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Abstract—The prospect of time controlled information pro-
cessing with individual electrons in nanoscale systems provides
strong motivation for investigations of coupled charge and energy
transport properties of single electron sources. Building on our
recent work [F. Battista et al., Phys. Rev. Lett. 110, 126602
(2013)] we investigate theoretically the statistical properties of
temperature and potential fluctuations in an electronic probe
coupled to a generic single electron source. A detailed derivation
of the cumulant generating function of the joint probability
distribution is presented. Moreover, the probability distribution
in stationary phase approximation is analysed.

I. INTRODUCTION

The ongoing miniaturization and close-packing of compo-
nents in electronic devices has made it increasingly important
to minimize and control heat dissipation in electronic systems
on the nanometer size. In particular, any time-controlled
information processing in nanoscale electronic devices will
typically involve clocked application of voltage pulses and
generation of time-dependent electrical currents, hence result-
ing in a time-varying heat flow. Extrapolating the electronics
miniaturization trend, the ultimate carriers of information in
nanosystems are single electrons. From a fundamental perspec-
tive, this motivates a careful investigation of coupled charge
and energy transport properties of time-controlled sources for
single electrons. In addition, the even more ambitious goal, to
perform quantum information processing with single electrons
in nanosystems, requires such electron on-demand sources as
well as the transport through the system to preserve quantum
coherence.

The need for a better understanding of the coupled charge
and energy emission properties of electron on-demand sources
is further emphasized by the recent rapid experimental
progress [1], [2], [3], [4], [5], [6], [7] on fast, accurate single
particle emitters, with operation frequencies reaching the GHz
regime. Following the experiments, a large number of works
investigated the charge transport properties of these coherent
electron on-demand sources [8], [9], [10], [11], [12], [13],
[14], [15], [16]. Coherent on-demand sources open up for
quantum coherent few-electron experiments [17], [18], [19],
[20] as well as put in prospect quantum information process-
ing [21], [22], [23] with clocked single and entangled two-
particle sources. Until recently, however, the energy emission

properties of the sources received little attention [24], [25],
[26], [27], [28], [29].

Importantly, although the low-frequency charge emission
of ideal on-demand sources is noiseless, the emitted heat
fluctuates (see illustration in Fig. I). These heat fluctuations
are ubiquitous for quantum coherent sources; particles emitted
during a time shorter than the drive period T have an uncer-
tainty in energy larger than h/T . The properties of the emitted
quantum heat fluctuations and the resulting temperature and
potential fluctuations induced in a hot-electron probe coupled
to the source were recently investigated by us [30]. We
considered a system implemented in a coherent conductor
in the quantum Hall regime, see Fig. I. Our work provided

Fig. 1. a) Train of wavepackets emitted from a single electron pump. b)
Energy probability distribution of emitted wavepacket. c) Schematic of the
system considered in Ref. [30], with a single particle pump coupled to a
thermally and electrically floating probe and an electronic reservoir, via edge
states.

a compelling illustration of the close connection between
quantum thermoelectric transport and fundamental problems
of nanoscale electronics. It also provided an important tool
to investigate the heat fluctuation properties for different
wavepackets and spectral profiles of electrons emitted from
on-demand sources [10], [14]. These issues have very recently
attracted considerable experimental interest [5], [31], [32], pro-
viding strong motivation for further theoretical investigations.

Here we present a detailed derivation of the joint probability
distribution of the potential and temperature fluctuations in
a thermally and electrically floating probe connected to the
single electron source. We discuss the saddle point solution for
the generating function for temperature and chemical potentialICNF2013 978-1-4799-0671-0/13/$31.00 c©2013 IEEE



cumulants and present the derivation of the probability distri-
bution in the stationary phase approximation.

II. STATISTICS OF ISOLATED SOURCE

As a starting point we consider the joint probability distribu-
tion of energy and charge emitted from a single particle source
under ideal operation conditions. The particles emitted from
the source can be decribed by wavepackets, superpositions of
plane waves at different energies ε > 0, with amplitudes c(ε)
(ε = 0 at the Fermi surface). For measurements lasting a time
t0, much longer than the drive period T , the joint probability
Pt0(E,Q) that a total energy E and a charge Q has been
emitted can conveniently be written

Pt0(E,Q) =

∫
dλdξei(ξE+λQ)+N [−iσeλ+F (ξ)],

F (ξ) = ln

[∫
dεp(ε)e−iξε

]
(1)

where p(ε) = |c(ε)|2, normalized as
∫
dεp(ε) = 1, and

N [−iσeλ + F (ξ)] the generating function for charge and
energy cumulants with N = t0/T � 1 the number of particles
emitted within the measurement time. Moreover, σ = 0 for
sources emitting no net charge [1] and σ = 1 for sources
emitting one electron [14] per cycle. The form in Eq. (1)
highlights the fact that the charge transfer is noiseless, with
only the first cumulant finite, while the transferred energy
fluctuates.

III. SOURCE-PROBE SYSTEM

Our goal is to investigate how the heat, or energy,
fluctuations described by Eq. (1) are manifested in quantities
typically accessible via measurements in mesoscopic systems.
To this aim we consider a system where the source is coupled
to a probe, via the lower edge state of a conductor in the
quantum Hall regime, see Fig. I. The probe is in the hot-
electron regime, with a floating electron temperature Tp(t) and
chemical potential µp(t). Particles emitted from the probe flow
along the upper edge into an electronic reservoir electrically
grounded and kept at zero temperature.

The potential µp(t) fluctuates on the time scale given by the
RC-time, τRC , while the temperature Tp(t) typically fluctuates
on the time scale of the dwell-time in the probe, τd. For the
hot-electron regime assumed here, the system is in the limit
τe−e � τRC , τd � τe−ph. Moreover, the time scales of the
fluctuations of the probe, τd, τRC , are considered to be much
longer than the drive period T but much shorter than the
measurement time t0.

IV. STATISTICS OF PROBE FLUCTUATIONS

The object of key interest is the joint probability distribution
of potential and temperature fluctuations at the probe. To
arrive at the distribution we first introduce the dimensionless
potentials and temperatures,

µ =
1

h

∫ t0

0

dtµp(t), T =
1

h

∫ t0

0

dtkbTp(t) (2)

corresponding to the fluctuating µp(t), Tp(t) integrated over
the measurement time t0. The joint probability distribution
Pt0(µ, T ) can be conveniently written in terms of a cumulant
generating function G(χ, θ) [33] as

Pt0(µ, T ) =
1

(2π)2

∫
dχ

∫
dθe−iθT−iχµ+G(χ,θ), (3)

with χ and θ counting fields for µ and T respectively. From
G(χ, θ) the cumulants of the joint probability distribution
Pt0(µ, T ) are then, by construction, obtained from successive
derivatives with respect to the counting fields

t0〈δTnp δµmp 〉 = (−ih)n+mk−nb
∂n∂mG(χ, θ)

(∂θ)n(∂χ)m

∣∣∣∣
χ,θ=0

. (4)

To determine G(χ, θ) we first introduce an intermediate time
scale τ , such that T � τ � τd, τRC . On the time scale τ
the statistics of net transferred energy Ep and charge Qp in
the probe can be described by the source generating function
τhs(λ, ξ) = (τ/T )[−ieσλ+F (ξ)] where F (ξ) is given in Eq.
(1). The probe generating function τhp(λ, ξ, Ep, Qp) is given
by [33], [34]

hp =
1

h

∫
dε

[
ln[1 + fp(ε)(e

ieλ+iεξ − 1)] + (5)

ln[1 + f(ε)(e−ieλ−iεξ − 1)]

]
,

where fp(ε) = fp(ε, µp, Tp) and f(ε) are the probe and the
reservoir Fermi distribution functions and ξ and λ are the
counting fields for Ep and Qp respectively. The energy integral
in Eq. (5) can be carried out [35], giving

hp =
1

2h

2µp(eiλ) + kbTp(eiλ)2 + iξ

[
π2(kbTp)

2/3 + µ2
p

]
1− (kbTp)iξ

.

(6)
Importantly, the energy Ep and charge Qp are related to Tp
and µp as

Ep = ν
[
µ2
p/2 + πkbTp)

2/6
]
, Qp = νeµp, (7)

where ν is the density of states in the probe. Working within
the framework of the stochastic path integral formalism [35],
[36], we can then express G(χ, θ) as a path integral over all
configurations of Ep and charge Qp during the measurement.
In the long time limit we have

eG(χ,θ) =

∫
dQpdEpdλdξe

S(Qp,Ep,λ,ξ)

S = t0[i(θkbTp + χµp)/h+ hp + hs] (8)

Along similar lines as in Refs. [25], [34], [35], the integral in
Eq. (8) can be solved in the saddle point approximation. The
leading corrections to the saddle point solution are typically
an order T /τd, T /τRC � 1 smaller and hence negligible [36].
The saddle point equations are given by

∂S

∂ξ
= 0,

∂S

∂λ
= 0,

∂S

∂Ep
= 0,

∂S

∂Qp
= 0 (9)



These relations together with Eqs. (7) and (8) allow us to write

i
χ

h
+
∂hp
∂µp

= 0,
∂(hp + hs)

∂λ
= 0

i
kbθ

h
+
∂hp
∂Tp

= 0
∂(hp + hs)

∂ξ
= 0. (10)

Denoting the solutions to the saddle point equations λ∗, ξ∗, µ∗
p

and T ∗
p , functions of χ and θ, we first find from Eqs. (10) the

relations

eλ∗ = −χ− σh̄ωξ∗, µ∗
p = iχkbT

∗
p + σh̄ω. (11)

Inserting these results back into Eqs. (10) we can further write

kbT
∗
p =

6q

π2g + 3q

1

iξ∗
(12)

where we introduced g = g(χ, θ) and q as

g =
3

π2

[
(iχ)2

2
+ iθ

]
, q = −π

2

6

(
1−

√
1− 2g

)2

. (13)

Finally, the remaining variable ξ∗ is obtained from the relation

q = z2

[
dF

dz
+
σ

2

]
, (14)

where we introduced z = iξ∗h̄ω. Note that this equation does
not have a general solution for z, since it depends on the
specific properties of the single particle source via F (z). By
inserting the saddle point solutions back into S we then obtain
the generating function, G(χ, θ) = S(µ∗

p, T
∗
p , λ

∗, ξ∗), as

G(χ, θ) = N

[
d[zF (z)]

dz
+ σ(z + iχ)

]
(15)

recalling that N = t0/T .
From the relation in Eq. (4) we obtain the lowest order

cumulants of the joint probability distribution. The first order
derivatives lead to the temperature and chemical potential
average values,

µ̄p = σh̄ω, T̄p =

√
1

g0l0T
[2〈ε〉 − σh̄ω], (16)

where g0 = e2/h is the (single spin) conductance quantum
and l0 = (πkB/e)

2/3 the Lorentz number. We stress that µ̄p
and T̄p depend only on the source properties ω and 〈ε〉 and
fundamental constants [5]. Moreover, we note that 〈ε〉 > h̄ω/2
follows along the lines of Ref. [37].

From the second order derivatives we obtain the temperature
and chemical potential fluctuations

〈(δµp)2〉 = hkbT̄p, 〈δµpδTp〉 = 0 (17)

〈(δTp)2〉 =
1

g0l0

[
kbT̄p +

1

2

(∆ε)2

〈ε〉 − σh̄ω/2

]
.

Several interesting conclusions can be drawn from this result:
• The potential fluctuations 〈(δµp)2〉 are proportional to the
average temperature T̄p. This fluctuation-dissipation type rela-
tion forms the basis for noise thermometry, i.e. to determine
the system temperature from noise measurements [38].
• In contrast, the temperature fluctuations 〈(δTp)2〉 are a sum

of two physically distinct terms. The first term, proportional
to T̄p, results from the finite temperature of the probe. It
is a classical contribution, i.e. it would be present even if
the injected particles had a well defined energy, ∆ε = 0.
The second term is proportional to (∆ε)2. It is a quantum
contribution, i.e. a direct result of the uncertainty of the energy
of the injected particle.
• There are no correlation between the voltage and the
temperature fluctuations. However, higher order cumulants of
the fluctuations are typically non-zero.
Importantly, Eqs. (16-17) are in agreement with the first and
second cumulants of temperature and potential fluctuations
obtained within a Boltzmann-Langevin approach in Ref. [30].

For the higher order fluctuations an important relation can
be derived, namely that all the even chemical potential cumu-
lants can be expressed in terms of the temperature cumulants
as

〈(δµp)2n〉 = (2n− 1)!!(kbh)n〈(δTp)n〉. (18)

Of particular importance for an experimental realization of
our proposal, the lowest order potential fluctuation cumu-
lant that provides direct information about the quantum heat
fluctuations of the source is 〈(δµp)4〉, since it is directly
proportional to 〈(δTp)2〉. Formally, the relation in Eq. (18) is a
consequence of the counting fields in the cumulant generating
function entering only via g(χ, θ), Eqs. (13). Moreover, the
factorial growth of the cumulants with order n is in agreement
with general predictions in Ref. [39].

V. PROBABILITY DISTRIBUTION, STATIONARY PHASE
APPROXIMATION

During the measurement time t0 a large number of particles
are pumped, N � 1. Since N enters as a prefactor in the
cumulant generating function G(χ, θ) in Eq. (15), the integral
in the probability distribution Pt0(µ, T ) can be evaluated in
the saddle point, or stationary phase, approximation. The prob-
ability distribution is then obtained with exponential accuracy.
The saddle point equations for θ and χ, similar to Eqs. (10),
are given by

−iT +
∂G(χ, θ)

∂θ
= 0, −iµ+

∂G(χ, θ)

∂χ
= 0. (19)

Making use of that in F (z), determining the first term in
G(χ, θ), the counting fields χ, θ enter only via g(χ, θ), and
denoting the saddle point solutions χ∗, θ∗, we directly find

χ∗ = i [σN − µ] /T. (20)

Further, substituting Eqs. (13-14) into Eq. (19) we find

dF

dz

∣∣∣∣
z=z∗

= −π
2

6

(
Tq∗

N

)2

− σ

2
, (21)

where we introduced

z∗ = N
q∗ − 1

q∗T
, q∗ =

√
1− i6θ

∗

π2
. (22)

Eq. (21) constitutes an implicit relation for θ∗. Now, inserting
the saddle point solutions χ∗ and θ∗ back into the exponent



of the joint probability distribution in Eq. (3) we arrive, after
some algebra, at the logarithmic probability

lnPt0(µ, T ) = −iTθ∗ +G(0, θ∗)− (µ− µ̄)2/2T (23)

where µ̄ = t0µ̄p/h = σN is the average chemical potential.
Since θ∗ is a function of temperature T only, Eq. (23)
shows that the potential µ displays Gaussian fluctuations, of
width

√
T , around the average µ̄ for any given temperature

T . Importantly, this holds for an arbitrary single particle
source. As a consequence, the marginal potential distribution
Pt0(µ) =

∫
dTPt0(µ, T ) is symmetric around µ̄, i.e. odd

cumulants are zero. It should however be noted that Pt0(µ) is
not Gaussian, it is a weighted sum of Gaussian distributions
with different widths.

The marginal temperature distribution Pt0(T ) =∫
dµPt0(µ, T ) is given by

Pt0(T ) = −iTθ∗ +G(0, θ∗). (24)

As is clear from Eq. (23), the marginal temperature distribution
contains the two non-trivial, source dependent terms in the
logarithmic joint probability distribution. Accordingly, it is a
function of θ∗ only, defined from Eq. (21). It is therefore natu-
ral to focus the investigations on Pt0(T ). As a basis for further
investigations, we discuss here the simplest possible case, a
source where the energy of the particles is not fluctuating, i.e.
p(ε) = δ(ε− 〈ε〉). This classical case corresponds to a source
generating function F (z) = z〈ε〉/h̄ω. From Eqs. (21) and (24)
we then, after some algebra, arrive at the simple result

lnPt0(T ) = −π
2

6
T

(
1− T̄

T

)2

(25)

where we defined, similarly to µ̄, the average temperature T̄ =
t0kbT̄p/h. We see from Eq. (25) that for small fluctuations
T − T̄ � T̄ the distribution is Gaussian while for T � T̄ the
probability is suppressed Pt0(T ) ∝ e−π2T̄ 2/(6T ), guaranteeing
Pt0(T )→ 0 for T → 0. The probability for large fluctuations
T � T̄ is suppressed as Pt0(T ) ∝ e−Tπ

2/6. Some examples
of probability distributions which deviate from this classical
result were presented in our paper [30].

In conclusion, we have presented a detailed derivation of
the full statistical distribution of potential and temperature
fluctuations induced in a hot electron probe coupled to a
single particle source in the quantum Hall regime. This
derivation extends on the results in our earlier work [30] and
provides additional insight into the properties and nature of
the fluctuations.
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[12] A. Mahé, F. D. Parmentier, E. Bocquillon, J.-M. Berroir, D. C. Glattli,
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[13] M. Albert, C. Flindt, and M. Büttiker, Phys. Rev. Lett. 107, 086805
(2011).

[14] F. Battista and P. Samuelsson, Phys. Rev. B 83, 125324 (2011); Phys.
Rev. B 85, 075428 (2012).

[15] F. D. Parmentier, E. Bocquillon, J.-M. Berroir, D. C. Glattli, B. Plaçais,
G. Fève, M. Albert, C. Flindt, and M. Büttiker, Phys. Rev. B 85, 165438
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Rev. Lett. 101, 166802 (2008); J. Splettstoesser, S. Ol’khovskaya, M.
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