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The e!ect of interelectron interactions on thermal #uctuations
of a persistent current in a single one-dimensional ballistic ring
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Abstract

The #uctuations of a persistent current in a one-dimensional system of correlated spinless electrons at "nite
temperatures are considered. The magnitude of such #uctuations is found to depend on the magnetic #ux, the
temperature and the coupling to a reservoir. � 2001 Elsevier Science B.V. All rights reserved.
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At low temperatures the phase coherence length
¸

(
(¹) of an electron wave function is large com-

pared to the size ¸ of small samples (mesoscopic
samples) [1] that leads to the existence of a thermo-
dynamic equilibrium current in normal-metal rings
pierced by a magnetic #ux � [2}5]. This is a mani-
festation of the Aharonov}Bohm e!ect [6] in
solids. Such a current was predicted for the ballistic
[7] as well as for the disordered [8] rings and it is
an additional thermodynamic quantity (like the
temperature ¹, the chemical potential �, etc.) which
characterizes the ground state of two-connected
mesoscopic samples.

Like any thermodynamic quantity [9] the per-
sistent current #uctuates when the ring is coupled
to a reservoir. In the present paper, we consider
persistent current #uctuations (PCFs) due to

a non-zero temperature of the reservoir. They are
#uctuations in a single ring at "xed (given) temper-
ature and magnetic #ux. The interaction with the
reservoir broadens the quantum levels in a ring. We
assume that the coupling to the reservoir is weak
and the broadening � of the energy levels is small
compared with the level spacing �

�
(near the Fermi

level �): �;�
�
. Such a broadening is a conse-

quence of the energy exchange between the ring
and the reservoir that is necessary for establishing
thermodynamic equilibrium in the ring at a given
temperature ¹. The inelastic time �

��
&�/� is

a characteristic time scale for such a process (be-
cause the inelastic processes in the ring are absent
¸

(
<¸) [10}16]. Thus, when we observe a ring

during a time �<�
��

the current j(t) in the ring
#uctuates as a function of time. Of course, within
the time period � all the signi"cant parameters (e.g.,
the temperature, the magnetic #ux, etc.) must be
stable. Accounting for this, we further put �PR
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and �"0. Note that in an experiment such
#uctuations may be observed as low-frequency
#uctuations of the current in the ring.

The persistent current #uctuates in the canonical
case (CC) (when the ring exchanges only energy
with a reservoir, and the number N

�
of electrons in

the ring is constant) as well as in the grand canoni-
cal case (GCC) (when in addition the exchange
(tunneling) of particles is allowed and there is the
common chemical potential �). However, at low
temperatures, the physical reasons for such #uctu-
ations are quite di!erent for both cases. In the CC,
the current #uctuations are due to transitions of the
electron system between closely spaced many-elec-
tron energy levels (�E)¹). Thus, at low temper-
atures the #uctuations are signi"cant for such
values of � which correspond to a degenerate
ground state of the electron system in the ring.
Whereas in the GCC the additional origin of cur-
rent #uctuations arises from #uctuations of the
number of electrons in the ring. If the ring is
coupled to a reservoir (or another system which can
emit and absorb electrons) the persistent current
#uctuates even at ¹"0 near transfer charge reson-
ances [17,18]. As we will show below, the di!erence
between PCFs in the CC and in the GCC persists
up to the temperatures ¹&¹H, where
¹H"�

�
/(2��) is the crossover temperature for the

persistent current problem (at ¹'¹H the persist-
ent current exponentially decreases) [19,20]. Note
that the dependence of PCFs on the statistical
ensemble is a particular example of the signi"cant
role of the statistical ensemble in mesoscopics
[19,21}28].

In the present paper, we study the change of
thermal PCFs when the system continuously trans-
fers from the CC to the GCC. This is possible if we
take into account the Coulomb energy E

�
asso-

ciated with the small capacitance C between the
ring and the reservoir [29]. At low temperatures
¹(E

�
"e�/(2C), the charge transfer between

parts of the system is suppressed (the Coulomb
blockade e!ect [30}32]) that e!ectively isolates the
ring from the reservoir and it a!ects the persistent
current [17,18,29,33}36]. At the same time, at some
values of the potential di!erence<

�
"<

��
between

the ring and the reservoir the charging energy is
degenerate and the Coulomb blockade is lifted

[37]. So, within such a model by varying <
�

or
E
�

we can obtain either CC (E
�
<¹, <

�
O<

��
) or

GCC (E
�
;¹ or <

�
"<

��
).

We consider a one-dimensional ballistic ring of
length ¸. We assume that the system of interacting
spinless electrons in the ring may be described
within the framework of a Luttinger liquid model
[38]. This model allows to obtain an analytical
expression for the low-energy spectrum of a many-
electron system accounting exactly for a charging
energy E

�
.

The Lagrangian ¸
��

of a Luttinger liquid in
bosonic form is [39]

¸
��

"

�v

2g�
1

v��
R�
Rt�

�
!�
R�
Rx�

�

�, (1)

where v, g are Haldane's parameters [38] which
depend on the inter-electron interactions in the
ring. In the continuous limit, they satisfy vg"v

�
,

where v
�
"���

�
/mH is the Fermi velocity (�

�
is the

mean electron density in the ground state; mH is the
e!ective electron mass). For non-interacting elec-
trons g"1.

The spatial derivative of a bosonic "eld � deter-
mines the deviation of the electron density from
that in the ground state �(x, t)"�

�
#�����R�/Rx.

Thus, we can write down the Lagrangian ¸
��

ac-
counting for particle exchange with the reservoir as
follows [35]:

¸
��

"!

E
�

¸ ��
�

�

dx�(x, t)!N(<
�
)�

�
#��(x, t), (2)

where N(<
�
)"C<

�
/e.

The Aharonov}Bohm interaction is described by
the Lagrangian ¸

�	
[39]

¸
�	

"

2�
¸

����
R�
Rt�

k
�

2
#

�

�
�
�, (3)

where �
�
"h/e is the magnetic #ux quantum; k

�
is

the topological number dependent on the parity of
the number N

�
of electrons in the ring.

In the ballistic case, the dependence of the parti-
tion function Z on the magnetic #ux � is deter-
mined only by the zero modes [39] which are
completely decoupled from the non-zero ones.
In such a case, the free energy for the model
Eqs. (1)}(3) may be expressed through the Jacobi
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theta-functions [35,36]. Using the Poisson summa-
tion formula, we can easily obtain the spectrum
E
�
(�) of the system of interacting ballistic electrons

as follows:
(a) the canonical case:

Z




(�)"
�
�

����

e��� ��,

E
�
(�)"�

��k#

�
�

�

#

N
�
!1

2
mod 1�

�
. (4)

(b) the grand canonical case:

Z




(�)"�
��

e��� ��
�
�

����

e���� ��,

E
��

(�)"l�#�
�
(l/2#�

�
)�

#�
��k#

�

�
�

#

N
�
!1

2
mod 1�

�
. (5)

Here �
�
"2��v

�
/¸; �

�
"�

�
/g�#4E

�
; l"N

�
!

N
�
; �

�
"(4(e<

�
!�)/�

�
)mod 1. Note, when we

perform calculations in the CC we omit ¸
��

Eq. (2).
Using Eqs. (4) and (5), we can obtain the Gibbs

distribution function [9] and calculate the persist-
ent current and its #uctuations. As was pointed out
in Ref. [17,18], the #uctuations of the persistent
current are large and must be characterized by their
entire distribution. To this end, we calculate the
average value of the powers of both the current
I	 and the deviation �I	 of the current from its
average value

I	


"Z��



�
�

j	�e������� ��, (6)

�I	


"Z��



�
�

( j�!I)	 e������� ��. (7)

Here, j�"!RE�/R� is the current carried by the
many-electron level E� , where � numbers the en-
ergy levels and is equal to k in the CC and to the set
of �l, k	 in the GCC; 
"0(1) for x"CC
(x"GCC).

The above expressions have the following mean-
ing. Under in#uence of the reservoir, the system
passes from the quantum state, say E�� to another
one with an energy E�� . (Note that such a transition
is accompanied by a change of the total momentum
of the system.) The system stays in such a quantum

state during a time &�
��

when the current j in the
ring is j"j�� . So, we can consider the current as
a function of time j"j(t) if the period of observa-
tion � is large compared with �

��
(in an experiment,

to cancel out the contribution from high-frequency
quantum oscillations, the current j must be aver-
aged over a time period �/�

�
;�t;�

��
). Accord-

ing to the basic principles of statistical physics [9],
averaging over the time � j(t)� is equivalent to
averaging over the Gibbs distribution that was
performed in the above expressions. Note that
averaging over the distribution at a given temper-
ature is possible if ¹<�/�

��
[9] that restricts our

consideration to ultralow temperatures. For high
temperatures, the region of validity of our consid-
eration is limited by the condition ¸

(
(¹)<¸.

It is easy to check that the average current
� j(t)�"I (persistent current) is equal to that ob-
tained in Refs. [35,39]. Note that in the CC the
#uctuations of the persistent current do not depend
on the strength of interelectron interactions (the
parameter g) like the persistent current itself
[39,40]. But in the GCC the #uctuations at
0(¹(¹H depend on g (and on the charging
energy E

�
) except for the particular values of <

�
(correspondent to �

�
(<

�
)"$1/4) at which the

current #uctuations coincide with the ones in
a free-electron (g"1, E

�
"0) ring coupled to a res-

ervoir (at the same value of the parameter �
�
).

The numerical calculations show that the aver-
aged odd powers of current I�	��"� j�	��� van-
ish with increasing temperature. However, the
higher powers of current persist up to higher tem-
peratures (see Fig. 1). In contrast, the even powers
of the current increase with temperature and at

¹<¹H they are I�	"�(n#�
�
)��2	(I�)	 (we note

that I�	"� j�	(t)�O(I�)	"� j�(t)�	). Thus, at high
temperatures the current j in a ring #uctuates near
zero. Such #uctuations do not depend on the mag-
netic #ux and interelectron interactions, and they
are described by the Gauss distribution

=( j)"
1

�2�I�
exp�!

j�

2I��, ¹<¹H (8)

with the mean square current

I�"2I�
�
¹/�

�
, (9)
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Fig. 1. Dependence of the averaged powers of a current in units
of I	

�
on temperature at �"�

�
/4. The number N

�
of electrons

in a ring is even.

Fig. 2. Dependence of the mean square #uctuations �I� of
a current in units of I�

�
on temperature at even values of

N
�
"const (1) and at �"const (2) for �"0 and �

�
/2. The

parameters are �
�
"0; g"1; E

�
"0.

Fig. 3. Dependence of the mean square #uctuations �I� on the

magnetic #ux for ��
�
/�

�
"1(1); 0.3(2); 0.2(3) and for "xed even

values of N
�
(4). The parameters are ¹"¹H/2; �

�
"0.24.

where I
�
"ev

�
/¸ is the persistent-current ampli-

tude at ¹"0. We emphasize that the existence of
such thermal #uctuations is essentially a me-
soscopic e!ect. Though these #uctuations grow
with temperature, they vanish in the macroscopic

limit as �	�I�	&¸���� (at a "xed particle density
�
�
). Note that the averaged current (at ¹(¹H)

scales as I&¸��. In addition, these #uctuations
are non-dissipative and they should not be confus-
ed with the ordinary thermal #uctuations of a cur-
rent (Nyquist noise) which are dissipative by nature
and exist in the macroscopic limit.

At low temperatures (¹(¹H), the current #uc-
tuations are more complicated. They depend on the
magnetic #ux and are di!erent in the canonical and
grand canonical cases. Below we consider the mean
square #uctuations of a current (i.e., �I�). After
some straightforward manipulations, we obtain

�I�"¹�
RI
R�#�, (10)

where "Z��



��(R�E�/R��) e������� ��. From the
above expression it immediately follows that the
mean square #uctuations depend on the statistical
case under consideration because the persistent
current I depends on the regime of coupling to the
reservoir (N

�
"const or �"const) [19,35,39]. For

the spectrum Eqs. (4) and (5) we have "2�
�
/��

�
.

At ¹<¹H the persistent current vanishes and from
Eq. (10) we obtain Eq. (9). Note that for the free-
electron gas model (g"1; E

�
"0) in the regimes

�"const Eq. (10) leads to �I�"I�
�
�N�, where �N�

is the mean square #uctuation of the number of
electrons in the ring. The dependence �I�(¹) is
depicted in Fig. 2 in both the regimes N

�
"const(1)

and �"const(2). We see that at ¹(¹H the mean
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Fig. 4. Dependence of the mean square #uctuations �I� on

temperature for "xed even values of N
�
(1) and for ��

�
/�

�
"

0.6(2); 0.7(3); 1(4). The parameters are �"0; �
�
"0.15.

square #uctuations of the current oscillate as
a function of the magnetic #ux with a period of �

�
.

The amplitude of such oscillations is two times
larger in the regime N

�
"const in comparison with

the regime �"const (for non-interacting elec-
trons). Using Eqs. (5), and (7) we may calculate �I�
for interacting electrons. Some results of numerical
calculations are depicted in Figs. 3 and 4. Thus, the
increase of repulsive interactions (g(1) in a ring
and/or a charging energy (E

�
'¹), e!ectively

isolating a ring from a reservoir, strengthen PCFs
in a ring. Note that at points of degeneracy of the
charging energy (�

�
"$1/4), the period of the

dependence �I�(�) halves.
In summary, we have considered the e!ect of

interelectron interactions on thermal #uctuations
in a one-dimensional ballistic ring containing spin-
less electrons. We have shown that the suppression
of particle exchange between the ring and the reser-
voir enhances persistent-current #uctuations at low
temperatures. Also, we predict the existence of high
temperature PCFs which grow with the temper-
ature but vanish in the macroscopic limit as ¸����.
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