<u>Исследования кафедры в области Si-ФЭП для излучения с К_И >> 100</u>

Последние 5 лет усилия кафедры ФМЭГ в области разработки высокоэффективных монокристаллических Si-ФЭП направлены на создание многопереходных (МП) Si-ФЭП с вертикальными диодными ячейками (ВДЯ) нового поколения, КТР которых должно обеспечить КПД около 26 % при $K_{\rm H} = 500 \div 1000$, что в 1,3 раза превышает КПД известных ранее МП Si-ФЭП.

На Рис. 1.5 схематически изображен МП Si-ФЭП с ВДЯ классической конструкции.

Рисунок 1.5 – Классическая конструкция: *а* - МП Si-ФЭП; *б* - ВДЯ

На Рис. 1.6 *а* показан ФСМ из реальных классических МП Si-ФЭП с ВДЯ, имеющий площадь фотоприемной поверхности 4 см² и КПД 20 % при $K_{\rm H}$ = 1000, способный отдавать в нагрузку $P_{\rm HM}$ = 80 Вт. На Рис. 1.6 *б*, *г* показаны СФЭУ, состоящие из подобных ФСМ, зеркального фацетного концентратора и автоматически следящего за Солнцем устройства. На Рис. 1.6 *в*, *д* показаны примеры соответствующих облучаемых и охлаждаемых модулей.

Рисунок 1.6 – ФСМ из реальных классических МП Si-ФЭП с ВДЯ без ITO-рефлекторов (*a*); СФЭУ, состоящие из модулей таких МП Si-ФЭП с ВДЯ, зеркального фацетного концентратора и автоматически следящего за Солнцем устройства (*б*, *г*); примеры соответствующих облучаемых и охлаждаемых модулей МП Si-ФЭП с ВДЯ (*в*, *d*)

Согласно результатам выполненных нами теоретических и экспериментальных исследований повышение КПД приборов такого типа до 26 % можно достичь за счет:

1) дополнения конструкции ВДЯ пленочными оптическими рефлекторами из прозрачного проводящего материала – ITO (indium-tin oxide), устраняющими потери энергии солнечного излучения внутри ВДЯ на поглощение металлическими электродами;

2) помещения МП Si-ФЭП с ВДЯ в стационарное магнитное поле постоянных магнитов с индукцией $B = 0,5 \div 1,0$ Тл для обеспечения добавки к I_{K3} и U_{XX} за счет реализации **ф**отоэлектромагнитного (ФЭМ) эффекта Кикоина-Носкова и увеличения времени жизни генерированных светом носителей заряда.

Как показали результаты проведенного анализа, именно ЭТО направление позволяет рассчитывать на получение в ближайшие годы электроэнергии экологически чистой солнечной по цене около 0,5 \$_{США}/Вт-пик, что эквивалентно ~ 0,01 \$_{США}/кВт·час.

<u>ВЛИЯНИЕ ІТО-РЕФЛЕКТОРОВ НА ПАРАМЕТРЫ МП Si-ФЭП С ВДЯ</u>

На Рис. 1.7 схематически показаны конструктивные особенности реального классического МП Si-ФЭП с ВДЯ без ITO-рефлекторов (*a*) и разработанного нами МП Si-ФЭП с ВДЯ нового поколения, в состав которых входят присутствующие на фрагменте (*б*) ITO-рефлекторы.

Рисунок 1.7 - Конструктивные особенности реального классического МП Si-ФЭП с ВДЯ без ITO-рефлекторов (*a*) и разработанного нами МП Si-ФЭП с ВДЯ нового поколения (*б*):

1 – внешний металлический электрод; 2 – слой кремния *p*⁺-типа проводимости;

3 – слой кремния *p*-типа проводимости; 5 – слой внутренней *Al* металлизации.

а: 4 - слой кремния n^+ -типа проводимости; *б*: 4 - слои n^+ -ITO;

Толщины: $800 \le t_{\Phi \ni \Pi} \le 900$ мкм; $100 \le t_{Si(p)} \le 200$ мкм; $0, 2 < t_{Si(p+,n+)} < 1,0$ мкм, 8 < tAl < 10 мкм.

Углы: <u>падения света на поверхность МП Si-ФЭП</u> - $0 < \alpha < 90^{\circ}$; <u>преломления света в Si</u> - $\beta = \arcsin[(\sin \alpha)/n_{Si}]$, при $n_{Si} \approx 3.6 \Rightarrow 0 < \beta < 16^{\circ}$;

падения света на поверхность *Si/Al* или *Si/ITO* - $\gamma = 90^{\circ}$ - $\beta \Rightarrow 74^{\circ} < \gamma < 90^{\circ}$;

Примечание: при $n_{ITO} \approx 1.9$ предельный угол полного внутреннего отражения (ПВО) света от поверхности *Si/ITO* - $\gamma_{\min}^{\hat{I},\hat{A}\hat{I}} = \arcsin(n_{ITO}/n_{Si}) \approx 32^{\circ} \Rightarrow 100\%$ ПВО света от *Si/ITO*.

Поэтому использование таких рефлекторов обеспечивает снижение потери фотоэлектрически активной компоненты солнечной энергии внутри ВДЯ из-за предотвращения ее поглощения внутренней металлизацией примерно на 20 %, что эквивалентно повышению КПД МП Si-ФЭП с ВДЯ нового поколения примерно в 1,2 раза.

Наряду с указанным положительным эффектом использование ITO-рефлекторов в составе ВДЯ обеспечивает существенное снижение зависимости КПД от угла α падения света на фотоприемную поверхность приборов рассматриваемого типа (см. Рис. 1.7). Это обусловлено следующим.

Нами впервые было показано, что для МП Si-ФЭП с ВДЯ в общем случае при $0 < \alpha < \varphi_B = arctgn_{Si}$

$$I_{K3}(\alpha) = I_{K3}(0) f(R,\alpha) \cos \alpha , \qquad (1.8)$$

$$U_{XX}(\alpha) = U_{XX}(0) - \frac{AkT}{e} \left| \ln \left[f(R, \alpha) \cos \alpha \right] \right|, \qquad (1.9)$$

- где $\phi_{\rm B}$ угол Брюстера;
 - R коэффициент отражения света от границы раздела кремния с проводящим материалом внутри ВДЯ (0 < R ≤ 1);</p>
 - А коэффициент идеальности диода ВДЯ (1 < A < 5);
 - Т температура прибора;
 - k постоянная Больцмана;
 - е абсолютное значение заряда электрона.

$$f(R,\alpha) \approx R \frac{t_{Si}}{t_{\varphi \supset \Pi}} \sqrt{\frac{n_{Si}^2 - 1 + \cos^2 \alpha}{1 - \cos^2 \alpha}} + R^2 \left(1 - \frac{t_{Si}}{t_{\varphi \supset \Pi}} \sqrt{\frac{n_{Si}^2 - 1 + \cos^2 \alpha}{1 - \cos^2 \alpha}} \right), \quad (1.10)$$

Как видно из соотношений (1.8)-(1.10), величины I_{K3} и U_{XX} , являющиеся функциями α и R, снижаются с ростом α и уменьшением R. На Рис. 1.8 приведены теоретически и экспериментально установленные нами зависимости нормированных значений I_{K3} и U_{XX} от α и R.

Нормированные значения I_{K3} и U_{XX} определяются из соотношений (1.8) и (1.9) следующим образом

$$I_{K3}^{HOPM}(\alpha) = I_{K3}(\alpha) / I_{K3}(0) = f(R,\alpha) \cos \alpha \quad , \qquad (1.11)$$

$$U_{XX}^{HOPM}(\alpha) = U_{XX}(\alpha) / U_{XX}(0) = 1 - \left| \ln \left[f(R, \alpha) \cos \alpha \right] \right| / \xi, \qquad (1.12)$$

$$\xi = e U_{XX}(0) / (AkT) \tag{1.13}$$

где

Рисунок 1.8 – Экспериментальные (1, 2) и теоретические (3-6) зависимости нормированных значений тока короткого замыкания $I_{K3}^{\mu opm}$ и напряжения холостого хода $U_{XX}^{\mu opm}$ (2, 4, 5) от угла α падения света на фотоприемную поверхность МП Si-ФЭП с 36-ю ВДЯ при коэффициентах отражения света от вертикальных границ кремния с проводящим материалом R = 1 (3, 4) и R_{Al} = 0,89 (1, 2, 5, 6). График 3 соответствует тригонометрической функции *соs* α и зависимости $I_{K3}^{\mu opm}(\alpha)$ при R = 1, так как $I_{K3}^{\mu opm}(\alpha)_{R=1} = \cos \alpha$.

В соответствии с формулой (1.7) $\eta \sim I_{K3}U_{XX}$, а следовательно КПД приборов рассматриваемого типа также зависит от α и R, т.е.

$$\eta(\mathbf{R}, \alpha) \sim I_{\mathrm{K3}}(\mathbf{R}, \alpha) U_{\mathrm{XX}}(\mathbf{R}, \alpha) \tag{1.14}$$

и должен изменяться с α и R подобно тому, как это имеет место для I_{к3}. Как следует из формул (1.8) и (1.10), а также из соответствующих графиков (1 и 3) на Рис. 1.8, с ростом R величина η увеличивается при одних и тех же значениях α .

Нами теоретически и экспериментально впервые был установлен еще один важный для прикладных целей эффект влияния степени структурного совершенства базовых кремниевых кристаллов, лежащих в основе ВДЯ, на зависимость U_{XX} от α . Как видно из соотношений (1.12) и (1.13), величина должна тем быстрее уменьшаться с ростом α , чем меньше величина $U_{XX}(0)$ и U_{XX}^{hopm} чем больше величина А. Указанная тенденция изменения этих двух параметров имеет место в случае насыщения кремниевого монокристалла точечными и линейными дефектами, обусловливающими появление в нем рекомбинационных центров для генерированных квантами света электронов и дырок. На Рис. 1.9 приведены экспериментально полученные нами зависимости $U_{XX}^{\text{норм}}(\alpha)$ для МП Si-ФЭП с ВДЯ на основе сильно насыщенных рекомбинационными центрами монокристаллов кремния (график 1) и на основе значительно более структурно совершенных монокристаллов (график 2).

Рисунок 1.9 - Экспериментальные зависимости $U_{XX}^{\text{норм}}(\alpha)$ для МП Si-ФЭП с ВДЯ на основе сильно насыщенных рекомбинационными центрами монокристаллов кремния (1) и на основе значительно более структурно совершенных монокристаллов (2)

Как видно из Рис. 1.9, в первом случае (график 1) функция $U_{OO}^{i\hat{i}\delta\hat{i}}(\alpha)$ изменяется с ростом α намного быстрее, чем во втором случае (график 2). Расчет скорости убывания указанной функции показывает, что в первом случае

$$\frac{dU_{XX}(\alpha)/d\alpha}{U_{XX}(\alpha=0)} = dU_{XX}^{HOPM}(a)/da \approx -12,5 \cdot 10^{-3} \text{ отн. ед./град.},$$

а во втором случае

$$\frac{dU_{XX}(\alpha)/d\alpha}{U_{XX}(\alpha=0)} = dU_{XX}^{HOPM}(a)/da \approx -8,3\cdot 10^{-4}$$
 отн. ед./град.

Это указывает на то, что МП Si-ФЭП с ВДЯ второго типа наиболее эффективны как фотоэлектрические преобразователи солнечной энергии в электрическую, в то время, как МП Si-ФЭП с ВДЯ первого типа могут быть наиболее эффективно использованы как энергонезависимые сенсоры угла падения света на их фотоприемную поверхность в системах оптической локации.

<u>ВЛИЯНИЕ МАГНИТНОГО ПОЛЯ НА КПД МП Si-ФЭП С ВДЯ</u>

Как было впервые обнаружено нами теоретически и экспериментально, помещение МП Si-ФЭП с ВДЯ в стационарное однородное магнитное поле (СОМП) постоянных магнитов с индукцией $B = 0,5 \div 1,0$ Тл обеспечивает добавки $I_{\Phi ЭM}$ и $U_{\Phi ЭM}$ соответственно к I_{K3} и U_{XX} за счет реализации ФЭМ-эффекта Кикоина-Носкова и увеличения времени жизни τ генерированных светом носителей заряда. Это в свою очередь обусловливает дополнительное возрастание КПД.

Теоретическое обоснование этого концептуально сводится к следующему:

$$I_{K3} = \left\{ J_{\Phi} - J_0 \left[\exp\left(\frac{eI_{K3}R_{\Pi}}{AkT}\right) - 1 \right] \right\} S_{BAR}, \qquad (1.15)$$

,
$$U_{XX} \approx \frac{AkT}{e} \ln\left(\frac{J_{\phi}}{J_0}\right)$$
 (1.16)

где J_0 – плотность диодного тока насыщения ($I_{Д} \sim J_0$ – см. Рис. 1.3);

 J_{Φ} – плотность фототока ($I_{\Phi} = J_{\Phi}S_{BДЯ} -$ см. Рис. 1.3);

S_{ВДЯ} – площадь, перпендикулярная направлению протекания тока I_{K3};

$$(FF = \left\langle \left\{ \ln \left(J_{\phi} / J_{0} \right) - \ln \left[\ln \left(J_{\phi} / J_{0} \right) + 0, 72 \right] \right\} / \left[\ln \left(J_{\phi} / J_{0} \right) + 1 \right] \right\rangle \left(1 - \frac{I_{K3}}{U_{XX}} R_{II} - \frac{U_{XX}}{I_{K3}} R_{III}^{-1} \right) \quad 1.17)$$

Как легко видеть из соотношений (1.15) – (1.17) и (1.7):

$$I_{K3}\uparrow, U_{XX}\uparrow, FF\uparrow, \eta\uparrow при J_{\Phi}\uparrow, J_{0}\downarrow, R_{\Pi}\downarrow, R_{II}\uparrow$$
(1.18)

С другой стороны, как хорошо известно из результатов предшествующих многочисленных исследований

$$\tau \uparrow \Rightarrow J_{\phi} \uparrow, J_{0} \downarrow, \qquad (1.19)$$

$$\tau \sim N_r^{-1},\tag{1.20}$$

где N_r^{-1} - объемная концентрация рекомбинационных центров в кремнии.

Нами экспериментально установлено, что под влиянием СОМП величина τ возрастает, в частности, из-за снижения N_r^{-1} . В итоге

 $B\uparrow \Rightarrow N_r \downarrow \Rightarrow \tau \uparrow \Rightarrow J_{\phi}\uparrow, J_{\phi} \downarrow \Rightarrow I_{K3}\uparrow, U_{XX}\uparrow, FF\uparrow \Rightarrow \eta(K\Pi \square)\uparrow (1.21)$

Нами впервые теоретически и экспериментально обнаружено, что при В = 0,6 Тл увеличение τ составляет примерно 30 % по сравнению с τ при В = 0 и это совместно с ФЭМ-эффектом даже в отсутствие ITO-рефлекторов обеспечивает относительный рост J_{K3}, U_{XX} и FF соответственно примерно на 6 %, 1,5 % и 18 %, а КПД – в 1,1 раза.

Естественно, что при повышении КПД только за счет использования ITO-рефлекторов в 1,2 раза и только за счет использования СОМП – в 1,1 раза интегральный эффект при одновременном использовании ITO-рефлекторов и СОМП с В = 0,5÷1,0 Тл обеспечивает повышении КПД МП Si-ФЭП с ВДЯ примерно в 1,3 раза.