigating diffraction radiation over a grating consisting of 
flat s t r ips  [5]. 

F igures  2 and 3 show the amplitude of the - l s t  harmonic  as a function of the space factor  of the s t ructure  
s = 2 a / l .  In this,  the grating period remains  constant ,  and only the wave dimensions of the cylinders change. 
The resonance cha rac t e r  of the dependences is connected with the excitation of conditions close to quasiintrinsic 
conditions in the s t ructure .  Fo r  instance,  if the resonances  in Fig. 2 and the f i rs t  of the resonances in Fig. 3a 
are  sl i t - type resonances ,  the second (Fig. 3a) is connected with the excitation inside the cyl inders  of a field 
close to the oscillation field Hit of a closed cylinder.  Actually,  at resonance,  k0a = 1.92; this is close to the 
f i r s t  root of the function J;(x), which is equal to 1.84 (the causes of the resonance frequency shift were men-  
tioned ear l ier ) .  

As was to be expected,  the described resonance phenomena disappear  when the angular  dimensions of the 
slit  are  so large that the s t ructure  elements  constitute cyl indrical  s tr ips (Fig. 3b). 

Let us consider  in g rea t e r  detail  the effect of the orientation angie of the slit e0 on the radiation eff i -  
ciency. As fa r  as we know, this has not yet  been discussed in problems of diffraction radiation. Figure  4 p e r -  
tains to the case where the grating consis ts  of narrow str ips.  It is a lso c lear  f rom elementary physical  con-  
s iderat ions that the energy of the harmonics  is at  a maximum when the flux is c loses t  to the s t r ips ,  and they 
form an a lmost  plane grating (~00 = 270~ Since ~< = ~, i .e. ,  only the - l s t  harmonic is emitted along the normal  
to the grat ing,  the radiation energy is evidently at a minimum when ~00 is close to 0 or  180 ~ and the s t ructure  
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is close to a knife grating. At the same t ime, this energy is not equal to ze ro ,  which is explained by the cu rva -  
ture of the s t r ips  forming the grating. 

As 0 diminishes ,  the cha rac t e r  of the r dependence changes drast ical ly.  If the slit  is narrow,  for in- 
s tance,  if ~ = 1 ~ (Fig. 5), changes in the distance between the flux and the grating can be neglected in rotation 
with respec t  to ~o 0. In the resonance case (s = 0.246), the angular dependence is strongly pronounced, while 
the maximum of the radiation energy is observed when the cyl inder  slits face the flux. With departure from the 
resonance with respect  to any of the p a r a m e t e r s ,  fo r  instance,  with respect  to s ,  the dependence q~0 becomes 
insignificant. Such behavior of the curves  reflects the fact that resonance is connected with slit waves and is 
excited by the field of nonuniform plane waves. 

In order  to compare  a grat ing consist ing of open cyl inders  with gratings of other types,  we also plotted 
normalized polar d iagrams  of radiation of the - 1 s t  harmonic (Fig. 6). (The dashed curve shows the diagram 
of radiation over a grat ing consist ing of half-planes inclined at r = 70 ~ [10].) The direct ion of maximum rad ia -  
tion cor responds  to the excitation in the s t ructure  of the quasi intr insic conditions investigated above. By using 
suitable grat ing p a r a m e t e r s ,  we can ensure ,  for  instance,  the maximum radiation in the vertical  direction. 
This is of considerable importance in diffraction e lect ronics  and in designing continuous high-power diffraction 
radiation genera tors  with electronic efficiency onthe order  of 20%. It should be noted that,  for  echelet te-type 
reflection grat ings and some others ,  radiation along the normal  to the grating is weak according to fundamental 
considerat ions [10]. Moreover ,  the maximum radiation energy over a grating consist ing of cylinders with 
longitudinal slits exceeds the radiation energy for the flux over a comb-type grating. 

We shall mention in conclusion that analysis  of the convergence of the calculation resul ts  shows that it is 
sufficient to solve a 17th order  sys tem in order  to ensure an accuracy  not worse than 0.5%. In order  to verify 
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the solution and the calculat ion a lgor i thm,  we checked the boundary conditions at the cyi inder  sur face  and the 
conditions at the rib and found that the resu l t s  were  ent i re ly  sa t i s fac tory  for  any p a r a m e t e r s  of the problem.  
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COMPETITION OF MODES RESONANT WITH DIFFERENT 

HARMONICS OF CYCLOTRON FREQUENCY IN GYROMONOTRONS 

I. G. Zarnitsyna and G. S. Nusinovieh UDC 621.385.6 

Oscil lat ion of the working mode at  the second cyclo t ron  harmonic  2~ H has the effect  of extending 
the region in which paras i t ic  modes  resonant  with the f i r s t  cyc lo t ron  harmonic coil can be e x -  
cited. A study is made of the dependence of the conditions for  seLf-excitation of paras i t i c  modes 
{when the working mode is oscillating) on the basic  p a r a m e t e r s  of the gyromonotron:  beam c u r -  
ren t ,  intensity of magae tos ta t ic  f ield,  f requency detuning of modes ,  and re la t ive  efficiency of 
in teract ion of e lec t rons  with the fields of the working and paras i t i c  modes.  

w 1. In gyromonot rons  with a spat ial ly developed resonant  s y s t e m ,  it is possible  for  the exci tat ion con-  
dit ions to be sat isf ied s imul taneously  for  s e v e r a l  modes.  The compet i t ion of modes resonant  with the cyc lo -  
t ron frequency coil means  that excit ing one mode into oscil lat ion reduces  the region in which seLf-excitation of 
other  modes can occur  [1]. 

In gyromonot rons  operat ing on a mode resonant  with 2~CH, ,dangerous , '  compet i t ion c o m e s ,  as a ru le ,  
f rom modes resonant  with CCH, which in terac t  more  effect ively with the beam [2]. The interact ion of e lec t rons  
with a h igh-f requency field of f requency ~ is dif ferent  in nature for  w ~ ~H and ~ ~ 2~ H [3]: F o r  w ~ coil it is 
dipolar  and for  co ~ 2w H it is quadrupoiar .  One may expec t ,  t he r e fo re ,  that the compet i t ion oi modes resonant  
with the var ious  ha rmonics  of coil will  d i f fe r  f rom the case  cons ide red  in [t] of the compet i t ion  of modes  r e s o -  
nant with the fundamental .  In the p resen t  pape r  we r epor t  a study of the effect  of the oscil lat ion of the working 
mode ,  resonant  at 2OJH, on the conditions fo r  seLf--excitation of paras i t ic  modes resonant  with coil- 

w 2. We cons ider  the gyromonot ron  model  adopted in [1] :Theworking space of the device is axially s y m -  
me t r i c ;  the flux of weakly re la t iv i s t ic  e lec t rons  has s p r e a d - f r e e  veloci t ies  and guiding cen te r  radii  R0; the 
r e s o n a t o r ,  of radius B,  has a high Q, as a resu l t  of which the time to set  the mode osci l lat ing is cons iderably  
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