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Using the simple arguments we argue that the large charging energy leads naturally to the
in-phase charge-transfer resonances through the quantum dot with one-dimensional leads.
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The famous experimental work by Yacoby et al [1],
(where the magnitude t0 and phase θ of the transmission
coefficient t = t0e

iθ through the quantum dot embed-
ded in an Aharonov-Bohm ring in the Coulomb blockade
regime were measured) initiates a great activity [2]-[21]
directed to explain the unusual observed behaviour of the
phase θ of the transmission coefficient that can not be un-
derstood within the simple single-electron picture. It was
observed, firstly, that the phase of Aharonov-Bohm oscil-
lations of ring’s conductance G(Φ) (where Φ being a mag-
netic flux through the ring’s opening) changes abruptly
when the transmission coefficient t of a quantum dot
passes through the Coulomb blockade peak maximum
and, secondly, that the Aharonov-Bohm oscillations at
consecutive conductance peaks are in phase.

As it was established [2, 5] the first feature is a direct
consequence of a symmetry of a two-terminal conduc-
tance G(Φ) = G(−Φ). This implies that the phase shifts
δn in a Fourier representation of a conductance G(Φ) =
G0 +

∑∞
n=1Gn cos(2πnΦ/Φ0 + δn) (here Φ0 = h/e be-

ing the flux quantum) may be zero or π only. Usually
the first harmonic dominates G1 > Gn, n > 1, therefore
δ1 is an experimentally observable phase shift [1]. Be-
cause of interference the conductance of a ring depends
on the phase accumulated by an electron traveling along
the arms of a ring. Thus, δ1 depends on the phase θ of
the transmission coefficient t through the quantum dot.
Near the transition resonance the phase θ changes by π
that leads to an abrupt change of δ1 from 0 to π (or vice
versa). More precisely, the mechanism of such a change
is as follows [3, 5, 7, 13]. Near the maximum of t the first
harmonic of ring’s conductance vanishes and the depen-
dence G(Φ) becomes a Φ0/2-periodic in a magnetic flux
(the second harmonic dominates). At further change of
t the dependence G(Φ) becomes Φ0-periodic again with
δ1 being changed.

The second feature, confirmed by further experiments
[22, 23], is more difficult to explain. The single-particle
picture naturally leads to out of phase resonances [1].
This is due to the fact that the phase of the transmission
coefficient changes by π when we go consecutively from
one resonance to another one. To illustrate this we will
follow to Ref.[5] and consider the quantum dot contain-
ing noninteracting electrons within a one-dimensional
double-barrier resonant tunneling model. The transmis-
sion coefficient t through the two identical delta function
potential barriers of strength U0 � εF (where εF is the
Fermi energy) separated by the distance L may be rep-

resented as a sum of the Breit-Wigner [24] resonances

t = e−ikL
∑
n

−iΓn/2
Ek − En + iΓn/2

, (1)

where Ek = h̄2k2/(2m) is an electron energy; En and
Γn > 0 are the energy and broadening of the resonance n.
In the limit of a small coupling between the quantum dot
and the leads Γn � ∆F (where ∆F is the level spacing in
the dot near the Fermi energy) the resonant energies En
with a good accuracy are the energies of single-electron
levels in an isolated dot En = h̄k2n/(2m); kn = πn/L,
n = 1, 2, . . .. Near a resonance (k ' kn) the exponen-
tial term in Eq.(1) gives t ∼ e−iπn . Thus, at succes-
sive resonances (∆n = 1) the change of a transmission
coefficient phase is π. Note, that the four-terminal mea-
surements [23] (where the magnitude t0 and the phase
θ of the transmission coefficient through the quantum
dot are measured directly) confirm that the behaviour
of θ near a resonance peak is well described by a single
electron model. So, near a resonance we can use the rep-
resentation Eq.(1), but to explain the in-phase feature of
resonances we must suppose that the phase θ changes by
π (up to 2π) between resonances that is not described by
Eq.(1).

Another consideration [2], based on the Friedel sum
rule [25], leads also to out of phase resonances for non-
interacting electrons. Following the Landauer-Büttiker
approach [26, 27] let us consider the quantum dot con-
nected to two one-dimensional leads as a phase coher-
ent scatterer. The (spinless) Friedel sum rule relates the
change of an electron phase (in our notation θ) due to
scattering to the charge of a scatterer (of a quantum dot)
QD = −eNe (here −e is an electron charge, Ne is the
number of electrons in a quantum dot)

θ = πQD/e. (2)

After each resonance one electron is added to the quan-
tum dot ∆Ne = 1. Therefor the transmission coef-
ficient phase θ at successive resonances changes by π:
∆θ = π∆Ne = π.

To overcome this discrepancy with experiments [1, 22,
23] a number of efforts have been made. Ref.[2] sug-
gests an accumulation of a fractional charge αe (when
the voltage Vg of a gate capacitively coupled to a quan-
tum dot varies) in the ring between the two resonances.
Since the phase of the dependnece G(Φ) may be zero or
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π only, this may explain the parity conservation at lim-
ited number of peaks. Some other considered physical
effects are: multiple tunneling through exactly the same
state of a dot [3, 8, 12]; the strong Coulomb interaction
[3, 4]; the finite temperatures [9]; the intrinsic properties
of a ring-like structure [14]; the interplay of interelectron
interactions and the coupling to leads that may lead to
the suppression of some resonance peaks [19]. A num-
ber of works [6, 15–18, 21] exploits the 2D (in contrast
with the purely 1D models) nature of a quantum dot. In
these models the phase change π between resonances does
not connect with an additional charge but arises due to
the transmission zeros which are produced by the bound
states. As it was shown in Refs.[18, 21], in the presence
of transmission zeros the Friedel sum rule Eq.(2) must
be generalized to take into account the fact that near a
transmission zero the phase θ of the transmission coef-
ficient changes by π without any change in an electron
charge of a quantum dot. However, because of the ab-
sence of any known regularity in arising of transmission
zeros, this mechanism may explain the presence of a small
number of off-phase resonances [23] rather than regularly
arising in-phase resonances.

In the present paper we demonstrate that the intrinsic
feature of the Coulomb blockade effect leads naturally
to in-phase resonances regardless of interelectron inter-
actions within a quantum dot, an electron spin, and the
dimension (either 1D or 2D) of a quantum dot.

As it well known the Coulomb blockade effect [28] con-
sists in as follows. At low temperatures the charging
energy connected with a small capacitance C of a meso-
scopic sample (of a quantum dot) affects considerably
the electron transport through the quantum dot coupled
via tunnel junctions to an environment. Electron tunnel-
ing through the potential barrier changes the charge of
a quantum dot by 1e that changes the energy E of the
system by ∆E ∼ Ec = e2/(2C). Note that for the meso-
scopic system the typical capacitance is C ≤ 10−15F ,
that corresponds to Ec ≥ 1K.

At low temperatures

T � Ec, (3)

in the common case the charge transfer is suppressed (the
Coulomb blockade effect) [29, 30] and the conductance of
a quantum dot is very small. However, at some values
of a potential Vg of the gate capacitively coupled to a
quantum dot the electrostatic energy E

E(Ne) = Ec(Qp/e−Ne)2 (4)

(where Qp = CgVg is the polarization charge of a quan-
tum dot induced by the gate with a capacitance Cg) may
be degenerate in Ne

E(Ne) = E(Ne + 1). (5)

In this case the Coulomb blockade is lifted and the con-
ductance of a quantum dot peaks.

Such degeneracy occurs at half-integer values of Qp
[31, 32] when the charge QD = Qp − eNe of a quantum
dot equals to

QD = e/2. (6)

When we pass over the Coulomb blockade resonance the
number of electrons in the dot changes by 1 and the
charge of a dot QD (with accounting of a polarization
charge Qp) changes from e/2 before resonance to −e/2 af-
ter resonance. To obtain the next resonance (see Eq.(6))
we must vary the gate voltage Vg to change Qp (and con-
sequently QD) by 1e exactly (from −e/2 to e/2). There-
fore, between Coulomb blockade resonances the charge of
a dot changes by 1e that is due to a polarization charge
induced by the gate and does not connect with the charge
transfer between the dot and the leads. So, we see that
the condition of the Coulomb blockade resonance Eq.(6)
requires the same charge of a quantum dot near each peak
of a conductance. Applying the Friedel sum rule Eq.(2)
we conclude that the transmission coefficient phase θ is
exactly the same near the Coulomb blockade resonances
and all the resonances are in phase. Note, that the effect
of a partial change of the charge of a quantum dot be-
tween resonances was considered by Yeyati and Büttiker
[2] but in the present paper we emphasize that the con-
dition of a degeneracy of a charging energy (needed to
obtain the Coulomb blockade peak) requires the exactly
1e change of the charge of a quantum dot between reso-
nances.

This conclusion is also valid if we include interelectron
interactions. Note, that if we take into account a charg-
ing energy Eq.(4) (which is due to a long-range Coulomb
interaction) we, in fact, consider (even initially free) elec-
trons as interacting particles. In addition, now we con-
sider the effect of (short-range) electron-electron inter-

actions within a quantum dot. The Hamiltonian Ĥ of
a system (interacting electrons in the quantum dot and
noninteracting electrons in leads) is

Ĥ = Ĥ0 + Ec(Qp/e− N̂e), (7)

where Ĥ0 is the Hamiltonian of a system without a
charging energy (the second term in RHS of Eq.(7));

N̂e =
∑
p c
†
pcp is the operator of the number of elec-

trons in the dot. Note, that we describe a charging en-
ergy within a geometrical capacitance approach which is
widely used when the Coulomb blockade effect is consid-
ered. In experiment Ref.[1] the temperature T was less
than the level spacing ∆F ∼ εF /Ne (Ne � 1) in the
dot. Therefore analyzing dot’s conductance we may con-
sider the tunneling processes in (and out of) the ground
state of a quantum dot only. At weak coupling between
the quantum dot and the leads the number Ne of elec-
trons in the quantum dot is well quantized (see e.g., [33])
(except narrow vicinities of a charge transfer resonance
where the number of electrons in the quantum dot fluc-
tuates between Ne and Ne + 1). Thus, in the limit of a
weak coupling between the quantum dot and the leads
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(that is the case in the experiment Ref.[1]) the charge
transfer resonance occurs when the ground state energy
E0 of a system of interacting electrons degenerates in the
number of electrons in the dot: E0(Ne) = E0(Ne+ 1) (in
the case of noninteracting electrons this condition means
that the Fermi energy εF of electrons in leads coincides
with a one of the single-electron levels in the quantum
dot). So, we need to know the ground state energy E0

of the Hamiltonian Eq.(7) as a function of Ne. Let us
estimate the change in E0 due to the change of the num-
ber of electrons in the dot. There are two origins of
such a change. The first origin due to the dependence
of the energy of a system of interacting electrons in the
quantum dot on the number of particles. This change is

of the order of δE
(1)
0 ∼ ∆F ∼ εF /Ne. The second ori-

gin is due to a charging energy δE
(2)
0 ∼ Ec. To compare

these quantities we use the data of an experiment Ref.[1]:
Ec ≈ 500µeV ; ∆F ≈ 40µeV ; T ≈ 9µeV ; Γ ≈ 0.2µeV .
So, in addition to Eq.(3) further we will assume

Ec � ∆F � Γ, (8)

(Γ is the level broadening due to tunneling in and out
of the quantum dot) In such a case the charging energy
is a dominant energy scale which determine the depen-
dence of the ground state energy on the number of elec-

trons in the quantum dot δE
(2)
0 � δE

(1)
0 . Thus, in the

Coulomb blockade regime Eqs.(3),(8) the resonance con-
dition (even for interacting electrons) is the condition of a
degeneracy of a charging energy E Eq.(5) which implies
Eq.(6). So, using the Friedel sum rule (which remains
valid in the presence of electron-electron interactions as
it was shown by Langer and Ambegaokar [34]) we con-
clude that all the Coulomb blockade resonances must be
in phase.

So far we ignore an electron spin. Now we show that
the inclusion of an electron spin does not change an
in-phase feature of the Coulomb blockade resonances.
For spinfull case the Friedel sum rule Eq.(2) reads θ =
πQD/(2e). In the case of noninteracting electrons the en-
ergy levels in the quantum dot are twofold (spin-) degen-
erate and at resonance two electrons enter the quantum
dot. So, for noninteracting spinfull electrons the consec-
utive peaks are out of phase (like for spinless electrons).
The inclusion of a charging energy E makes electrons in-
teracting and removes the spin degeneracy of energy lev-
els in the quantum dot.

As it well known at T = 0 the Kondo effect develops
if spinfull interacting electrons tunnel through the quan-
tum dot [35]. However, in the limit of a weak coupling
the Kondo temperature is very small [36] and at actual
experimental temperatures [1] the system is out of the
Kondo regime. In the absence of Kondo-like correlations
the main effect of electron-electron interaction (which is
mainly due to a charging energy E in the Coulomb block-
ade regime Eq.(8)) is the remove of a spin degeneracy and
the definition of the charge transfer resonance condition
Eq.(5) which leads to Eq.(6). Thus, because of the same

charge of a quantum dot Eq.(6) near a resonance the
Coulomb blockade peaks are in phase as well as in the
spinless case.

Now we examine more accurately the behaviour of the
phase of the transmission coefficient near two consecutive
resonances arising from the level of a quantum dot which
is spin-degenerate in the absence of a charging energy. To
this end we consider a resonant transport through a single
twofold (spin-) degenerate level with on-site Coulomb re-
pulsion U ∼ Ec [35] (the one-impurity Anderson model).
The model Hamiltonian is

Ĥ = Ĥ0 + ε0
∑
σ=↑,↓

n̂0σ + Un̂0↑n̂0↓. (9)

Here Hamiltonian Ĥ0 describes the free electrons in one-
dimensional (right and left) leads and tunneling between
the leads and the dot; ε0 is the energy of the level in the

dot; n̂0σ = c†0σc0σ is the electron number operator. In the
case of a symmetric coupling to the leads the transmission
coefficient is [35, 37]

t(ε) = −iGr(ε)Γ/2, (10)

where Γ = 2πN(ε)t2t is the broadening (the tunneling
rate); N(ε) is the density of states for electrons in leads
at the energy ε; tt is the tunneling matrix element. Ne-
glecting Kondo-like correlations we can use an approxi-
mate retarded Green’s function Gr of the Breit-Wigner
type [37]

Gr(ε) =
1− 〈n〉/2

ε− ε0 + iΓ/2
+

〈n〉/2
ε− ε0 − U + iΓ/2

. (11)

The self-consistent value of the occupation on the dot
is 〈n〉 = (1 + 2P1)/(1 + P1 − P2), where Pi =
π−1 arctan(2Γ−1δεi), i = 1, 2, δε1 = ε−ε0, δε2 = ε−ε0−U
[37]. Using these expressions we can easy calculate the
phase θ of the transmission coefficient near the two res-
onances: θ(ε) = θ1(ε) at ε ≈ ε0 and θ(ε) = θ2(ε) at
ε ≈ ε0 + U , where

tan(θi) =
2

Γ

(
δεi −Ai

δε2i + Γ2/4

U

)
. (12)

Here A1 =
(

2
〈n〉 − 1

)−1
; A2 =

(
1− 2

〈n〉

)
. Easy to see

that in the limit of a large charging energy (U � Γ)
the behaviour of the phase θ is the same near the two
resonances.

Below we discuss briefly the case of a quasi-1D quan-
tum dot. All arguments leading to Eqs.(5),(6) remain
valid, but the Friedel sum rule Eq.(2) must be modified
because of a possible appearance of transmission zeros
[18, 21]. The transmission zero leads to an additional
change π of the phase θ of the transmission coefficient
and breaks off the series of in-phase Coulomb blockade
resonances.

In summary, we demonstrated that the conventional
picture of the Coulomb blockade effect leads naturally to
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the in-phase resonances of the conductance of a quantum
dot with one-dimensional leads that is in agreement with

experimental observations [1, 22, 23].
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