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RADIATION OF AN ELECTRON FLUX MOVING OVER A
GRATING CONSISTING OF CYLINDERS WITH LONGITUDINAL SLITS

E. I. Veliev, A. I. Nosich, UDC 538.574.6
and V. P. Shestopalov

The characteristics of the radiation of an electron flux over a grating consisting of cylinders
with longitudinal slits are investigated. It is shown that the radiation energy increases consider-
ably with the excitation of resonance conditions in the structure,

The radiation of a two-dimensional electron flux moving above a periodic structure formed by paraliel
cylinders with longitudinal slits is considered (Fig. 1). The cylinder walls are assumed to be infinitely thin and
to possess ideal conductivity. The cylinders have the radius «, the angular dimension of the slits is equal to
20, the orientation angle of the slits relative to the Oy axis is equal to ¢, and the grating period is equal to /.

It is known [1, 2] that a grating consisting of metal bars with a rectangular cross section possesses reso-~
nance properties. This is connected with the fact that the flux excites operating conditions close to quasiin-
trinsic conditions, which affects materially the radiation energy. The structure considered here is also a reso-
nance structure, while its geometry offers considerable scope for optimizing the characteristics of diffraction
radiation. The solution obtained here makes it possible to explain the resonance properties of the structure by
describing them analytically and performing a numerical analysis by means of a computer,

The method used for solving this problem is based on the results obtained in {2, 4]. It consists in separat-
ing in the integral equation of the first kind, to which the solution of the above problem is reduced, the integral
operator pertaining to a separate grating element and then transforming it by using the method of the Riemann —
Hilbert broblem [3].
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1. Reduction of the Problem to a System of Linear

Algebraic Equations of the Second Kind

As is known, in the absence of the grating, the intrinsic electromagnetic field of a monochromatic two-
dimensional electron flux with the velocity v = e and the charge density

P = pd (2 —p) e tr—en, ®)
has the form of an H-polarized nonuniform plane wave [5],
HY == 2nBp, sign (z — p)e-a!2—»|+uhy 2)

where q = (ky/f)V1 — g and k= w /c. (Here and below, the time dependence e-iwt is omitted.) The other field

components, ESO, and E}, are determined from Maxwell's equations.

It will be subsequently necessary to represent the field (2) in the form of an expansion with respect to
cylindrical functions in an r, ¢ coordinate system. In the range z < p, H} is given by

oo 1 — Vi=gt\"
HY = — 2afp,e~97 ~2 d,(Bgr)i® (“"”1{8—"3—) ens, 3)

where J, () are Bessel functions.

The total field excited by the flux is determined by the unique, nonvanishing x-component of the magnetic
field, which must satisfy the well-known conditions [2]. We shall represent it in the following form:

H(y,2) = Hiy, 2) — V(y, 2). @)

We shall seek the function V{y, z), which describes the scattered field, in the form of a superposition of
double-layer potentials, distributed among the grating elements with the unknown current density p @, z):

V(y- Zy=m .S. p‘(ysr s) K(y - Y5 & — zs) dl.n (5)

S

where

& — kol
K<%2>=~é 2 HE (ke Vg —alF +2) exp(t?n)-

== —00

L i exp{tk [( b'-l—l/l— -+ — !zl]}
e l/‘—ﬁ +4)

m=1/x, H(i)(x) is the Hankel function, S is the contour of the zero element of the grating, and v is the normal
to its surfacel,

(6)

The second representation of the function Ky, z) is obtained by using Poisson's summation formula and
the VA branch for which ImvA > 0; if ImvA = 0, then RevA > 0.

It follows from (5) that the scattered field constitutes a superposition of uniform and nonuniform plane
waves, the amplitudes of which are determined by the geometry of the grating elements and the parameters of
the electron beam.

The density of the surface current on the grating cylinders must be such that the Neumann boundary con~
dition is satisfied, as well as the Meixner condition at the ribs. The first condition leads to an integrodifferen~
tial equation with respect to the function u(y, z), while the second condition determines the class of allowable
solutions of this equation. It can be shown that it is sufficient to use L, for such a class.

By representing the function p(y, z) in the form of a Fourier series with respect to the azimuthal coordi-
nate ¢ and using the summation theorem for Bessel functions, we pass from the integrodifferential equation
to a system of functional equations with respect to Fourier coefficients for the current u,, which are of the
same type as in the case of plane wave diffraction on a single cylinder with a slit [6] or on a grating consisting
of such cylinders [4]. By separating in these equations the part connected with the zero elements of the grating
and transforming it by using the solution of the Riemann—Hilbert problem [3], we obtain a system of Fredholm
linear algebraic equations of the second kind:
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tn= 3 Apw,+ B, (m=0, £1,.), 1)

A= —00

where

Ay = i“(koa)zJ(’l[ (l))’ T?u + Z (=1 exp(ip %)Jt,'Gp(": B)Tﬁt]’
p=—00

o
App = | 0 [ (1) exp (ing) 8, T + in(kyaltds 2 (=17 exp (ip2a)dp Gpn (v, B) T,

p=—

- Wn(— a), m =0
Trn11 = 1 . " —1 H

—(—=Dmexp(—ime) Vali(—u), m=£0

m 8)

B,=—in(ka)® 3 exp(ingo)(— ), Tl — Vi—F)"/p",
a: =14 LBl g,
[ nl
D ; * ; * Y| pw *
G,(e, )= exp(zan—é—>—i—(— 1)= exp(—LQﬂ:nE Hy 21rn-é— .

n=1 \

In these expressions, (kja) is the argument of the cylindrical functions, while the Wy and VI,}n functions
are expressed in terms of Legendre polynomials [3], and u = cosé.

The amplitudes of the three-dimensional harmonics are expressed in terms of the unknowns up, in the
form of series. For instance, over the grid,

M___ %01 B i J;” (kO a) exp (_i”L ?n)’ (9)

B

n

where @ =arccos [(1 /B) + /)] is the radiation angle of the harmonic with the number n.

2. Approximate Solution of the Infinite System of Equations

and Characteristics of Diffraction Radiation

If we compare the matrix elements Amp of system (7) with the analogous quantities in the problem of flux
motion over one cylinder with a longitudinal slit [7], we notice that they differ from each other by the presence
of a series with the functions Gp(n, B). These functions actually describe the mutual effect of eylinders in the
grating. It follows from the asymptotic expressions for Hankel functions that ,IITO G,(x 8) = 0, and, therefore,

system (7) allows transition in the limit to the case of an isolated cylinder.

Since the Schlomilch series for Gy (8) converges slowly, it is more convenient to investigate system (7)
by representing Gp(», B) in the form of rapidly converging series with respect to elementary functions, as was
done in [8].

Analysis of the thus obtained expressions shows that the matrix elements Ay may become infinite for
certain values of the parameters w and 8. This occurs at the rsliding points® if n{@ /B) = ]=n(a=1,2,...)
and also in the uninteresting case of the static charge distribution for g = 0.

It should be noted that, as a result of the substitution

— . . ®
G, (1, 8) =T (x, §) -+ %, exp (— ng—) +a_exp (w —2—)

exp(~i %) exp[i.?,m (1 * -é—) n}
ey A Vv

system (7) is transformed into a system suitable for investigations for any values of » and g (8 # 0).

where

4

b

inds

Nevertheless, with the exception of the above values of » and 8, system (7) is preferable in all cases be-
cause of the simplicity of its elements. Since it is of the Fredholm type, its solution can be obtained by using
the cutoff method [9].
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A
Iet us estimate the norm of the matrix of system (7) ¢ = max Zn

m+0 n+#0,m 1— Amm

of the functions V[IIn [3], the functions Gp {2}, and the asymptotic expressions for cylindrical functions that

q<1/1—uz[cl(koa) +C( H+63V1+u(koa)( )+cé(1+u)(—f;-)2, 10)

It follows from estimates

where Cj are constants.

Thus, for a grating consisting of sufficiently narrow strips (u ——1) and in the case of a widely spaced
grating (s = 2a/! <« 1) consisting of cylinders with arbitrary slits =g < 1 —-we can, therefore, use the method
of succegsive approximations for the solution of system (7).

In the zero approximation, we obtain from (7)

® A 1=VI-E Y
in(kal® X eXp(ip<Po)(-i)"Jp(—1‘g‘—’B“> W,
p= —®

o= - ; 11)
1 4 in(koa)? Jé[ o W, +p§2_m(—1)" exp (ip %) 45 G, Wp]
- (— 1)”’8XD(i”:n‘?o) in(kya) {Po[Jc; HY V=S, + Jépgw(_ 1y
X exp (ip o) 4, G, Vs ]+ 2 exp(tp WA (————l{é:—(iz—)pV"" }
X[l——%—l-“ Vil — iw(kya)t (— 1)" E_&N_mﬂi’ﬁ , z (—1)? exp (ipga,,)J;G,,_,,,V,’;:i]"l- 12)

We shall now investigate in greater detail certain important particular cases.

a) Grating Consisting of Narrow Strips. The following approximate expressions are obtained from (11)
and (12) for the amplitudes of the diffraction harmonics produced by interaction between the flux and a grating
consisting of narrow cylindrical strips:

an=_2“9PoM(V
1 n\?
% {—{ =4 =
vV (7+%)

X cos (¢,—%,) exp [-—q {p+ a sin ¢y)] exp { iksa [cos (¢,—90)— %coscpo:{ } . (13}

T— BE sin 9, — £ COS @)

The error of these expressions is of the order of O[(kya)' cos®@/2)]. It follows from (13) that there is no radia-
tion in the direction parallel to the grating strips, which agrees with the results obtained by other authors [10].
This is readily explained by the absence of a longitudinal current component at the strips. The factor exp [-q x
(0 + a sing,)] reflects the fact that the efficiency of interaction between the flux and the grating depends ex-
ponentially on the impact parameter. Actually, the harmonic amplitudes are at their maximum at ¢4 = 270°,
i.e., when the strips are closest to the flux. It should also be noted, that for ¢ = 90, 270°, expressions (13)
coincide with an accuracy to the phase factor with those that can be obtained from [5] for diffraction radiation
over a plane narrow-strip grating.

b) Widely Spaced Grating Consisting of Cylinderswith Narrow Slits. If the grid consists of sufficiently
widely spaced cylinders with narrow slits, expressions (L1) and (12) are also simplified considerably, and the
amplitudes of the field harmonics of diffraction radiation assume the following form:

- 2Bpje- , Oy’ ' lmi
a, 1 T i,,{z~u,-/<)—-(%ffo —1)"0”1#0,”
-5+ %)
(—— i)™ exp [im (eot+ o) VL, (M| Jo(—1)"exp (—ime,) Vi B "
HY +J G, +m§0 m ﬁ)' +Jm 0 ( 1+ V71— B2 ) } a®

Expression (14) is determined with an accuracy of O[(a/I)*sin? (9/2)]. Analysis of this expression shows
that the harmonic amplitudes have extremums when the grating parameters satisfy the equation
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| Dy (Roa, 8)]” =0, {15)
where D, is the denominator of expression (11).

By solving the corresponding homogeneous problem of free oscillations, we can show that the resonance
values of the parameters in (15) are close to the roots of the dispersion equation of the structure. These roots
determine the quasiintrinsic operating conditions of the grating, and they are all complex. Physically, this
means that, in the case of cylinders with narrow slits, the grating constitutes an open resonance structure,
where quasinatural oscillations are damped in the course of time ("damped resonances” [2]). The damping rate
is determined by the negative imaginary part of the resonance values of the frequency parameter .

For kya « 1, the dispersion equation assumes the following form: .
2
1+ (kya)? [l — ﬁ(_ko_f_)__ Im Go] In sin’—g— + 0 (13 s* sin® —g—) =0, (18)

If, for instance, the radiation conditions are satisfied only for the —1st three-dimensional harmonic, then

im Gote, &) =— Z1n 2 — 2= 222 4 0 )
where
® 1
== —=1l<—=, = 1.781
vl B '< g T
The root of Eq. (16) is equal to
-1/2
k,,a:(——lnsinz%) l+}{, {17

where the small complex addition y has the order of O[~Insin? (8/2)]™3/%. This root of the dispersion equation
pertains to the so-called outflowing slit wave in a2 round waveguide with a slit. The Q-factor of the correspond-
ing resonance, defined as Re n/Im x, has the order of O[~Insin? (/2)].

Analysis of the dispersion equation for arbitrary values of kya shows that the flux excites other quasi-
intrinsic operating conditions if kya = mus is close to the roots of derivatives of the Bessel functions, i.e.,
when the frequency is close to the resonance frequencies of a closed cylinder, but differs from them by a small
addition. For instance, for perturbed symmetric H-oscillations, the resonance frequency is equal to

koa = Yom + 4 + it + 0(83)1

J o) =0, x1=—3+ 28y, y,=28mn, 8=-;—ln‘1 sin %, 18)

' o J"
m= pome e M~ 2a s Re 6,2

Vom I 1 1

(vom s the argument of the cylindrical functions).

The expression obtained indicates that the Q-factor of the corresponding resonance has the order of
O[ln®sin® (9/2)], i.e., it is larger than in the case of resonance corresponding to a slit wave. The shift of the
resonance frequency (with respect to vyp) is caused by nonuniformities in the form of slits in the cylinder walls
and also by interaction between cylinders. It should be noted that, since the exciting field is not uniform, the
radiation energy should be more critical with respect to the orientation angle ¢, near resonances than at a dis-
tance from them.

3. Analysis of the Numerical Results

The approximate analytical expressions obtained by means of successive approximations can only be used
if substantial constraints are imposed on the parameters ¢, », and s. For a more detailed investigation of the
radiation characteristics, we performed a numerical analysis of the problem by solving system (7) by means
of an M~222 computer, using the cutoff method. Figures 1-6 show some of the obtained amplitude dependences
for the —1st three-dimensional harmonic, emitted into the upper (a.¢) and lower (b_y) half-space.

The operating conditions where the entire energy of diffraction radiation is concentrated in a single un-
damped harmonic, emitted along the normal to the grid, are of the greatest interest in calculations. It follows
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from (6) that this occurs for the —1st harmonic if w = § < 1. It should be noted that, for those diagrams which
do not pertain to rotation with respect to the orientation angle ¢, the effective impact parameter does not
change, i.e., the spacing h between the flux and the grid remains constant.

If the wave dimensions of the cylinders are fixed (kga = mns = const), the dependences of |a_4| and |b_|
{dashed curves) on the angular dimension of the slit ¢ have a resonance character for different orientation
angles of the slit ¢, (Fig. 1). The increase or reduction in the radiation energy is connected with the excitation
near the structure elements of a field close to the quasiintrinsic field of the grating, while the resonance values
of ¢ and kya satisfy relationship @6). The character of the resonance depends essentially on the orientation
angle of the slit ¢,. The calculation results indicate that the variation of ¢, leads to changes in the phase and
amplitude distributions of the current at the surface of a grating element, which affects the amplitudes of the
emitted two-dimensional waves. The phenomenon indicates the nonuniformity of the excited field and is most
strongly pronounced in the resonance case,

If the slit disappears (9 —0), la.| and |b— | tend to finite (not equal) values corresponding to radiation
over a grating consisting of round bars. As was to be expected, the limiting values are independent of ¢. In
the other limiting case, when ¢ —180°, i.e., the grating consists of narrow cylindrical strips, the amplitudes
of the harmonics tend to zero, while almost equal amounts of energy are emitted into the upper and lower half-
spaces. This agrees with the results obtained in investigating diffraction radiation over a grating consisting of
flat strips [5].

Figures 2 and 3 show the amplitude of the —1st harmonic as a function of the space factor of the structure
s = 2a/l. In this, the grating period remains constant, and only the wave dimensions of the cylinders change.
The resonance character of the dependences is connected with the excitation of conditions close to quasiintrinsic
conditions in the structure. For instance, if the resonances in Fig. 2 and the first of the resonances in Fig. 3a
are slit-type resonances, the second (Fig. 3a) is connected with the excitation inside the cylinders of a field
close to the oscillation field Hy; of a closed cylinder. Actually, at resonance, kya = 1.92; this is close to the
first root of the function J{ (z), which is equal to 1.84 (the causes of the resonance frequency shift were men-~
tioned earlier).

As was to be expected, the described resonance phenomena disappear when the angular dimensions of the
slit are so large that the structure elements constitute cylindrical strips (Fig. 3b).

Let us consider in greater detail the effect of the orientation angle of the slit ¢, on the radiation effi-
ciency. As far as we know, this has not yet been discussed in problems of diffraction radiation. Figure 4 per-
tains to the case where the grating consists of narrow strips. It is also clear from elementary physical con-
siderations that the energy of the harmonics is at a2 maximum when the flux is closest to the strips, and they
form an almost plane grating (p, = 270°). Since w = 3, i.e., only the —1st harmonic is emitted along the normal
to the grating, the radiation energy is evidently at a minimum when ¢, is close to 0 or 180°, and the structure
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is close to a knife grating. At the same time, this energy is not equal to zero, which is explained by the curva-
ture of the strips forming the grating.

As ¢ diminishes, the character of the ¢, dependence changes drastically. If the slit is narrow, for in-
stance, if § = 1° (Fig. 5), changes in the distance between the flux and the grating can be neglected in rotation
with respect to ¢, In the resonance case (s = 0.246), the angular dependence is strongly pronounced, while
the maximum of the radiation energy is observed when the cylinder slits face the flux. With departure from the
resonance with respeet to any of the parameters, for instance, with respect to s, the dependence ¢, becomes
insignificant. Such behavior of the curves reflects the fact that resonance is connected with slit waves and is
excited by the field of nonuniform plane waves.

In order to compare a grating consisting of open cylinders with gratings of other types, we also plotted
normalized polar diagrams of radiation of the —1st harmonic (Fig. 6). (The dashed curve shows the diagram
of radiation over a grating consisting of half-planes inclined at ¢ = 70° [10].) The direction of maximum radia-
tion corresponds to the excitation in the structure of the quasiintrinsic conditions investigated above. By using
suitable grating parameters, we can ensure, for instance, the maximum radiation in the vertical direction.
This is of considerable importance in diffraction electronics and in designing continuous high-power diffraction
radiation generators with electronic efficiency onthe order of 20%. It should be noted that, for echelette-type
reflection gratings and some others, radiation along the normal to the grating is weak according to fundamental
considerations [10]. Moreover, the maximum radiation energy over a grating consisting of cylinders with
longitudinal slits exceeds the radiation energy for the flux over a comb-type grating,

We shall mention in conclusion that analysis of the convergence of the calculation results shows that it is
sufficient to solve a 17th order system in order to ensure an accuracy not worse than 0.5%. In order to verify
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the solution and the calculation algorithm, we checked the boundary conditions at the eylinder surface and the
conditions at the rib and found that the results were entirely satisfactory for any parameters of the probiem.
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COMPETITION OF MODES RESONANT WITH DIFFERENT
HARMONICS OF CYCLOTRON FREQUENCY IN GYROMONOTRONS

I. G. Zarnitsyna and G. S. Nusinovich UDC 621.385.6

Oscillation of the working mode at the second cyclotron harmonic 2wy has the effect of extending
the region in which parasitic modes resonant with the first cyclotron harmonic wgy can be ex-
cited. A study is made of the dependence of the conditions for self-excitation of parasitic modes
(when the working mode is oscillating) on the basic parameters of the gyromonotron: beam cur-
rent, intensity of magnetostatic field, frequency detuning of modes, and relative efficiency of
interaction of electrons with the fields of the working and parasitic modes.

§1. In gyromonotrons with a spatiaily developed resonant system, it is possible for the excitation con~
ditions to be satisfied simultaneously for several modes. The competition of modes resonant with the cyclo~
tron frequency wy means that exciting one mode into oscillation reduces the region in which self-excitation of
other modes can occur [1].

In gyromonotrons operating on a mode resonant with 2wy, "dangerous™ competition comes, as a rule,
from modes resonant with wyy, which interact more effectively with the beam [2]. The interaction of electrons
with a high-frequency field of frequency « is different in nature for w ~ wy and « ~ 2wy [3}: For w » wy it is
dipolar and for w ~ 2wy it is quadrupolar. One may expect, therefore, that the competition of modes resonant
with the various barmonics of wp will differ from the case considered in [1] of the competition of modes reso-
nant with the fundamental. In the present paper we report a study of the effect of the oscillation of the working
mode, resonant at 2wy, on the conditions for self-excitation of parasitic modes resonant with WH-

§2, We consider the gyromonotron model adopted in [1]: Theworking space of the device is axially sym-
metric; the flux of weakly relativistic electrons has spread-free velocities and guiding center radii Ry; the
resonator, of radius R, has a high Q, as a result of which the time to set the mode oscillating is considerably
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