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Abstract. We study time-dependent heat transport in systems composed of a resonant level
periodically forced with an external power source and coupled to a fermionic continuum. This
simple model contains the basic ingredients to understand time resolved energy exchange in
quantum capacitors that behave as single particle emitters. We analyse the behaviour of the
dynamic heat current for driving frequencies within the non-adiabatic regime, showing that it
does not obey a Joule dissipation law.

1. Introduction
Recent progress in the miniaturisation of electronic circuits puts on agenda the development
of new theoretical methods. The energy transport in systems on the nano- and already
molecular and atomic scales cannot be treated classically but requires a quantum-mechanical
treatment [1, 2, 3]. In particular, time-dependent quantum transport in systems that act
as quantum capacitors have recently received a lot of attention both experimentally and
theoretically [4, 5, 6, 7]. Recent experiments show that a quantum dot tunnel-coupled to
a reservoir can be used for on-demand single-electron injection [8]. Electron emission and
absorption are periodically generated by applying an external time-periodic potential. Harmonic
potentials are also crucial for the creation of directed transport in asymmetric systems, such as
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charge [9] and spin [10] ratchets. Furthermore, ac fields are shown to control matter tunneling
in Bose-Einstein condensates [11].

Electrons in periodically driven coherent conductors carry energy in addition to current.
Thus, the role of electron-like and hole-like excitations created by ac driving in the energy
current noise is investigated in Ref. [12]. Heat production in nanoscale engines is analyzed
in Refs. [13, 14] while Ref. [15] finds a universal thermal resistance for the low-temperature
dynamical transport.

In a recent work [16], we studied the time-resolved energy production and redistribution
in ac-driven quantum coherent electron systems. We showed that the coupling between the
different parts of the system contributes to the energy transport, and that this contribution is
of ac nature. We also presented an appropriate definition for the time resolved heat current in
accordance with the fundamental principles of thermodynamics. Interestingly, we showed that
for low frequencies of the driving potential (adiabatic regime) we found that the time-dependent
heat flux is instantaneously given by the Joule law with a universal resistance. The purpose of
this work is to explore if this behaviour of the time resolved heat current remains also valid for
higher driving frequencies beyond the adiabatic regime. To this end, we consider a single dot
connected to a fermionic band of continuous density of states (a reservoir) and driven with a
harmonically time-dependent potential with a frequency within the non-adiabatic regime.

2. Model and theoretical treatment
The system under consideration is sketched in Fig. 1, in which a resonant level is driven
harmonically by a power source. The Hamiltonian of the setup is H = HC + HT + HD, where

the first term, HC =
∑
k εkc

†
kck, represents the fermionic continuum (reservoir) with the energy

band εk. The Hamiltonian of a tunneling region reads HT =
∑
k(wkd

†ck + h.c), where wk is the
coupling amplitude. The term HD(t) = εd(t)d

†d denotes a driven system, in which the energy
level, εd(t) = ε0 + Vac sin(Ωt), is varied in time by the power source. For simplicity, we consider
noninteracting, spinless electrons.

e-

μ

Fermi Sea

Tunneling region

ε +V  (t)0 ac

Figure 1. Sketch of the setup under consideration. A single electron level is connected to a
fermionic band (reservoir with chemical potential µ) via a tunnel barrier. Energy is supplied to
the system by a time periodic power source Vac(t) with characteristic frequency Ω.

In order to define the energy fluxes entering each part of the system, we analyze the evolution
in time of the total energy,

d〈H〉
dt

= JEC (t) + JET (t) + JED(t) + P (t), (1)

where we identify the energy flux entering the reservoir JEC = i〈[H,HC ]〉/h̄, the change per
unit time of the energy stored in the tunneling region JET = i〈[H,HT ]〉/h̄ and the energy
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flux entering the resonant level JED = i〈[H,HD]〉/h̄. The total Hamiltonian conserves the
number of particles but not the total energy due to the power developed by the ac forces
P (t) = d〈H〉/dt = 〈∂HD/∂t〉 = nd(t)dεd(t)/dt, where nd(t) = 〈d†(t)d(t)〉 is a resonant level
occupation probability, i.e., the time-average of the number of electrons present on the resonant
level.

We solve the problem with the non-equilibrium Green function procedure of Refs. [17, 18].
The different energy fluxes can be computed in terms of the retarded Green function Gr(t, t′) =
−iθ(t− t′)〈{d(t), d†(t′)}〉, and we use the Floquet-Fourier representation

Gr(t, t′) =
∞∑

n=−∞

∫
dω

2π
e−inΩte−iω(t−t′)Gr(n, ω), (2)

with Ω being the fundamental driving frequency. The Floquet components Gr(n, ω) can be
computed in term of the equilibrium Green function G0(ω) = [ω − ε0 + iΓ/2]−1, where Γ
represent the hybridization between the electron level and the reservoir. We find that the
energy current entering the reservoir at time t reads

JEC (t) = −
∑
l

e−ilΩt
∫
dε

h
{iGr∗(−l, ε)Γ[(ε− lh̄Ω)f(ε− lh̄Ω)− εf(ε)]−

∑
n

[(ε+
lh̄Ω

2
)f(ε− nh̄Ω)− εf(ε)]Gr(l + n, ε− nh̄Ω)Γ2Gr∗(n, ε− nh̄Ω)}, (3)

where f(ε) = 1/[1 + e(ε−µ)/kBT ] is the Fermi- Dirac distribution. Following the same procedure,
we can compute the other fluxes entering Eq. (1). The variation of the energy stored in the
tunneling region reads

JET (t) =

∫
dε

h
Ωf(ε)

∑
n

n 2Im{e−inΩtGr(n, ε)Γ}. (4)

Finally, the energy flux entering the dot with a single resonant level can be expressed as
JED = εd(t)dnd(t)/dt = −εd(t)JC(t)/e. In this expression, we have used charge conservation
to rewrite dnd(t)/dt in terms of the reservoir current (JC(t) = −ednd(t)/dt). Applying the
above method, the charge current can be expressed as

JC(t) = − e
h

∑
l

e−ilΩt
∫
dε{iGr∗(−l, ε)Γ[f(ε− lh̄Ω)− f(ε)]−∑

n

[f(ε− nh̄Ω)− f(ε)]Gr(l + n, ε− nh̄Ω)Γ2Gr∗(n, ε− nh̄Ω)}. (5)

We stress that Eq. (3), (4) and (5) are general and valid up to any order in Ω and the ac
amplitude Vac.

The dc components of the currents JEC and JED satisfy JEC = −JED . The energy conservation
expressed by Eq. (1) implies that knowledge on how energy is absorbed or emitted in the contact
region, JET (t), plays an important role in the definition of heat in the time domain, even though

this term satisfies JET = 0. The dc component of heat flowing into the reservoir is related to

energy and charge currents as follows, JQC = JEC −µJC . In Ref. [16] we focused on the adiabatic
regime and adopted a thermodynamical analysis to define heat, based on the fact that the
reservoir is a macroscopic system, which experiences little changes under slow variations due to
the driving at the quantum dot. Thus, the rate of change of the internal energy in the reservoir
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leads to the appropriate definition of heat exchange between the reservoir and the driven part
of the system,

JQ(t) = JEC (t) + JET (t)/2− µJC(t), (6)

where we can interpret the quantity JET (t) as the chemical work developed by the contact when
an electron is flowing through it.

The above definition of the heat flow in the time domain within the adiabatic regime is
fully consistent with the treatment based on the scattering matrix formalism, as shown in [16].
Furthermore, it was also shown that such definition leads to a generalized Joule law in the time
domain within the adiabatic regime

JQ(t) = Rq[JC(t)]2, (7)

where Rq = h/2e2 is the universal resistance of the contact. This law reflects the fact that within
the adiabatic regime the heat generated by an ac driving flows into the reservoir and increases
its entropy at every time.

3. Results
The question arises now to what extent the definition of both a time-resolved heat current (6) and
a corresponding time-dependent Joule law (7) remain valid when the driving frequency is high
and the transport is non-adiabatic. In order to explore this issue we have explicitly evaluated
time-dependent heat and charge currents JQ(t) and JC(t) for different driving frequencies Ω.
Results are shown in Fig. 2, where, for simplicity, we have considered zero temperature (T = 0).
We present results for slow driving frequencies (solid circles), where the heat current is linear as a
function of J2

C(t), with the universal slope Rq. On the other hand, we show (open triangles) that
the induced heat current for higher frequencies (non-adiabatic regime) departs from the Joule
law. Furthermore it may attain negatives values for some times, which is in seeming contradiction
with the second law of the thermodynamics. This puzzling result, a consequence of system’s
non-equilibrium dynamics, raises a question about the correct formulation of the second law
of the thermodynamics for strongly nonequilibrium systems. At slow driving frequencies the
heat current behaves as expected for stationary systems (remains positive and obeys a Joule
dissipation law), for which the classical laws of thermodynamics remain valid. However, at
high driving frequencies, the non-equilibrium and quantum effects may become relevant. In
particular, the uncertainty relation between time and energy may play a role. This feature
deserves a more detailed analysis.

4. Summary and conclusions
In conclusion, we have discussed dynamical heat generation in a resonant level system due
to coupling to an external time-dependent potential with a typical frequency within the non-
adiabatic regime. Unlike a slow driving frequency regime, where the time-dependent heat flux is
instantaneously given by the Joule law with universal resistance, for higher driving frequencies
the heat flux can attain negative values, which may arise from a non-equilibrium dynamics.
Further analysis is necessary to better understand this phenomenon.
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