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Shot noise of a mesoscopic two-particle collider
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We investigate the shot noise generated by particle emission from a mesoscopic capacitor into an
edge state reflected and transmitted at a quantum point contact (QPC). For a capacitor subject to
a periodic voltage the resulting shot noise is proportional to the number of particles (both electrons
and holes) emitted during a period. It is proportional to the product of transmission and reflection
probability of the QPC independent of the applied voltage but proportional to the driving frequency.
If two driven capacitors are coupled to a QPC at different sides then the resulting shot noise is
maximally the sum of noises produced by each of the capacitors. However the noise is suppressed
depending on the coincidence of the emission of two particles of the same kind.

PACS numbers: 72.10.-d, 73.23.-b, 73.50.Td

A prominent feature of mesoscopic systems is their
ability to show quantization phenomena. These are, for
instance, the Hall resistance in the integer [1] and frac-
tional [2] quantum Hall effect, and the conductance quan-
tization of a ballistic quantum point contact [3]. These
quantization phenomena are governed by the number of
elementary conduction channels. In contrast, the quanti-
zation of the charge relaxation resistance, Rq, of a quan-
tum capacitor, predicted theoretically [4] and confirmed
in experiment [5], relies on the property of a single, pos-
sibly interacting, scattering channel [6, 7].

Of high interest are dynamic current quantization phe-
nomena. This quantization is governed by the number of
particles participating in the transport during some fixed
time interval (e.g., the driving period of a pump [8]).
A quantized dc current was experimentally observed in
a Coulomb blockade turnstile [9], in a one-dimensional
channel under the action of surface acoustic waves [10],
and recently in a 1D channel subject to either two local
potentials oscillating out of phase [11] or a single oscil-
lating potential [12]. Importantly a quantized ac current
generated by a quantum capacitor subject to large ampli-
tude excitation was observed [13] and discussed [14, 15].

These phenomena deal with the measurement of sin-
gle particle observables, like the current. We show in
this Letter that the noise, essentially a two-particle phe-
nomenon, can exhibit a quantization behavior as well.

We consider the system, Fig. 1, consisting of two quan-
tum capacitors connected to different linear edge states
which in turn are coupled via a central quantum point
contact (QPC). In the regime when either one of the
quantum capacitors (or both) generate a quantized ac
current [13] induced by an oscillating back-gate potential
the shot noise, as we show, is quantized. If the transmis-
sion Tα of a QPC connecting the capacitor α = L, R to
the linear edge state is small, Tα → 0, and the amplitude
of the driving potential Vα(t) = Vα,0 + Vα,1 cos(Ωt + ϕα)
is large compared to the level spacing ∆α then for small
frequency nα = [2Vα,1/∆α] electrons (here [X ] is the inte-
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FIG. 1: (color online) Two quantum capacitors (circular edge
states) are coupled to linear edge states which in turn are cou-
pled, via quantum point contacts shown as short red dashed
lines. Edge states are shown as blue lines with arrows indicat-
ing the direction of motion. The potentials VL/R(t) induced
by back-gates (hatched areas) acting on the capacitors gener-
ate ac currents I1/2(t) at leads (black rectangles).

ger part of X) and nα holes are emitted during a driving
period T = 2π/Ω. We show that, if the emission of par-
ticles is not simultaneous, the zero-frequency correlator
P12 of currents flowing into the leads 1 and 2 is

P12 = −NP0, (1)

where N = 2nL + 2nR is the total number of particles
(electrons and holes) emitted during a driving period,
P0 = (2e2/h)TCRC h̄Ω, with TC , RC being transmission
and reflection probabilities of the central QPC connecting
the two linear edge states, see Fig. 1. Note that the noise
produced by the source α alone is: Pα,12 = −2nαP0.

If two electrons (or two holes) emitted by different
sources arrive at the central QPC at the same time then
the noise will be suppressed. The difference δP12 between
the noise P12 produced by the system of two sources and
the sum of noises PL,12 +PR,12 produced by either of the
sources depends on the difference of times ∆t when par-
ticles arrive at the QPC. Each pair of particles arriving
at the central QPC with a small time delay ∆t leads to

http://arXiv.org/abs/0805.0188v2


2

a noise suppression, δP12 = P12 − PL,12 − PR,12, having
the form of a Breit-Wigner resonance as a function of ∆t,

δP12

2P0
=

4ΓLΓR

∆t2 + (ΓL + ΓR)2
. (2)

Here Γα is a width in time of an electron wave packet
emitted by the source α. In the case of identical ca-
pacitors driven by the same potential the noise will be
suppressed down to zero, P12 = 0.

Now we show how Eqs. (1) and (2) were obtained. The
system, Fig. 1, includes two single electron sources (SES)
consisting of a circular edge state with length Lα con-
nected via the QPC α to a corresponding linear edge
state. The nearby gate induces a uniform potential Vα(t)
over a circular state. The left and right linear edge states
are connected to leads 1 and 2, respectively, which have
the same chemical potential µ and the temperature T . In
addition the linear edge states are coupled via the cen-
tral QPC with transmission probability TC . The model
of a SES was treated in Refs. 5, 13. To calculate the cur-
rent and noise we use the Floquet scattering matrix for
a SES presented for a multilevel capacitor under large
sinusoidal voltage in [14]. Recently the scattering matrix
was presented for a single level dot subject to linear in
time driving [15]. In the adiabatic limit, Ω → 0, which
we will consider, the elements of the Floquet scattering
matrix of the SES α can be expressed in terms of the
Fourier coefficients of the frozen scattering amplitude

Sα(t, E) = eiθα

√
1 − Tα − eiφα(t,E)

1 −
√

1 − Tαeiφα(t,E)
, (3)

where θα is the phase of the reflection amplitude of the
QPC α; φα(t, E) = φα(µ)+2π∆−1

α [E−µ−eVα(t)] is the
phase accumulated by an electron with energy E during
one trip along the circular edge state, ∆α = hvD,α/Lα

with vD,α being a drift velocity.

The frozen scattering matrix Ŝ(t, E) for the whole sys-
tem is a 2 × 2 unitary matrix

Ŝ = eiθC





SLeikdL

√
RC iSReikdR

√
TC

iSLeikdL

√
TC SReikdR

√
RC



 . (4)

Here θC and RC define the reflection amplitude, rC =√
RCeiθC , of the central QPC; TC = 1 − RC ; k is the

wave number for an electron with energy E; dα is the
distance between the source α and the central QPC.

We find the current Ij(t) flowing into the contact j =
1, 2 as a sum of currents produced by each of the SESs
and partitioned at the central QPC: I1(t) = RCIL(t) +
TCIR(t), and I2(t) = TCIL(t)+RCIR(t). At slow driving
the current can be expressed in terms of a time-dependent
density of states να of a SES

Iα(t) = e
∫

dE
(

−∂f0

∂E

)

να(t, E) d
dt

eVα ,

να(t, E) = 1
∆α

Tα

2−Tα−2
√

1−Tα cos(φ[t,E])
,

(5)

where f0(E) is the Fermi distribution function. We see,
that the current is additive and it is not sensitive to the
presence or absence of collisions of electrons emitted by
different sources at the central QPC.

In contrast the noise is sensitive to such collision pro-
cesses. We calculate the symmetrized cross-correlator
of currents flowing into the leads (see, e.g., Ref. 16):

P12(t, t
′) = (1/2)

{

〈Î1(t)Î2(t
′) + Î2(t

′)Î1(t)〉
}

, where

Îj(t) is the current operator and 〈· · · 〉 denotes averag-
ing over the equilibrium state of the leads. If the driving
frequency Ω, the measurement frequencies ω, ω′ and the
temperature T are all smaller than the energy scale over
which the scattering matrix Ŝ changes significantly then
the frequency representation [17] of P12 is

P12(ω, ω′) =
∞
∑

l=−∞
πP(l)

12 (ω)δ(ω + ω′ − lΩ) ,

P(l)
12 (ω) = − e2

2π
TC

{

δl,0 (χ(ω) + χ(lΩ − ω))

+RC

∞
∑

q=−∞

(

− 2δl,0δq,0 + (SLS⋆
R)l−q(SRS⋆

L)q

+(SRS⋆
L)l−q(SLS⋆

R)q

)

χ((l − q)Ω − ω)

}

,

(6)

where the lower indices q and l − q denote the Fourier
coefficients; χ(ω) = ω coth(h̄ω/2kBT ). The scattering
amplitudes Sα are calculated at the Fermi energy, Sα ≡
Sα(t, µ).

Already here we can make a general statement. For
a symmetric setup, SL(t) = SR(t), the noise produced
by the two SESs completely vanishes, since SαS⋆

α = 1.
Only the noise of the central QPC remains. As there is
no dc bias, the noise of the central QPC is the thermal
and quantum equilibrium noise only.

However for a non-symmetric setup, SL(t) 6= SR(t),
there is a nonequilibrium noise. We are interested in the
noise due to the SESs only. Therefore, from now on we
will consider the zero-frequency noise at zero tempera-
ture, where the equilibrium noise vanishes. From Eq. (6)

we get (P(0)
12 (0) ≡ P12),

P12 = −P0

∞
∑

q=1

q
{

|(S⋆
LSR)q|2 + |(S⋆

LSR)−q|2
}

. (7)

We distinguish a weak and a strong amplitude regime
depending on whether the driving amplitude Vα,1 is small
or large compared to a corresponding level spacing ∆α.

In the weak amplitude regime, Vα,1 ≪ ∆α, the dom-
inant contribution to noise is a bilinear function of Vα,1

and it depends essentially on the density of states να

(calculated at Vα,0) of the SESs. We find, P12 = PL,12 +
PR,12 + δP12, with

Pα,12 = − 1
2P0(2πναeVα,1)

2 ,

δP12 = 4π2e2P0νLνRVL,1VR,1 cos(∆ϕ) .
(8)
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Here ∆ϕ = ϕL − ϕR is the phase lag between the two
sources. In this regime, in general, the sources produce
different noises, PL,12 6= PR,12. The correlation contribu-
tion to noise, δP12, being proportional to cos(∆ϕ) can ei-
ther enhance or suppress the total noise produced by two
sources. In the weak amplitude regime the noise is a con-
sequence of electron-hole pairs generated by the periodic
potential acting on the quantum capacitor. Physically it
is similar to the generation of shot noise by an ac volt-
age applied across a QPC investigated experimentally in
Ref. [18]. In both cases there is a correlation contribution
to the noise [19].

The noise properties are completely different in the
strong amplitude regime, Vα,1

>∼ ∆α, when the SES can
emit an electron or absorb an electron (i.e., emit a hole).
This happens periodically each time when one of the
quantum levels of an SES crosses the Fermi level of a
lead. The width of a resulting current pulse depends
on the transparency Tα of the QPC connecting circular
and linear edge states. In the limit of a small trans-
parency, Tα → 0, the current pulse is narrow on the scale
of a period T = 2π/Ω. In this case an individual ad-
ditional electron (hole) propagates through the system.
Since there are two sources one can get situations with
either one or two particles propagating through the sys-
tem at the same short time period. If two particles prop-
agate through the system the noise will be suppressed,
due to the Pauli exclusion principle. If electrons (holes)
meet each other at the same place (at the central QPC)
they become anticorrelated. This anticorrelation com-
pletely suppresses the partition noise which would arise
if they would pass the central QPC at different times.
This opens the possibility to use such a double capaci-
tor system as an on-demand source of entangled pairs of
particles [20].

To proceed analytically we assume that the ampli-
tude of an oscillating potential is chosen in such a way
that during the period only one level of the SES crosses
the Fermi level. The time of crossing t0,α is defined by
φα(t0,α) = 0 mod 2π. Introducing the deviation of the
phase from its resonance value, δφα(t) = φα(t)−φα(t0,α),
we obtain the scattering amplitudes, Eq. (3), in the limit
Tα → 0 as follows

Sα(t) = −eiθα
Tα + 2iδφα(t)

Tα − 2iδφα(t)
+ O(T 2

α) . (9)

We keep only terms in leading order in Tα.
There are two time moments when resonance condi-

tions occur. One time is when the level sinks below the
Fermi level and the second one is when the level rises
above the Fermi level. We will denote these times as t

(−)
0,α

and t
(+)
0,α , respectively. At time t

(−)
0,α one electron is emit-

ted by the source α, while at time t
(+)
0,α one electron enters

the dot (a hole is emitted).
We suppose that the constant part of the potential

−∆α/2 < eVα,0 < ∆α/2 accounts for a detuning of an
electron level in the SES from the Fermi level. Then
for |eV0,α| < eV1,α < ∆α − |eV0,α| we get the resonance

times, Ωt
(∓)
α = ∓ arccos (−V0,α/V1,α) − ϕα. The devi-

ation δt∓α = t − t∓α can be related to a deviation from
the resonance phase, δφα = ∓MαΩδt∓α , where ∓Mα =

dφα/dt|t=t∓α
/Ω = ∓2π|e|∆−1

α

√

V 2
1,α − V 2

0,α . With these

definitions we can rewrite Eq. (9) assuming that the over-

lap between the resonances is small, t
(+)
α − t

(−)
α ≫ Tα/Ω,

Sα(t) ≈ eiθα















t−t(+)
α

+iΓα

t−t
(+)
α −iΓα

, 0 < t + ϕα

Ω < T
2 ,

t−t(−)
α

−iΓα

t−t
(−)
α +iΓα

, T
2 < t + ϕα

Ω < T .

(10)

where Γα = Tα/(2ΩMα). This scattering amplitude
leads to the time-dependent current Iα(t), Eq. (5), gen-
erated by the source α for 0 < t < T ,

Iα(t) =
e

π











Γα
(

t − t
(−)
α

)2

+ Γ2
α

− Γα
(

t − t
(+)
α

)2

+ Γ2
α











. (11)

This current consists of two pulses of the same width Γα

corresponding to an emission of an electron and a hole.
Now we can calculate the zero-frequency noise power.

First we calculate the noise Pα,12 produced by only one
of the sources if the second source is stationary. Substi-
tuting Eq. (10) into Eq. (7) we find the noise

PL,12 = PR,12 = −2P0 . (12)

which is independent of the parameters of the source.
This noise can be understood as the shot noise pro-
duced by the central QPC under the action of one elec-
tron and one hole emitted by the source during a pe-
riod T = 2π/Ω. Since electron and hole are emitted
at different times they are uncorrelated and contribute
to the noise independently. Since the electron-hole sym-
metry is not violated in our system they contribute to
the noise equally, leading to a factor 2 in Eq. (12). The
noise, P0, produced by the single electron (hole) pulse
in our case coincides with the shot noise of the cen-
tral QPC (having only one conducting channel) which
is subject to a time-independent voltage |eV | = h̄Ω,

P(dc)
12 = −(2e2/h)TCRC |eV | [16].
If the amplitude of driving is larger, for instance if n

electrons and n holes are emitted during a period, then
the noise is n times larger, Pα,12 = −2nP0, as shown
in Fig. 2, black (lower) solid line. Remarkably the noise
produced by the SES is quantized. The increment P0,
Eq. (12), depends on the frequency Ω of the oscillating
voltage and on the transparency TC of the central QPC.
Therefore the quantization is not universal.

The noise of the system of two sources depends cru-
cially on whether particles are emitted at the same time
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FIG. 2: (color online) The noise P12, Eq. (7), as a function of
the amplitude VL,1 of the potential acting upon the left capac-
itor. Black (lower) solid line: the right capacitor is station-
ary, VR,1 = 0. Green (upper) solid line: the right capacitor
is driven by the out of phase potential, ϕR = π, with am-
plitude VR,1 = 0.5∆R. Red dashed line: the right capacitor
is driven by the in phase potential, ϕR = 0, with amplitude
VR,1 = 0.5∆R. The parameters are: VL,0 = VR,0 = 0.25∆R

(∆L = ∆R), ϕL = 0. The noise is given in units of
P0 = (2e2/h)TCRC h̄Ω.

or not. Substituting Eq. (10) into Eq. (7) we find

P12 = −2P0

{

2 − 4ΓLΓR
“

t
(−)
L

−t
(−)
R

”2
+(ΓL+ΓR)2

− 4ΓLΓR
“

t
(+)
L

−t
(+)
R

”2
+(ΓL+ΓR)2

+ O(Γ2
α)

}

.
(13)

Particles of the same kind (either electrons or holes),
which are emitted by different sources, can arrive at the

central QPC with a time difference ∆t(∓) = t
(∓)
L − t

(∓)
R .

When this time difference is larger than the sum of the
widths of the corresponding current pulses, ∆t(∓) ≫
ΓL + ΓR, then the two sources contribute to the noise
independently, Fig. 2, green (upper) solid line. In this
case Eq. (13) leads to Eq. (1).

In contrast if there is some overlap in time between par-
ticle wave packets, ∆t(−) ∼ ΓL +ΓR or ∆t(+) ∼ ΓL +ΓR,
then the correlation contribution δP12 to the noise arises.
From Eq. (13) we get Eq. (2) with ∆t being either ∆t(−)

or ∆t(+). If ∆t(∓) = 0 then the noise is maximally sup-
pressed. For a fully symmetrical case, ΓL = ΓR and
VL(t) = VR(t), the noise is suppressed down to zero, while
the amplitudes of current pulses are rather enhanced. In
Fig. 2 the red dashed line shows the noise generated by
two equal sources as a function of the amplitude VL,1.
If VL,1 6= VR,1 then the times when particles are emit-
ted by different sources are different. In this case both
sources contribute to noise independently. However if
VL,1 approaches VR,1 = 0.5∆R then the time difference
∆t(∓) → 0 which results in suppression of the shot noise.

One should note that an electron-hole collision at the

central QPC does not affect the noise. Because the emit-
ted electron has an energy above the Fermi level and the
emitted hole has an energy below the Fermi level they
are not subject to the Pauli exclusion principle. Hence
they do contribute to noise independently.

In conclusion, we predict two phenomena. First, the
quantum mesoscopic capacitor subject to a large ampli-
tude voltage and connected to a QPC produces shot noise
which is quantized. Second, the noise of two capacitors
coupled in parallel to a QPC is suppressed when they
emit electrons simultaneously. These phenomena are the
basis for the design of a two-particle emitter with a con-
trollable degree of correlations.
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