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Single-particle interference versus two-particle collisions
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Abstract. - We consider a mesoscopic circuit in the quantum Hall effect regime comprising two
synchronized single-particle sources emitting particles into a Mach-Zehnder interferometer. While
particles from one source can possibly interfere at the interferometer output, particles from the
second source are injected directly into one of the interferometer’s arms and are used to create
tunable and coherent suppression of interference. If particles from the two different sources collide
at the interferometer output the magnetic-flux dependence of the charge transferred to one of the
output contacts is suppressed. In contrast the interference pattern in the current at a fixed time
is preserved and the impact of the second source manifests itself in a time-dependent phase-shift.

Introduction. – The particle-wave dualism lies in the
heart of Quantum Mechanics. In mesoscopics the discrete-
ness of the charge leads, e.g., to the well known Coulomb
blockade effect, observable in a current passing through a
small metallic island or a quantum dot [1]. The wave-like
behavior of an electron is manifested in the single-particle
interference leading to Aharonov-Bohm (AB) oscillations
of the current through a ring [2]. However, in these exam-
ples particle- and wave-like behavior appear in different
experimental set-ups. The fact that electrons can show -
at least partial - interference, even in the strong Coulomb
blockade regime (see e.g. ref. [4] and references therein)
was shown in a quantum dot embedded in an Aharonov-
Bohm ring [3]. Our aim is different: we show that the use
of the recently realized tunable single-electron sources [5],
supplying particles periodically one by one, allows to ob-
serve both aspects of the quantum nature of electrons
within the same electronic circuit. This is revealed when
the magnetic-flux dependence of two different quantities -
the transferred charge and the time-resolved current - are
measured within the same interferometer setup into which
single particles are injected. Alternative single-electron
sources, likewise working in the gigahertz regime, were
experimentally realized, as shown in refs. [6–9].

The proposed Mach-Zehnder interferometer (MZI) [10],
fed by two single-particle sources, is shown in fig. 1. The
sources are periodically driven and we assume the regime

1 2

3

L R
A

B

Fig. 1: (color online). Setup of the MZI with magnetic flux
Φ in the integer quantum Hall regime with unbiased reservoirs
1, 2 and 3. Emitters A and B are driven by gate potentials,
which are periodic in time and inject single particles into edge
states (full, blue lines). QPCs L and R figure as beam splitters.

when each source A and B is emitting one electron at a
certain time during one half of the driving cycle and one
hole during the other half. On one hand, we propose to
consider the time-resolved current I2(t) measured at the
drain contact 2. On the other hand, we contrast the time-
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resolved current with the charge Q2, arriving at contact 2,
in one half cycle, which counts electrons arriving from the
two sources at contact 2. The time-resolved current, I2(t),
and the charge Q2 - both expectation values, meant to be
measured over many cycles - show a qualitatively different
behavior as a function of the magnetic flux penetrating the
interferometer.
If only source A is working, charge and current show

the AB effect [11]. In this Letter, the effect of the source
B on the interference pattern is of importance, where B is
driven independently from source A but can be synchro-
nized with respect to it. The current I2(t) always shows
the AB effect, hence indicating the wave-like behavior of
electrons. In contrast, whether the detected charge Q2

shows the AB effect or not, depends on the occurrence
of collisions between particles, emitted from A and B, at
the interferometer’s output, namely at the quantum point
contact R (QPC R), see fig. 1. The ability to collide em-
phasizes the particle nature of electrons. The time of emis-
sion from the two sources is tunable and one can therefore
force electrons to either collide at the QPC R or to pass
it independently. If the particles collide at the QPC R,
they become Fermi-correlated and necessarily go to differ-
ent contacts [12] independently of the magnetic flux. If
particles from A and B do not collide, then Q2 shows the
AB effect due to particles stemming from source A, which
remain sensitive to the magnetic flux.
We stress that no dephasing processes [13, 14] are in-

volved in the interference suppression revealed here. The
mechanism is entirely coherent, since the time-resolved
current I2(t) depends on the AB flux, demonstrating the
absence of dephasing in the system.
It is widely accepted that noise [15] is the minimal or-

der current correlator, demonstrating two-particle physics
[16–24] in non-interacting mesoscopic systems. The same
is true for analogous setups in optics, see e.g. Refs [25,26],
where two-particle collisions (of photons) are visible in the
fourth-order interference only.
Our results show that the combination of interference

effects and time-dependent particle sources allows to re-
veal two-particle physics already with a measurement of
the charge, which - for the non-interacting electrons we
are looking at - is essentially a single-particle quantity.1

Model. – We study an MZI, realized in a two-
dimensional electron gas in a high magnetic field - the
integer quantum Hall effect regime [27] - where transport
takes place along chiral edge states [28, 29]. The setup is
shown in fig. 1. The reservoirs 1, 2, and 3 are not biased.
Instead, single particles, electrons and holes, are injected
into the device from two single-particle emitters A and B,
depicted as circular edge states in the figure. Particles in-
jected from source A are reflected or transmitted at QPC
L and can then travel along an upper arm with length
Lu or a lower arm with length Ld. After the reflection or

1Such a measurement could be easier compared to a noise mea-

surement.

transmission at QPC R they contribute to the current at
contacts 2 or 3. The MZI is penetrated by a magnetic flux
Φ. As discussed in detail in ref. [11], coincidence at an
MZI output of wave packets which traveled along differ-
ent paths leads to an interference pattern in the current
in contact 2 or 3. Particles from source B are emitted
directly into the lower arm of the interferometer and can
therefore not lead to any magnetic flux dependence in the
current. Without restriction of generality, we place cavity
B at the center of the lower arm.

The single-particle sources [5, 30] A and B are small
confined regions with discrete spectra weakly coupled to
the conductor by QPCs, indicated by filled triangles in
fig. 1. Uniform potentials are applied by top gates and
modulated periodically in time with the same period T =
2π/Ω for both sources. We choose the amplitude of the
modulations to be large, such that one level is driven back
and forth through the Fermi level of the leads µ. Then,
well-separated electron and hole pulses are emitted from
the source during each period [30]. The parameters of each
potential can be varied to tune the difference of times when
particles are emitted.

We are interested in the regime of adiabatic driving,
meaning that the time a particle spends in the cavity
is small compared to the time, during which the quan-
tum level of the source crosses the Fermi level [31]. This
results in the emission of a Lorentzian-shaped current
pulse [12]. For the calculation of the adiabatic current
emitted by the source α = A,B at zero temperature,
Iα(t) = −ie/(2π)Sα(t)∂S

∗
α(t)/∂t, [32] we need the instan-

taneous scattering amplitude calculated at the Fermi en-
ergy µ in the vicinity of the emission times (0 < t ≤
T ) [12],

Sα(t) =
±(t− t±α )− iΓα

±(t− t±α ) + iΓα

. (1)

Here Γα is the half width and t±α is the emission time of an
electron (−) and a hole (+) pulse. Their explicit depen-
dence on the parameters of the source α = A,B and its
driving potential are given in ref. [31]. Alternatively, single
electrons can be emitted by means of Lorentzian voltage
pulses [33] applied to the reservoir 1. This is described via
a similar scattering amplitude.

While the modulation of the source alone is adiabatic,
the time scales for the traversal of the MZI can be of the
order of the period of the modulation T . The time a par-
ticle needs for the traversal of the upper arm, τu, and
the lower arm, τd, is directly related to the arm lengths,
τℓ = Lℓ/vD for ℓ = u, d, where vD is the drift velocity of
electrons along the edge state [34, 35]. We relate the in-
terferometer imbalance to the difference of traversal times
δτ = τu − τd.

Results. – To find the current through the MZI, say
at contact 2, the full scattering matrix of the interferom-
eter setup including the driven single-particle sources has
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to be constructed [23]. With eq. (1) this leads to

I2(t) = I
(0)
2 (t) + I

(int)
2 (t) , (2a)

consisting of a classical contribution and an interference
part, which depends on the magnetic flux. The classical
contribution is a sum of current pulses,

I
(0)
2 (t) = IA(t− τu)RLRR + IA(t− τd)TLTR

+IB(t−
τd
2
)TR . (2b)

Pulses emitted from source A arrive in a time interval
around t±A + τu, respectvely t±A + τd, when traveling along
the upper (respectively the lower) arm and pulses emitted
from source B arrive in an interval around t±B + τd/2. The
interference part is given by

I
(int)
2 (t) =

eγ

π (τd − τu)
Im

{

S∗
B

(

t− τd
2

)

eiφ

× [SA(t− τu)S
∗
A(t− τd)− 1]

}

, (2c)

where we defined γ =
√
RLRRTLTR with Rβ(Tβ) being

the reflection(transmission) coefficient of the QPC β, with
β = L,R. Furthermore the phase is φ = 2πΦ/Φ0+kµvDδτ ,
with the magnetic flux quantum Φ0 = h/e and kµ is the
wave number at the Fermi energy µ. We consider the
regime where current pulses of electrons and holes from
the same source are well separated, |t+α − t−α | ≫ Γα.
Let us first switch off the emitter B, resulting in SB(t) ≡

1 in eq. (2c). If the interferometer imbalance δτ is much
larger than the pulse width ΓA, defining a first order co-
herence length [11, 36], then the interference term is sup-
pressed and the classical part, the first line of eq. (2b), is
the only contribution. We are now interested in the case
δτ ≪ ΓA such that interference is present. We study the
effect of emitter B on the interference pattern of the signal
from emitter A passing through the interferometer.

Effect of source B on the current. – Switching
on emitter B, we obtain an additional contribution to the
classical part of the current close to t = t±B + τd/2, see
eq. (2b). Concerning the interference part of the current,
we see from eqs. (1) and (2c) that the effect of emitter B is
the addition of a phase. Importantly, this phase depends
on time in the vicinity of a particle emission from B. This
is shown in fig. 2, where we plot the total current at a fixed
measuring time tu := t−A+τu as a function of the magnetic
flux Φ for δτ = 0 for different values of ∆tu := t−A +
τu − (t−B + τd/2). For ∆tu ≫ ΓA, the signal from emitter
B is negligible at time tu and we find a current solely
due to the source A, oscillating between e/ (πΓA) and 0
as a function of the magnetic flux. Decreasing the time-
difference ∆tu leads to an increase of the average value of
I2(tu) due to the current stemming from B. A phase shift,
depending strongly on the value of ∆tu, is introduced,
without influencing the amplitude of the oscillations. This
phase shift can take all values between 0 and 2π.

Effect of source B on the charge. – We consider
here the regime, where each source emits one electron dur-
ing the first half cycle and one hole during the second,
i.e., integrating Iα(t) over the first half cycle, we obtain
the charge Qα = e. We now want to study the charge Q2

which is detected at contact 2 by integrating the current
I2(t) over the half cycle, in which electron pulses, emitted
from both A and B, may be detected at contact 2. Impor-
tantly, we integrate over a time interval much larger than
the width of the current pulses, Γα. The measured charge
is

Q2 =

∫ tu+T /4

tu−T /4

dtI2(t) = Q
(0)
2 +Q

(int)
2 (3a)

with the classical (0) and the interference (int) part

Q
(0)
2 = e(RLRR + TLTR + TR) , (3b)

Q
(int)
2 = 2eγL(ΓA; δτ) [a cosφ+ b sinφ] . (3c)

In this equation, we defined the Lorentzian function
L(Γ;X) = 4Γ2/(4Γ2 + X2) and the coefficients a and b
are given by

a = −1 +
ΓB

Γ
L (Γ;∆tu)

[

1− ∆tuδτ

4ΓAΓ

]

,

b =
δτ

2ΓA

[

1− ΓB

Γ
L (Γ;∆tu)

]

− ΓB∆tu
2Γ2

L (Γ;∆tu) .

The quantity Γ = (ΓA + ΓB)/2 is a mean half width.
To characterize how the detected charge Q2 oscillates
in magnetic flux Φ, we introduce a visibility ν =
(

Qmax
2 −Qmin

2

)

/
(

Qmax
2 +Qmin

2

)

, the ratio of the ampli-
tude of oscillations to the mean value around which the
oscillation takes place.

Fig. 2: (color online). Current I2, eq. (2a), at a fixed time
tu = t−

A
+ τu as a function of the magnetic flux Φ. Results are

shown for ∆tu = 0 (red, dotted line), ∆tu = ΓA (blue, dashed
line), ∆tu ≫ ΓA (black, full line). Furthermore we set δτ = 0
and ΓA = ΓB; QPCs are symmetric RL = RR = 0.5.
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In general, if electrons emitted from A and B do not

meet each other at QPC R, the visibility is given by

ν0 =
Q

(0,A)
2

Q
(0)
2

νA(δτ) . (5)

Here νA(δτ) = 2eγ
√

L(ΓA; δτ)/Q
(0,A)
2 is the visibility ob-

tained for source A only, depending on the interferome-

ter imbalance. The first factor, with Q
(0,A)
2 = e(RLRR +

TLTR), is simply due to an increase of the classical charge
contribution, when B is switched on and hence the average

charge, Q
(0)
2 , see eq. (3b), is increased.

Electron-electron collisions. – However, a collision
at QPC R of an electron emitted by A, which traversed
the upper arm of the MZI, with an electron emitted by B,
suppresses the oscillations, even when the interferometer
imbalance is zero. Such a collision leads to a decrease of
the visibility, ν = ν0DB(∆tu), by a damping factor

DB =

√

(

1− ΓB

Γ
L(Γ;∆tu)

)2

+

(

ΓB∆tu
2Γ2

L(Γ;∆tu)

)2

,

(6)
which reduces the oscillation amplitude with increasing
overlap, ∆tu ≪ Γ. This time difference, ∆tu, character-
izes the degree of overlap at the QPC R between a cur-
rent pulse from A traveling along the upper arm and a
current pulse emitted from B. If the current pulses over-
lap completely, i.e. the collision is perfect, ΓA = ΓB and
∆tu = 0, the oscillations vanish, since DB = 0, and hence
the visibility is zero. The factor L1/2(ΓA; δτ) in νA de-
scribes the suppression of interference at δτ ≫ ΓA due
to a decreasing overlap of wave packets injected from A
traversing different interferometer arms [11]. These two ef-
fects causing an interference suppression enter the visibil-
ity as multiplicative factors and are therefore statistically
independent. We emphasize, that the increase of the in-
terferometer imbalance, δτ ≫ ΓA would also suppress os-
cillations of the time-dependent current I2(tu), discussed
before for δτ = 0. However, the important result is that

the collisions, suppressing Q
(int)
2 , do not suppress the cur-

rent oscillations at all.
The detected charge Q2 as a function of both the mag-

netic flux Φ and the time difference ∆tu is shown in fig. 3.
The AB oscillations are suppressed if the collision condi-
tion, ∆tu = 0, is satisfied. The mechanism destroying the
Aharonov-Bohm effect in the detected charge, Q2, can be
understood based on the particle-nature of the electron
and it is related to which-path detection [37, 38]. The in-
formation on the path taken by the particle emitted from
source A can be extracted from the two-particle state ar-
riving at the detectors. Depending on the path taken by
an electron incident from source A, two different outgo-
ing two-particle states are possible. They differ from each
other by whether the number of particles arriving at the
detectors fluctuates or not. Consider an electron, emitted
by the source A, which is reflected at the QPC L and which

traverses the interferometer along the upper arm. This oc-
curs with probability RL. Under the condition ∆tu = 0
it collides with an electron, emitted by the source B, at
QPC R. Due to the Pauli principle, these two electrons
can not be scattered into the same interferometer output.
Therefore, the two particles arrive necessarily at differ-
ent detectors [12] and no fluctuations in the number of
particles at the detectors are present in this state. The in-
formation on the origin of the two particles is lost in this
scattering process. Otherwise, if an electron from A takes
the lower arm, happening with probability TL, then both
electrons pass the QPC R independently. In this case the
number of electrons arriving at each detector fluctuates.
Note that, if ∆tu ≫ Γ, then electrons from A and B are
scattered at the QPC R independently of the arm through
which the electron from A propagates. As a consequence
the number of particles arriving at the detector fluctuates
in both cases, meaning that no which-path information is
acquired and, therefore, the single-particle interference is
not suppressed.

Electron-hole annihilations. – Finally, we consider
the case where the gate voltages at the sources are mod-
ulated such that an electron from source A arrives at the
interferometer outputs in the same time interval as a hole
emitted from source B.

Again, the time-resolved current experiences a time-
dependent phase shift in the AB oscillations, while its av-
erage value is here lowered to 0 due to an opposite sign in
the contribution caused by the hole. We stress that also
in this regime, no suppression of the interference in the

Fig. 3: (color online). Detected charge Q2, eq. (3a), as a
function of the time difference ∆tu and the magnetic flux Φ.
The interference contribution is fully suppressed if the collision
condition ∆tu = 0 is fulfilled. Other parameters are the same
as in fig. 2.
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current occurs.

When integrating over the half cycle, in which electron
and hole pass the QPC R, we find for the visibility of
the charge the same damping factor as given by eq. (6),
with ∆tu substituted by ∆td = t−A + τd − (t+B + τd/2).
The interference part of the detected charge is therefore
maximally suppressed if ∆td = 0, which is again due to
which-path detection: If the electron from source A trav-
els along the lower arm, it annihilates with a hole pulse
from source B and no signal can be detected. In contrast,
if an electron from source A travels along the upper arm,
then this electron and the hole emitted by the source B
are scattered at QPC R independently. Therefore, in the
latter case the electrons and holes will arrive at the detec-
tor and their number will fluctuate. This difference in the
outgoing two-particle states leads to a suppression of the
magnetic-flux dependence.

Conclusion. – We calculated the time-resolved cur-
rent and the charge per half cycle at the output of a
Mach-Zehnder interferometer due to injection from single-
particle sources. We showed that these quantities differ
fundamentally with respect to their sensitivity to the mag-
netic flux. This allows for an interpretation relying either
on the wave-like or on the particle-like nature of the emit-
ted electrons within the same setup. The current oscillates
in magnetic flux witnessing coherence. In contrast, the os-
cillations in the transferred charge can be suppressed via
electron collisions or electron-hole annihilations. This is
the signature of a two-particle effect becoming visible in a
single-particle quantity, which is an important finding for
the coherent control of few-electron quantum states.
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Phys. Rev. Lett., 103 (2009) 076804.
[24] Chirolli L., Giovannetti V., Fazio R. and Scarani

V., arXiv:1101.4767 (unpublished).
[25] Hong C. K., Ou Z.Y., and Mandel L., Phys. Rev. Lett.,

59 (1987) 2044.
[26] Pan J.-W., Chen Z.-B., Zukowski M., Weinfurter

H., and Zeilinger A., arXiv:0805.2853 (unpublished).
[27] von Klitzing K., Dorda G. and Pepper M., Phys.

Rev. Lett., 45 (1980) 494.
[28] Halperin B. J., Phys. Rev. B, 25 (1982) 2185.
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