ФОТОЭЛЕКТРИЧЕСКИЕ ПРЕОБРАЗОВАТЕЛИ НА ОСНОВЕ ДРУГИХ ПОЛУПРОВОДНИКОВЫХ МАТЕРИАЛОВ

Актуальность применения и ключевые требования к ФЭП нового поколения

Интенсивное развитие спутникового телевидения, космических средств военной разведки и обороны, стремительное расширение круга задач космонавтики по изучению объектов не только Солнечной системы, но и далекого космоса, а также необходимость обеспечения многих наземных потребителей электроэнергией от ФСБ со значительно большим КПД, чем этого можно было достичь за счет Si-ФЭП, либо обладающих высокой гибкостью наряду с уровнем КПД монокристаллических Si-ФЭП, - все это потребовало разработки принципиально новых КТР фотоэлектрических преобразователей на основе других полупроводниковых материалов.

<u>Для эффективного космического применения</u> новое поколение ФЭП должно было иметь:

1) существенно повышенную массомощностную характеристику $D_{j\,\dot{j}}^{**} = D_{j\,\dot{j}} / m_{\dot{O}\dot{Y}\ddot{j}}$, где $m_{\Phi \Im \Pi}$ – масса $\Phi \Im \Pi$;

2) существенно повышенную радиационную стойкость;

3) существенно сниженную чувствительность к повышенным температурам.

<u>Для эффективного наземного применения</u> новое поколение ФЭП должно было иметь:

1) существенно повышенную массомощностную характеристику;

2) гибкость в случае требующих этого условий применения;

3) существенно сниженную себестоимость;

 существенно сниженную чувствительность к повышенным температурам при использовании в условиях концентрированного солнечного излучения.

Общие представления о способах реализации ключевых требований к ФЭП нового поколения

<u>Способом существенного</u> повышения массомощностной характеристики ФЭП является одновременное увеличение P_{HM} (для чего необходим рост КПД) и снижение массы прибора (как правило, за счет уменьшения его толщины). Естественно, что повышение $D_{i\,i}^{**}$ может быть достигнуто и за счет только лишь снижения толщины ФЭП при сохранении его КПД на прежнем уровне либо за счет повышения КПД прибора при сохранении на прежнем уровне его толщины.

<u>Способ существенного повышения массомощностной характеристики ФЭП нового поколения за счет увеличения КПД при сохранении на прежнем уровне толщины прибора впервые был</u>

успешно реализован за счет использования диодной структуры с p-n гомопереходом на основе монокристаллического арсенида галлия (GaAs) толщиной около 400 мкм. При этом КПД прибора составлял около 21 % в условиях $K_{\rm H} = 24$ со спектральным составом излучения, соответствующим режиму AM1. Дальнейшее усовершенствование приборов такого типа, связанное с добавлением еще одного слоя из тройного полупроводникового соединения $Al_{1-x}Ga_xAs$ со стороны фотоприемной поверхности, позволило дополнительно повысить их КПД.

На Рис. 1.23 приведено схематическое изображение вертикальных сечений различных вариантов конструкции ФЭП на основе гетероструктуры n-GaAs/p-GaAs/p-Al_{1-X}Ga_XAs, а на Рис. 1.24 показаны зависимости КПД (η), напряжения холостого хода U_{XX} и параметра FF для приборов такого типа при x = 0,2 в зависимости от степени концентрации К_и солнечного излучения на их фотоприемной поверхности.

Последующие усилия в направлении дальнейшего повышения КПД ФЭП на основе GaAs и модификаций этого полупроводникового соединения, осуществлялись путем усложнения конструкции таких приборов за счет введения в их архитектуру новых пленочных слоев как с целью совершенствования однопереходных ФЭП, так и для увеличения количества последовательно включенных в направлении распространения света горизонтальных *p-n* переходов. На Рис. 1.25,*a* схематически изображен один

Рисунок 1.23 - Схематическое изображение вертикальных сечений различных вариантов конструкции ФЭП на основе гетероструктуры n-GaAs/p-GaAs/p-Al_{1-X}Ga_XAs: 1 – базовый кристалл n-GaAs; 2 – слой p-GaAs; 3 – слой p-Al_{1-X}Ga_XAs; 4 – просветляющее покрытие; 5 – полосчатые элементы гребенчатого фронтального электрода; 6 – сплошной тыльный электрод; 7 – вспомогательный слой p-GaAs.

Рисунок 1.24 – Экспериментальные зависимости выходных параметров ФЭП с диодной структурой n-GaAs/p-GaAs/p-Al_{0,8}Ga_{0,2}As от степени концентрации солнечного излучения: 1 – КПД (η); 2 - U_{XX}; 3 – FF.

из таких усовершенствованных однопереходных ФЭП. Там же приведены характерные толщины для полупроводниковых элементов конструкции рассматриваемых ФЭП. На Рис. 1.25, *б* схематически изображен так называемый монолитный каскадный ФЭП с двумя *p-n* переходами. На

Рис. 1.25, *в*, *г* показаны два варианта конструкции монолитного каскадного ФЭП с тремя *p*-*n* переходами.

Рисунок 1.25 – Схематическое изображение конструкции: *a* - модифицированного однопереходного ФЭП с гетероструктурой n⁺-GaAs/n-AlGaAs/n-GaAs/p-GaAs/p-AlGaAs; δ - монолитного каскадного двухпереходного ФЭП (на этом фрагменте нижний и верхний *p-n* переходы поименованы как нижний и верхний элементы); *в*, *г* – двух типов монолитных каскадных трехпереходных ФЭП

В таблице 1.4 приведены предельные теоретические, реально ожидавшиеся и наилучшие практически достигнутые значения КПД каскадных ФЭП в зависимости от количества входящих в их состав последовательно включенных горизонтальных *p-n* переходов.

	кцд,%						
Спектр солнечного излучения	Значение	Количество <i>p</i> - <i>n</i> -переходов в каскаде					
		1	2	3	4	5	
В условиях околоземного космоса (АМО)	Теоретическое Ожидаемое Реализованное	28 23 21.8 [10]	33 28 27.2 [11]	38 33 29.3 [11]	42 36 -	45 38 -	
В наземных условиях (АМ1.5)	Теоретическое Ожидаемое Реализованное [6]	30 27 25.1	36 33 30.3	42 38 31.0	47 42 -	49 44 -	
В наземных условиях с концентрацией (AM1.5)	Теоретическое Ожидаемое Реализованное [6]	35 31 27.6	42 38 31.1	48 43 34.0	52 47 -	54 49 	

Таблица 1.4

В сравнительной таблице 1.5 приведены некоторые техникоэкономические показатели реальных промышленных фотоэлектрических солнечных батарей на основе кремниевых и арсенид галлиевых ФЭП, предназначенных для использования на космических аппаратах в 90-е годы XX века

Таблица 1.5

Параметр	GalnP/GaAs/Ge	GaAs/Ge	Si
Удельная мощность, Вт/кг	22	19	14
Требуемая мощность, Вт	10000	10000	10000
Расчетная масса солнечной батареи, кг	455	526	714
Экономия средств запуска по сравнению с батареями на кристаллическом Si, долл.	5126128	3720896	0

Рисунок 1.26 наглядно иллюстрирует соотношение размеров панелей фотоэлектрических солнечных батарей мощностью 8 кВт для космических аппаратов при переходе от монокристаллических кремниевых ФЭП к однопереходным арсенид галлиевым и каскадным ФЭП.

Рисунок 1.26 - Соотношение размеров панелей ФСБ мощностью 8 кВт для космических аппаратов при переходе от монокристаллических Si-ФЭП к однопереходным арсенид галлиевым и каскадным ФЭП

О существенно повышенной радиационной и температурной стойкости арсенид галлиевых ФЭП по сравнению с кремниевыми свидетельствуют соответствующие параметры, приведенные в таблице 1.6, которые были получены при анализе результатов испытаний ФЭП в составе орбитальных космических аппаратов, находившихся не менее 5 лет под влиянием высокоэнергетичных электронов и протонов радиационных поясов Земли.

При этом относительная радиационная потеря КПД – *r* рассчитывалась по формуле

$$r = \Delta \eta / \eta \,, \tag{1.22}$$

где η – начальное значение КПД; Δη – разность между начальным и конечным значениями КПД.

Для расчета температурного коэффициента КПД - δ использовалась формула

$$\delta = \left[\eta \left(T \right) - \eta \left(T_0 \right) \right] / \eta \left(T_0 \right), \tag{1.23}$$

где $\eta(T_0) - K\Pi Д$ при $T_0 = 25$ °C; $\eta(T) - K\Pi Д$ при $T > T_0$.

Таблица 1.6 - Данные о радиационной и температурной стойкости арсенид галлиевых и кремниевых ФЭП космического назначения различной толщины по результатам их орбитальных испытаний продолжительностью до 10 лет в режиме облучения AM0 при $T \ge 40$ °C

ПСФ п.т.	Монокристаллические		С обычным и модифицированным			
Параметры	кремниевые		монокристаллическим GaAs			
	Ординарные	С высоким КПД	1 <i>р-п</i> переход	2 <i>р-п</i> перехода	3 <i>р</i> - <i>n</i> перехода	
Начальный КПД, %	12,7-14,8	16,6	19,0	22,0	26,8	
Начальное U _{HM} , В	0,50	0,53	0,90	2,06	2,26	
Относительная радиа- ционная потеря КПД	0,23-0,34	0,21	0,25	0,20	0,16	
Температурный коэф- фициент КПД, %/°С	- 0,55	- 0,35	-0,21	- 0,25	- 0,19	
Толщина, мкм	50-200	76	140-175	140-175	140-175	

Наряду с уже отмеченными достоинствами арсенид галлиевых Φ ЭП последние, как видно из таблицы 1.6, обладают существенно более высоким значением U_{HM} по сравнению с однопереходными монокристаллическими кремниевыми ФЭП. Это имеет большое практическое значение, поскольку дает возможность изготавливать компактные ФСБ с повышенным выходным напряжением при большей радиационной и температурной стойкости.

Указанные достоинства арсенид галлиевых ФЭП обусловили их масштабное применение прежде всего на орбитальных космических аппаратах, автоматических межпланетных станциях, луноходах, марсоходах и других объектах космической техники. Однако в наземных условиях, за исключением военной спецтехники и гоночных автомобилей, до начала XXI века ФЭП такого типа не нашли широкого применения из-за примерно на порядок большей себестоимости по сравнению с кремниевыми ФЭП.

Примеры космического применения арсенид галлиевых ФЭП во второй половине XX века показаны на Рис. 1.27: а – советский Луноход-1 (1970 г.); б – советская автоматическая межпланетная космическая станция «Вега» (1986 г.); в – американская орбитальная обсерватория «Хаббл» (1990 г.); г – первый американский марсоход «Соджорнер» (1996 г.)

Рисунок 1.27 – Солнечные батареи с арсенид галлиевыми ФЭП на некоторых космических аппаратах конца XX века

<u>Способ существенного повышения массомощностной характеристики ФЭП нового поколения за счет уменьшения</u>

толщины при сохранении на прежнем уровне КПД прибора был теоретически предсказан и успешно реализован в лабораторных условиях до конца XX века за счет использования пленочных диодных структур С базовыми поликристаллическими соеди<u>нениями</u> Culn_{1-x}Ga_xSe₂ (CIGS, полупроводниковыми <u>0 ≤ x ≤ 0,28) и CdTe толщиной не более 5 мкм на легких гибких</u> носителях (подложках) толщиной 25-130 МКМ B случае покровного стекла, фольги из стали или титана и не более 20 мкм в случае полиимида.

На Рис. 1.28 схематически показаны вертикальные сечения пленочных Φ ЭП с базовыми поликристаллическими слоями из CIGS (*a*) и CdTe (*б*, *в*) при освещении со стороны : *a*, *б* - TCO (ZnO, ITO, SnO₂); *в* – прозрачного полиимида.

Рисунок 1.28 – Вертикальные сечения $\Phi \Im \Pi$ с пленками CIGS (*a*) и CdTe (*б*, *в*)

На Рис. 1.29 а, б показана исследованная с помощью растрового микроскопа поликристаллическая электронного реальная структура вертикального разлома пленочных слоев $\Phi \ni \Pi$ с CIGS (*a*) и с CdTe (δ). Фрагмент позволяет нагляднее идентифицировать в ЭТОГО рисунка послойную ФЭП CdTe. Ориентировочные масштабы архитектуру С структурных снимков очевидны при сопоставлении последних С соответствующими схематическими изображениями вертикальных сечений таких ФЭП.

Рисунок 1.29 - Реальная поликристаллическая структура вертикального разлома пленочных слоев ФЭП с CIGS (*a*) и с CdTe (*б*) наряду со схематической идентификацией послойной архитектуры ФЭП с CdTe (*в*)

На Рис. 1.30 показаны лучшие лабораторные образцы гибких модулей из пленочных ФЭП с CIGS на полиимиде (a) с КПД около 13 % (Швейцарский технологический институт, г. Цюрих) и титановой фольге толщиной 25 мкм (б) с КПД 17,5 % (лаборатория NREL, США), а также с CdTe на титановой фольге толщиной 25 мкм (в) с КПД около 14 % (Штутгартский университет, Германия и Швейцарский технологический институт, Г. Цюрих). Достигнутая при ЭТОМ массомощностная характеристика ФЭП составляет 1250-1600 Вт/кг, что более, чем на 2 порядка превосходит Р_{НМ}^{**} для монокристаллических Si-ФЭП и в 60-80 раз – для арсенид галлиевых ФЭП (см. Табл. 1.5).

Рисунок 1.30 - Лучшие лабораторные образцы гибких модулей из пленочных ФЭП с CIGS на полиимиде (a) и на титановой фольге (δ), а также с CdTe на титановой фольге

Создание лабораторных образцов гибких фотоэлектрических модулей с рекордно высокой массомощностной характеристикой, примеры лучших из которых показаны на Рис. 1.30, явилось вершиной достижений в области разработки пленочных ФЭП с базовыми слоями CIGS и CdTe. Этому предшествовали напряженные многочисленные исследования в США, Японии, Германии, Швейцарии, Украине и ряде других стран по разработке высокоэффективных и недорогих пленочных ФЭП с CIGS и CdTe на жестких значительно более толстых подложках (преимущественно на стеклянных толщиной 1-2 мм, покрытых пленочным слоем молибдена толщиной не более 1 мкм или ТСО толщиной не более 0,5 мкм). Результатом таких разработок стали лучшие лабораторные образцы ФЭП на основе CIGS площадью 0,41 см² с КПД при AM1,5G до 19,2 % и на основе CdTe площадью 1,03 см² с КПД при АМ1,5G 16,5 %. Лучшие жесткие промышленные ФСБ площадью до 0,93 м² из ФЭП на основе CIGS имели КПД до 12 % и площадью до 0,72 м² из Φ ЭП на основе CdTe имели КПД до 10 %.

Как следует из изложенного выше, применение поликристаллических пленок CIGS и CdTe толщиной не более 5 мкм в качестве базовых слоев диодной структуры ФЭП позволяет существенно снизить материалоемкость таких приборов по сравнению, например с монокристаллическими Si-ФЭП, толщина базовых кристаллов самых совершенных из которых по состоянию на 2000 год была не ниже 76 мкм (см. Табл. 1.6). Это оказалось возможным благодаря специфическим электронным свойствам полупроводниковых материалов CIGS и CdTe, обусловливающим значительно более высокий

коэффициент оптического поглощения А у этих материалов по сравнению с кристаллическим кремнием в спектральном диапазоне, соответствующем фотоэлектрически активной компоненте солнечного излучения. На Рис. 1.31 показаны зависимости величины А для CIGS и CdTe в сравнении с кристаллическими Si GaAs, также некоторыми И a С другими материалами, актуальными полупроводниковыми ДЛЯ применения В конструкциях ФЭП.

Рисунок 1.31 – Зависимости коэффициента оптического поглощения $A(a, \delta)$ и длины поглощения $X_L = 1/A(a)$ от энергии квантов света $h\nu$ и ширины запрещенной зоны E_g для: $a - \text{CuIn}_{1-X}\text{Ga}_X\text{Se}_2$ при x = 0 ($E_g = 1,04$ эВ), кремния кристаллического (c-Si, $E_g = 1,12$ эВ) и аморфного (a-Si, $E_g = 1,60$ эВ), GaAs ($E_g = 1,44$ эВ); δ – CdTe ($E_g = 1,50$ эВ). Пунктир на δ - $\eta_{max} = \eta_{max}(E_g)$.

С учетом полихроматической природы солнечного излучения, энергия которого распределена в диапазоне длин волн $0,2 \le \lambda \le 3$ мкм, что соответствует $0,4 \le hv \le 6,2$ эВ (согласно соотношению hv, эВ = $1,24/\lambda$, мкм), из соответствующих графиков на Рис. 1.31 можно определить толщины слоев CIGS, CdTe и c-Si, при которых в них будут полностью поглощено не менее 95 % солнечного света квантов с hv \geq $E_{g_{..}}$ ответственных за фотоэлектрическое преобразование солнечной энергии в электрическую. Указанный подход показывает, что толщина слоев CIGS и CdTe 2-4 мкм как раз и обеспечивает такое поглощение, в то время, как в случае с-Si толщина слоя для такого поглощения должна превышать 500 мкм.

Кроме того, технологический процесс изготовления ФЭП с пленочными слоями CIGS и CdTe является значительно менее энергоемким по сравнению с кристаллической кремниевой технологией, поскольку в первом случае необходимые температуры не превышают 500 °C, а во втором случае на ряде операций они достигают 850-1000 °C.

Все это вместе способствует значительному снижению себестоимости серийных ФЭП на основе поликристаллических пленочных слоев CIGS и CdTe, в связи с чем в конце 90-х годов прошлого века началась генеральная подготовка к их массовому промышленному производству.

Кафедра ФМЭГ НТУ «ХПИ» в пленочной тематике по CIGS и CdTe в последней декаде XX века

Указанные перспективы дали импульс началу исследований на кафедре ФМЭГ в области пленочной тематики по CIGS и CdTe применительно к актуальным задачам нового направления фотогелиоэнергетики. К числу таких задач относилась разработка новых ресурсосберегающих и в большей мере щадящих экологию методов получения пленочных диодных структур для ФЭП на основе CIGS и CdTe.

Применительно к пленочным диодным структурам для ФЭП на основе CIGS такие методы разрабатывались с 1995 года по 1999 год на международного сотрудничества Институтом физической уровне С электроники при Штутгартском университете (ИФЭ, г. Штутгарт, Германия) в рамках трех международных INTAS-проектов, а также в сотрудничестве с кафедрой технологии полупроводников Технического университета Гамбург-Германия) Харбург (ТУГХ, Г. Гамбург, рамках международной В межвузовской программы в области образования и науки.

Основным результатом указанного сотрудничества явилась разработка высокотехнологичного, экологически чистого и значительно более дешевого по сравнению с ранее использовавшимися электрохимического метода получения пленочной диодной структуры с p-n переходом p-CuInSe₂/n-CuIn₃Se₅. На Рис. 1.32 показаны: a, δ, e - полученные в растровом электронном микроскопе "LEO 1530" (ТУГХ) снимки поверхностей слоев p-CuInSe₂, выращенных на кафедре ФМЭГ при различных режимах электрохимического осаждения на молибденовую подложку из водного электролита, содержащего ионы меди, индия и селена, а также г – измеренная на кафедре ФМЭГ с помощью характериографа EMG-1579-102TR «Orion, вольт-амперная характеристика (ВАХ) диодной EMG» динамическая структуры p-CuInSe₂/n-CuIn₃Se₅ на основе пленки типа $\boldsymbol{\delta}$.

Рисунок 1.32 – Электронномикроскопические снимки поверхностей пленочных слоев p-CuInSe₂, электрохимически выращенных из водного электролита на молибденовых подложках при различных режимах осаждения: потенциостатическом, б потенциодинамическом, a _ BAX в - импульсном; г динамическая диодной структуры р-CuInSe₂/n-CuIn₃Se₅ на основе пленки типа $\boldsymbol{\delta}$

<u>Применительно к пленочным диодным структурам для ФЭП на</u> <u>основе CdTe</u> такие методы разрабатывались с 1997 года по 2000 год на уровне международного сотрудничества со Швейцарским технологическим институтом (г. Цюрих) в рамках международного партнерского проекта «Тонкопленочные ФЭП на основе полупроводниковых соединений».

Основным результатом указанного сотрудничества явилась разработка высокотехнологичного и значительно более дешевого по сравнению с ранее использовавшимися вакуумного метода получения пленочной диодной структуры с p-n переходом p-CdTe/n-CdS поверх стекла, покрытого тонким слоем n^+ -ITO. Толщина слоя p-CdTe составляла 6-8 мкм, изготовленные на основе такой диодной структуры ФЭП имели КПД около 6 % при облучении в режиме AM1,5G.