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Summary. We have developed a scattering matrix approach to coherent trans-
port through an adiabatically driven conductor based on photon-assisted processes.
To describe the energy exchange with the pumping fields we expand the Floquet
scattering matrix up to linear order in driving frequency.
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1 From an Internal Response to a Quantum Pump Effect

The possibility to vary several parameters at the same frequency but with
different phases [1] of a coherent (mesoscopic) system opens up new prospects
for the investigation of dynamical quantum transport. The adiabatic variation
of parameters is of particular interest since at small frequencies the conduc-
tor stays close to an equilibrium state: the opening of inelastic conduction
channels is avoided and quantum mechanical phase coherence is preserved to
the fullest extend possible. The relevant physics has a simple and transparent
explanation within the scattering matrix approach.

The variation of parameters leads to a dynamic scattering geometry. Quite
generally we consider changes in the scattering geometry as an internal re-
sponse [2] in contrast to the external response generated by voltages applied
to the contacts of the conductor, see Fig. 1. In general a linear response con-
sists both of a response to an external potential oscillations, and response to
internal potentials. The internal response can be expressed with the help of
the emissivity ν(α, r). The emissivity ν(α, r) is the portion of the density of
states at r of carriers that will exit the conductor through contact α. The
emissivity relates the amplitude Iα(ω) of the current in lead α to the am-
plitude U(r, ω) of a small and slowly oscillating internal potential. At zero
temperature we have [2]
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I(ω) ~ V(ω)

V(ω) e -iωt
external
response

I(ω) ~ U(ω)
Ue -iωt

internal
response

Fig. 1. External and internal response: An ac current with amplitude I(ω), say,
in the left lead can arise as a response either to an oscillating potential V (t) =
V (ω)e−iωt + V (−ω)eiωt at one of the external reservoirs, or as a response to an
oscillating potential profile δU(r, t) = δu(r)

(

U(ω)e−iωt + U(−ω)eiωt
)

inside the
mesoscopic sample.

Iα(ω) = ie2ω

∫

d3rν(α, r)U(r, ω). (1)

Here e is an electron charge and i2 = −1. The integral in (1) runs over the
region in which the potential deviates from its equilibrium value (typically
the volume occupied by the scatterer).

The emissivity is expressed in terms of the scattering matrix S (of the
stationary scatterer) and its functional derivative with respect to the internal
potential variation δU(r, t) = δu(r)

(

U(ω)e−iωt + U(−ω)eiωt
)

:

ν(α, r) = − 1

4πi

Nr
∑

β=1

[

S∗αβ

δSαβ

δeu(r)
−

δS∗αβ

δeu(r)
Sαβ

]

. (2)

The scattering matrix is evaluated at the Fermi energy E = µ. The summation
runs over all the leads (for simplicity here assumed to be single channel)
connecting the sample to external Nr = 1, 2, 3.. reservoirs.

Applying the inverse Fourier transformation to (1) gives the current Iα(t)
flowing in response to a time-dependent internal potential U(r, t). Eq. (1) can
easily be generalized to find the response to an arbitrary field or parametric
variation of the scattering geometry [3]. To arrive at a general expression we
remember that the scattering matrix depends on the internal potential U .
That in turn makes S time-dependent, S(t) ≡ S[U(t)]. Thus alternatively we
can express Eq. (1) in the form

Iα(t) =
ie

2π

Nr
∑

β=1

S∗αβ

dSαβ

dt
. (3)

Originally in [2] the potential U(r, t) is the self-consistent Coulomb po-
tential. However the form of (3) tells us that the current Iα(t) can arise in
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response to a slow variation of any quantity (parameter) which affects the
scattering properties of a mesoscopic sample. For instance the current gener-
ated by a slowly varying vector potential [4] permits to derive the Landauer
dc-conductance from Eq. (3). But Eq. (3) is not limited to the linear response
regime. The current Iα(t) given by Eq. (3) is a nonlinear functional of the
scattering matrix. Therefore, the mesoscopic system can exhibit an internal
rectification effect, i.e., an oscillating internal potential (or any appropriate
oscillating parameter) can result in a dc current Idc. Since the elements of
the scattering matrix are quantum mechanical amplitudes the dc-current is
the result of a quantum rectification process. This is a quantum pump effect
[3, 4, 5, 6, 7, 8, 9]. An approach to quantum pumping based on (1) and (3)
was put forth by Brouwer [3].

Since the time derivative enters (3), quantum rectification will work only
under special conditions [3]. Let one or several parameters affecting the scat-
tering properties of a mesoscopic sample change adiabatically and periodically
in time. Then the scattering matrix changes periodically as well. Consider the
point representing the scattering matrix in the space of all scattering matrices.
During the completion of one time period this point will move along a closed
line L. Then the dc current Idc,α, which is the current Iα(t) averaged over the
time period T = 2π/ω, can be represented as a contour integral in the above
mentioned abstract space [9]:

Idc,α =
ieω

4π2

∮

L

(

dSS
†
)

αα
. (4)

The dc current Idc,α, is non-zero if and only if the line L encloses a non-
vanishing area F . The easy way to see this is to consider a two parameter
space with parameters being S and S

†. Since S and S
† depend on the same set

of parameters, S = S({Xj}), S† = S†({Xj}), j = 1, 2, . . . , Np, (which includes,
for instance, the shape of a sample, the internal potential, the magnetic field,
the temperature, the pressure, the Fermi energy, etc.) then to get the cycle
with F 6= 0 it is necessary to have at least two parameters X1(t) = X1 cos(ωt+
ϕ1) and X2(t) = X2 cos(ωt+ϕ2) varying with the same frequency ω and with
a phase lag ∆ϕ ≡ ϕ1 − ϕ2 6= 0. In particular, if the oscillating amplitudes
are small, i.e., if the scattering matrix changes only a little across F , then the
pumped current is proportional to the square of the cycle area [3]:

Idc,α =
eω sin(∆ϕ)X1X2

2π

Nr
∑

β=1

ℑ
(

∂S∗αβ

∂X1

∂Sαβ

∂X2

)

X1=0,X2=0

. (5)

The very simple and compact expression (4) allows to find the pumped current
for a wide range of situations. Illustrative examples can be found in Ref. [10].
In the following we will now discuss the pumping process from the point of
view of photon-assisted transport through a mesoscopic system. We will show
how the interlay between photon–assisted transport and quantum mechanical
interference results in a quantum pump effect [11, 12].
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2 Quantum Coherent Pumping: A Simple Picture

By nature, the quantum pump effect is a rectification effect. A single pa-
rameter variation only leads to an ac-current. In a two parameter variation
the modulation of the scatterer due to the second parameter rectifies the ac-
currents generated by the first parameter. Rectification is only achieved if the
driven system can scatter electrons in an asymmetric way. Here the asymme-
try means that the probability Tαβ for an electron to pass through the sample,
say, from the lead β to the lead α and the probability Tβα to transit the scat-
terer in the reverse direction differ, Tαβ 6= Tβα. Then the flux of electrons
entering the scatterer through lead α and the flux of electrons scattered and
leaving the system through the same lead α differ from each other, resulting in
a net electron flow in lead α. The resulting current can be viewed as a result of
an asymmetrical redistribution of incoming flows between the outgoing leads.

To clarify the physical mechanism which can lead to asymmetric scatter-
ing we now emphasize the essential difference between the driven scatterer
and a stationary one. The key difference is the possibility of photon–assisted
transport. In the stationary case if an electron with energy E enters the phase
coherent system then it leaves the system with the same energy E. In con-
trast, in the driven case while traversing the system an electron can absorb
(or emit) energy quanta nh̄ω and thus it can leave the system with an energy
En = E + nh̄ω.

It is important that the electron changes its energy interacting with a
system which is modulated deterministically. As a consequence the inelas-
tic processes is coherent. If there are several possibilities for transmission
through the system absorbing or emitting the same energy (say, nh̄ω) the
corresponding quantum–mechanical amplitudes will interfere. Such an inter-
ference of photon–assisted amplitudes can lead to directional asymmetry of
electron propagation through a driven mesoscopic sample.

To illustrate this process we consider a simple but generic example. It is a
system consisting of two regions with oscillating potentials V1(t) = 2V cos(ωt+
ϕ1) and V2(t) = 2V cos(ωt + ϕ2) separated by the distance L. For the sake
of simplicity we assume that both potentials oscillate with the same small
amplitude 2V . Consider an electron with energy E incident on the system. In
leading order in the oscillating amplitudes only absorption/emission of a single
energy quantum h̄ω needs to be taken into account. So, there are only three
scenarios to traverse the system. In the first case, an electron does not change
its energy, the outgoing energy is E(out) = E. In the second case, it absorbs
one energy quantum, E(out) = E + h̄ω. In the third case, it emits an energy
h̄ω, E(out) = E − h̄ω. Since all these processes correspond to different final
states (which differ in energy E(out) from each other) then the full probability
T to pass through the system is a sum of three contributions:

T = T (0)(E; E) + T (+)(E + h̄ω; E) + T (−)(E − h̄ω; E). (6)
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+

V1(t) V2(t)

E E

V1(t)

=
E L

V2(t)

E ± hω

E ± hω E ± hω

Fig. 2. For the process in which a carrier with energy E traverses two oscillating
potentials V1(t) and V2(t), a distance L apart, and absorbs/emits an energy quantum
h̄ω there are two interfering alternatives. The modulation quantum can be either
absorbed/emitted at the first barrier or at the second one.

Here the first argument is an outgoing electron energy while the second argu-
ment is an incoming energy.

The probability T (0), like the tranmission probability of stationary scat-
terer, is insensitive to the propagation direction. In contrast T (+) and T (−)

are directionally sensitive. Therefore we concentrate on the last two.
Let us consider T (+). There are two possibilities to pass through the sys-

tem and to absorb an energy h̄ω, see, Fig. 2. The first possibility is to absorb
an energy due to the oscillation of V1(t). The second possibility is to absorb
an energy interacting with V2(t). In these two processes an electron has the
same initial state and the same final state. Therefore, we can not distinguish
between these two possibilities and according to quantum mechanics to calcu-
late the corresponding probability we first have to add up the corresponding
amplitudes and only then take the square. Let us denote the amplitude corre-
sponding to the propagation through the system with absorbing h̄ω at Vj as
A(j,+), j = 1, 2. Then the corresponding full probability is:

T (+) =
∣

∣

∣
A(1,+) + A(2,+)

∣

∣

∣

2

. (7)

Each amplitude (either A(1,+) or A(2,+)) is a product of two terms, the am-
plitude A(free)(E) = eikL (here k =

√
2mE/h̄ is an electron wave number) of

free propagation in between the potentials and the amplitude A(+)
j describing

the absorption of an energy quantum h̄ω at the potential Vj. The amplitude

A(+)
j is proportional to the corresponding Fourier coefficient of Vj(t). The

proportionality constant is denoted by α. Therefore we have A(+)
j = αVje

−iϕj .
The probability for an electron going from the left to the right is denoted

by T (+)
→ . The probability corresponding to the reverse direction – by T (+)

← .
Our aim is to show that

T (+)
→ 6= T (+)

← . (8)
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First we consider T (+)
→ . Scattering from the left to the right an electron first

meets the potential V1(t) and only then the potential V2(t). Therefore if an
electron absorbs the energy h̄ω at the first potential it traverses the remaining
part of the system with enhanced energy E+1 = E + h̄ω. The corresponding

amplitude is A(1,+)
→ = A(+)

1 A(free)(E+1). While if an electron absorbed h̄ω at
the second potential then it goes through the system with the initial energy E.
The quantum mechanical amplitude corresponding to such a process reads:

A(2,+)
→ = A(free)(E)A(+)

2 . If the energy quantum is much smaller then the
electron energy, h̄ω ≪ E, then we can expand the phase factor corresponding
to free propagation with enhanced energy E+1 to first order in the driving
frequency: k+1L ≈

(

k + ω
v

)

L, here v = h̄k/m is an electron velocity. Thus we
have:

A(1,+)
→ ≈ αV e−iϕ1ei(k+ ω

v )L,

A(2,+)
→ = eikLαV e−iϕ2 .

(9)

Substituting these amplitudes into (7) we obtain the probability to pass
through the system from the left to the right with the absorption of an energy
quantum h̄ω:

T (+)
→ = 2α2V 2

{

1 + cos

(

ϕ1 − ϕ2 −
ωL

v

)}

. (10)

Now we consider the probability T (+)
← . Going from the right to the left an

electron first meets the potential V2(t) and then the potential V1(t). Therefore,
the corresponding amplitudes are:

A(1,+)
← = eikLαV e−iϕ1.,

A(2,+)
← ≈ αV e−iϕ2ei(k+ ω

v )L

(11)

Using (7) and (11) we find:

T (+)
← = 2α2V 2

{

1 + cos

(

ϕ1 − ϕ2 +
ωL

v

)}

. (12)

Comparing (10) and (12) we see that the transmission probability depends on
the direction of electron propagation as we announced in (8).

Let us characterize the asymmetry in transmission probability by the dif-
ference ∆T (+) = T (+)

→ − T (+)
← :

∆T (+) = 4α2V 2 sin(∆ϕ) sin

(

ωL

v

)

. (13)

In our simple case the emission leads to the same asymmetry in the photon–
assisted transmission probability: ∆T (−) = ∆T (+). Therefore if there are the
same electron flows I0 coming from the left and from the right, then a net
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current I = I0

(

∆T (−) + ∆T (+)
)

is generated. We assume a positive current
to be directed to the right.

We see that the induced current I depends separately on ∆ϕ = ϕ1 −
ϕ2 and on the factor ωL/v. This is an additional dynamical phase due to
absorption of an energy quantum h̄ω. Such a separation of phase factors can
be interpreted in the following way. The presence of the phase lag ∆ϕ (by
modulo 2π) between the oscillating potentials V1(t) and V2(t) breaks the time
reversal invariance of a problem and hence potentially permits the existence
of a steady particle flow. The second term emphasizes a spatial asymmetry
of a model consisting of two inequivalent oscillating regions separated by a
distance L, and tells us that the interference of photon–assisted amplitudes
is the mechanism inducing electron flow. Neither a phase lag nor a photon-
assisted process can separately lead to a dc current.

The simple model presented here reproduces several generic properties of
a periodically driven quantum system. First, a driven spatially asymmetric
system can pump a current between external electron reservoirs to which this
system is coupled. Second, the pumped current is periodic in the phase lag
between the driving parameters. Third, at small driving frequency, ω → 0,
the current generated is linear in ω. In contrast the oscillatory dependence on
ω of (13) is a special property of the simple resonant tunneling structure [13].

3 Beyond the Frozen Scatterer Approximation:

Instantaneous currents

In experiments the external electrical circuit to which the pump is connected
is important [14, 15]. Consequently, it is of interest to understand the work-
ings of a quantum pump connected to contacts which are not at equilibrium
but support dc-voltages and ac-potentials. We now present a number of re-
sults of a rigorous calculation of dynamically generated currents within the
scattering matrix approach for spinless non-interacting particles [16]. These
results permit the investigation of pumping also in experimentally more real-
istic non-ideal situations.

We generalize the approach of [2] to the case of strong periodic driving
when many photon processes are of importance. To take them into account
we use the Floquet scattering matrix whose elements SF,αβ(En, E) are the

quantum mechanical amplitudes (times
√

kn/k, where kn =
√

2mEn/h̄, En =
E+nh̄ω) for scattering of an electron with energy E from lead β to lead α with
absorption (n > 0) or emission (n < 0) of |n| energy quanta h̄ω. Like in [2] we
deal with low frequencies (adiabatic driving) and calculate the current linear
in ω. In this limit we can expand the Floquet scattering matrix in powers of
ω.

To zero-th order the Floquet sub-matrices SF(En, E) are merely the ma-
trices of Fourier coefficients Sn of the stationary scattering matrix with time-
dependent (pump)-parameters, S(t) ≡ S({Xj(t)}). The matrix S(t) is the
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frozen scattering matrix, in the sense that it describes the time moment t
and hence stationary scattering. If all the reservoirs are kept at the same
conditions (potential, temperature..) then the knowledge of only the frozen
scattering matrix is sufficient to calculate the current flowing through the
scatterer, see (3). Under more general conditions knowledge of the frozen
scattering matrix is not sufficient. We stress that the frozen scattering matrix
does not describe the scattering of electrons by a time-dependent scatterer:
only the Floquet scattering matrix does. Since we are interesting in a current
linear in ω then, in general, it is necessary to know the Floquet scattering
matrix with the same accuracy. Thus we have to go beyond the frozen scat-
tering matrix approximation and to take into account the corrections of order
ω. As we illustrated in Sec.2 such corrections are due to interference between
photon–assisted amplitudes.

We use the following ansatz:

SF(En, E) = Sn(E) +
nh̄ω

2

∂Sn(E)

∂E
+ h̄ωAn(E) + O(ω2). (14)

The matrix A(E, t) [with Fourier coefficients An(E)] introduced here is a key
ingredient. As we will see this matrix reflects the asymmetry in scattering
from one lead to the other and back. The unitarity condition for the Floquet
scattering matrix leads to the following equation for the matrix A(E, t):

h̄ω
(

S
†(E, t)A(E, t) + A

†(E, t)S(E, t)
)

=
1

2
P{S†; S}, (15)

where P is the Poisson bracket with respect to energy and time

P{S†; S} = ih̄

(

∂S
†

∂t

∂S

∂E
− ∂S

†

∂E

∂S

∂t

)

.

The matrix A can not be expressed in terms of the frozen scattering matrix S(t)
and it has to be calculated (like S itself) in each particular case. Nevertheless
there are several advantages in using (14).

First, the matrix A has a much smaller number of elements than the Flo-
quet scattering matrix. The matrix A depends on only one energy, E, and,
therefore, it has Nr × Nr elements like the stationary scattering matrix S. In
contrast, the Floquet scattering matrix SF depends on two energies, E and
En, and, therefore, it has (2nmax+1)×Nr×Nr relevant elements. Here nmax is
the maximum number of energy quanta h̄ω absorbed/emitted by an electron
interacting with the scatterer which we have to take into account to correctly
describe the scattering process. For small amplitude driving we have nmax ≈ 1,
whereas if the parameters vary with a large amplitude then nmax ≫ 1.

Second, the Floquet scattering matrix has no definite symmetry with re-
spect to a magnetic field H reversal. In contrast both the frozen scattering
matrix S and A have. The analysis of the micro-reversibility of the equations
of motion gives the following symmetry:
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S(−H) = ST(H),

A(−H) = −AT(H),
(16)

where the upper index ”T” denotes the transposition. In the absence of a
magnetic field, H = 0, the matrix A is antisymmetric in lead indices, Aαβ =
−Aβα.

Next, using the adiabatic expansion, (14), we calculate the full time-
dependent current Iα(t) flowing in lead α as follows [16]:

Iα(t) =
∞
∫

0

dE
∑

β

{

e
h

[f0,β − f0,α]
∣

∣Sαβ(E, t)
∣

∣

2

−e ∂
∂t

[

f0,β
dNαβ(E,t)

dE

]

+ f0,β
dIαβ(E,t)

dE

}

.

(17)

Here f0,α is the Fermi distribution function for electrons in reservoir α. We
assume a current in a lead to be positive if it is directed from the scatterer
to the corresponding reservoir. Equation (17) generalizes (3) to the case with
external reservoirs being nonidentical (e.g., having different chemical poten-
tials, temperatures, etc.). The three parts in the curly brackets on the RHS of
(17) can be interpreted as follows: The first part defines the currents injected
from the external reservoirs. It depends on the time-dependent conductance

Gαβ(t) = e2

h
|Sαβ(t)|2 of the frozen scatterer and hence it describes a classical

rectification contribution to the dc current Idc,α. The second part defines the
current generated by the oscillating charge Q(t) of the scatterer:

Q(t) = e
∑

α

∑

β

∞
∫

0

dEf0,β

dNαβ(E, t)

dE
. (18)

Here dNαβ/dE is the global partial density of states for a frozen scatterer:

dNαβ

dE
=

i

4π

(

∂S∗αβ

∂E
Sαβ − S∗αβ

∂Sαβ

∂E

)

. (19)

Apparently this part gives no contribution to the dc current. The third part
describes the currents generated by the oscillating scatterer. The ability to
generate these ac currents differentiates a non-stationary dynamical scatterer
from a merely frozen scatterer.

The instantaneous spectral currents dIαβ/dE pushed by the oscillating
scatterer from lead β to lead α read:

dIαβ

dE
=

e

h

(

2h̄ωRe[S∗αβAαβ ] +
1

2
P{Sαβ; S∗αβ}

)

. (20)

The two terms in this equation have different symmetry properties with re-
spect to the interchange of lead indices. That is most evident in the absence
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nhω

Fig. 3. Interacting with an oscillating potential the electron system gains modu-
lation quanta of energy. Absorption of an energy nh̄ω leads to the creation of a
non-equilibrium quasi–electron–hole pair. The quasi–electron (black circle) and hole
(open circle) can leave the scattering region through different leads. This leads to
current pulses of different signs in the corresponding leads.

of a magnetic field, H = 0. In this case the first term on the RHS of (20)
is antisymmetric in lead indices while the second term has the symmetry of
the stationary scattering matrix S and is thus symmetric. Therefore, the ma-
trix A is responsible for the directional asymmetry of dynamically generated
currents:

dIαβ

dE
6= dIβα

dE
. (21)

We remark, that if one calculates the dc current generated in the par-
ticular case when all the reservoirs are at same potentials and temperatures
(f0,α = f0,β, ∀ α, β) then (17) (after averaging over a pump period) generates
Brouwer’s result, (4). In this case the matrix A plays no role. Different contri-
butions of this matrix can be combined as in (15). In contrast, the matrix A

is important in less symmetrical situations, when the electron flows arriving
at the scatterer from different leads are different.

The spectral currents dIαβ/dE are subject to the following conservation
law:

Nr
∑

α=1

dIαβ(E, t)

dE
= 0. (22)

Such a property supports the point of view that these currents arise inside
the scatterer. They are generated by the non-stationary scatterer without any
external current source. The appearance of currents subject to the conserva-
tion law (22) can be easily illustrated within the quasi–particle picture [12].
Let all the reservoirs have the same chemical potential µα = µ, α = 1, . . . , Nr.
We introduce quasi–particles: the quasi–electrons corresponding to filled states
with energy E > µ and holes corresponding to empty states with energy
E < µ. Then at zero temperature there are no incoming quasi–particles. In
other words, from each lead the vacuum of quasi–particles is falling upon the
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scatterer. Interacting with the oscillating scatterer, the system of (real) elec-
trons can gain, say, n energy quanta h̄ω. In the quasi–particle picture this
process corresponds to the creation of a quasi–electron–hole pair with energy
nh̄ω. The pair dissolves and the quasi–particles are scattered separately to the
same or different leads, see, Fig. 3. If the scattering matrix depends on energy
then the quasi–electron and hole are scattered, on average, into different leads
since they have different energies. Suppose the electron leaves the scattering
region through lead α and the hole leaves through lead β. Since electrons and
holes have opposite charge the current pulses created in the leads α and β
have different sign. As a result a current pulse arises between the α and β
reservoirs. In this picture it is evident that there is no incoming current and
the sum of outgoing currents does satisfy the conservation law (22).

Note, from (15) and (20) it is obvious that a conductor with strictly energy
independent scattering matrix does not produce current and thus it does not
show a quantum pump effect.

The current Iα(t), calculated with (17), satisfies the continuity equation:

∑

α

Iα(t) +
∂Q(t)

∂t
= 0, (23)

and thus conserves charge. To demonstrate this we use the unitarity of the
frozen scattering matrix,

∑

α |Sαβ |2 =
∑

β |Sαβ |2 = 1, and the definition of
the charge Q(t) of the scatterer, see (18).

It follows from (22) that the dynamically generated currents dIαβ/dE
do not contribute to (23). Therefore they have nothing to do with charg-
ing/discharging of a scatterer. The existence of these currents is an intrinsic
property of dynamical scatterer.

In conclusion, we clarified the role played by photon–assisted processes
in adiabatic electron transport through a periodically driven mesoscopic sys-
tem. The interference between the corresponding photon–assisted amplitudes
makes the transmission probability dependent on the electron transmission
direction in striking contrast with stationary scattering. To consider prop-
erly this effect we introduced an adiabatic (in powers of a driving frequency)
expansion of the Floquet scattering matrix and demonstrated that already
linear in ω terms exhibit the required asymmetry.

The ability to generate currents is only one interesting aspect of quantum
pumps. Recent works point to the possibility of dynamical controlled gen-
eration of entangled electron-hole states [17, 18]. This brings into focus the
dynamic quantum state of pumps. This and other properties will likely assure
a continuing lively interest in quantum pumping.
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12. M. Moskalets, M. Büttiker: Phys. Rev. B 66, 035306 (2002)
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