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The effect of interelectron interactions on thermal fluctuations
of a persistent current in a single one-dimensional ballistic ring
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Abstract

The fluctuations of a persistent current in a one-dimensional system of correlated spinless electrons at finite
temperatures are considered. The magnitude of such fluctuations is found to depend on the magnetic flux, the
temperature and the coupling to a reservoir. © 2001 Elsevier Science B.V. All rights reserved.
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At low temperatures the phase coherence length
L4(T) of an electron wave function is large com-
pared to the size L of small samples (mesoscopic
samples) [ 1] that leads to the existence of a thermo-
dynamic equilibrium current in normal-metal rings
pierced by a magnetic flux @ [2-5]. This is a mani-
festation of the Aharonov-Bohm effect [6] in
solids. Such a current was predicted for the ballistic
[7] as well as for the disordered [8] rings and it is
an additional thermodynamic quantity (like the
temperature T, the chemical potential u, etc.) which
characterizes the ground state of two-connected
mesoscopic samples.

Like any thermodynamic quantity [9] the per-
sistent current fluctuates when the ring is coupled
to a reservoir. In the present paper, we consider
persistent current fluctuations (PCFs) due to
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a non-zero temperature of the reservoir. They are
fluctuations in a single ring at fixed (given) temper-
ature and magnetic flux. The interaction with the
reservoir broadens the quantum levels in a ring. We
assume that the coupling to the reservoir is weak
and the broadening I" of the energy levels is small
compared with the level spacing Ag (near the Fermi
level u): I' < Ag. Such a broadening is a conse-
quence of the energy exchange between the ring
and the reservoir that is necessary for establishing
thermodynamic equilibrium in the ring at a given
temperature T. The inelastic time t;, ~ h/I" is
a characteristic time scale for such a process (be-
cause the inelastic processes in the ring are absent
L, » L) [10-16]. Thus, when we observe a ring
during a time t > 13, the current j(t) in the ring
fluctuates as a function of time. Of course, within
the time period 7 all the significant parameters (e.g.,
the temperature, the magnetic flux, etc.) must be
stable. Accounting for this, we further put t - oo
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and I'=0. Note that in an experiment such
fluctuations may be observed as low-frequency
fluctuations of the current in the ring.

The persistent current fluctuates in the canonical
case (CC) (when the ring exchanges only energy
with a reservoir, and the number N, of electrons in
the ring is constant) as well as in the grand canoni-
cal case (GCC) (when in addition the exchange
(tunneling) of particles is allowed and there is the
common chemical potential p). However, at low
temperatures, the physical reasons for such fluctu-
ations are quite different for both cases. In the CC,
the current fluctuations are due to transitions of the
electron system between closely spaced many-elec-
tron energy levels (JE < T). Thus, at low temper-
atures the fluctuations are significant for such
values of @ which correspond to a degenerate
ground state of the electron system in the ring.
Whereas in the GCC the additional origin of cur-
rent fluctuations arises from fluctuations of the
number of electrons in the ring. If the ring is
coupled to a reservoir (or another system which can
emit and absorb electrons) the persistent current
fluctuates even at T = 0 near transfer charge reson-
ances [17,18]. As we will show below, the difference
between PCFs in the CC and in the GCC persists
up to the temperatures T ~ T%*  where
T* = Ay/(2n?) is the crossover temperature for the
persistent current problem (at T > T* the persist-
ent current exponentially decreases) [19,20]. Note
that the dependence of PCFs on the statistical
ensemble is a particular example of the significant
role of the statistical ensemble in mesoscopics
[19,21-28].

In the present paper, we study the change of
thermal PCFs when the system continuously trans-
fers from the CC to the GCC. This is possible if we
take into account the Coulomb energy E. asso-
ciated with the small capacitance C between the
ring and the reservoir [29]. At low temperatures
T < E, = ¢*/(2C), the charge transfer between
parts of the system is suppressed (the Coulomb
blockade effect [30-32]) that effectively isolates the
ring from the reservoir and it affects the persistent
current [17,18,29,33-36]. At the same time, at some
values of the potential difference V,, = V', between
the ring and the reservoir the charging energy is
degenerate and the Coulomb blockade is lifted

[37]. So, within such a model by varying V', or
E. we can obtain either CC(E, > T, V, # V) or
GCC(E, < T orV,=Vy).

We consider a one-dimensional ballistic ring of
length L. We assume that the system of interacting
spinless electrons in the ring may be described
within the framework of a Luttinger liquid model
[38]. This model allows to obtain an analytical
expression for the low-energy spectrum of a many-
electron system accounting exactly for a charging
energy E..

The Lagrangian L;; of a Luttinger liquid in
bosonic form is [39]

ho (1 /002 00\ 2
w=ta(s) () "

where v, g are Haldane’s parameters [38] which
depend on the inter-electron interactions in the
ring. In the continuous limit, they satisfy vg = vg,
where v = mhp,/m* is the Fermi velocity (p, is the
mean electron density in the ground state; m* is the
effective electron mass). For non-interacting elec-
trons g = 1.

The spatial derivative of a bosonic field 0 deter-
mines the deviation of the electron density from
that in the ground state p(x,t) = po + n~ }/200/0x.
Thus, we can write down the Lagrangian L., ac-
counting for particle exchange with the reservoir as
follows [35]:

E L 2
Loy = — LC<J dxp(x,t) — N(Vg)> + pp(x,1), (2)
0
where N(V,) = CV,/e.
The Aharonov-Bohm interaction is described by
the Lagrangian L,g [39]

_2h_,,00(k; @
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where @, = h/e is the magnetic flux quantum; k; is
the topological number dependent on the parity of
the number N, of electrons in the ring.

In the ballistic case, the dependence of the parti-
tion function Z on the magnetic flux @ is deter-
mined only by the zero modes [39] which are
completely decoupled from the non-zero ones.
In such a case, the free energy for the model
Eqgs. (1)-(3) may be expressed through the Jacobi
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theta-functions [35,36]. Using the Poisson summa-
tion formula, we can easily obtain the spectrum
E.(®) of the system of interacting ballistic electrons
as follows:

(a) the canonical case:

o0

Zee@) = ) e B

k=—o

® Ny —
P,

1mod 1> 2. 4)

(b) the grand canonical case:

Zgec(®) =Y eNIT Y e BT

N, k=—o
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1

® N, —
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Here Ap = 2nhvg/L; A, = Ag/g® + 4E.; | = N, —
No; 0. = 4V, — w/d.)mod 1. Note, when we
perform calculations in the CC we omit L., Eq. (2).
Using Eqgs. (4) and (5), we can obtain the Gibbs
distribution function [9] and calculate the persist-
ent current and its fluctuations. As was pointed out
in Ref. [17,18], the fluctuations of the persistent
current are large and must be characterized by their
entire distribution. To this end, we calculate the
average value of the powers of both the current
I" and the deviation 61" of the current from its
average value

mod 1> 2. (5)

I = Z 1Y fren BT, ©)
O = ZI1Y. (j — I e BIT, ™
Here, j, = — OE,/0® is the current carried by the

many-electron level E,, where o« numbers the en-
ergy levels and is equal to k in the CC and to the set
of {LLk} in the GCC; o=0(1) for x=CC
(x = GCCQ).

The above expressions have the following mean-
ing. Under influence of the reservoir, the system
passes from the quantum state, say E,, to another
one with an energy E,, . (Note that such a transition
is accompanied by a change of the total momentum
of the system.) The system stays in such a quantum

state during a time ~ 7y, when the current j in the
ring is j = j,,. So, we can consider the current as
a function of time j = j(¢) if the period of observa-
tion 7 is large compared with ;, (in an experiment,
to cancel out the contribution from high-frequency
quantum oscillations, the current j must be aver-
aged over a time period h/4y < At < 14,). Accord-
ing to the basic principles of statistical physics [9],
averaging over the time {j(t)> is equivalent to
averaging over the Gibbs distribution that was
performed in the above expressions. Note that
averaging over the distribution at a given temper-
ature is possible if T > #f/t;, [9] that restricts our
consideration to ultralow temperatures. For high
temperatures, the region of validity of our consid-
eration is limited by the condition L4(T) > L.

It is easy to check that the average current
{j(t)> = I (persistent current) is equal to that ob-
tained in Refs. [35,39]. Note that in the CC the
fluctuations of the persistent current do not depend
on the strength of interelectron interactions (the
parameter ¢) like the persistent current itself
[39,40]. But in the GCC the fluctuations at
0<T < T* depend on ¢ (and on the charging
energy E.) except for the particular values of V,
(correspondent to d.(V,) = + 1/4) at which the
current fluctuations coincide with the ones in
a free-electron (g = 1, E, = 0) ring coupled to a res-
ervoir (at the same value of the parameter o.).

The numerical calculations show that the aver-
aged odd powers of current I*"*! = (j*"*!} van-
ish with increasing temperature. However, the
higher powers of current persist up to higher tem-
peratures (see Fig. 1). In contrast, the even powers
of the current increase with temperature and at
T » T* they are I*" = I'(n + 3)/n2"(I%)" (we note
that I*" = (j*"(t)> # (I*)" = {j*(t)>"). Thus, at high
temperatures the current j in a ring fluctuates near
zero. Such fluctuations do not depend on the mag-
netic flux and interelectron interactions, and they
are described by the Gauss distribution

W(j) =

1 j?
—15), T>T* 8
TﬂZeXp< 212) > ®)

with the mean square current

I =213T/ Ay, 9)
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Fig. 1. Dependence of the averaged powers of a current in units
of Iy on temperature at @ = &, /4. The number N, of electrons
in a ring is even.

where I, = evg/L is the persistent-current ampli-
tude at T = 0. We emphasize that the existence of
such thermal fluctuations is essentially a me-
soscopic effect. Though these fluctuations grow
with temperature, they vanish in the macroscopic
limit as /1" ~ L™ (at a fixed particle density
po)- Note that the averaged current (at T < T%¥)
scales as I ~ L™ !. In addition, these fluctuations
are non-dissipative and they should not be confus-
ed with the ordinary thermal fluctuations of a cur-
rent (Nyquist noise) which are dissipative by nature
and exist in the macroscopic limit.

At low temperatures (T < T*), the current fluc-
tuations are more complicated. They depend on the
magnetic flux and are different in the canonical and
grand canonical cases. Below we consider the mean
square fluctuations of a current (ie., 61%). After
some straightforward manipulations, we obtain

ol
2 _ —_— )
SI? = T<ad) + />, (10)

where y = Z; 'Y ,(0°E, /0®*)e”N ~*/T. From the
above expression it immediately follows that the
mean square fluctuations depend on the statistical
case under consideration because the persistent
current I depends on the regime of coupling to the
reservoir (N, = const or u = const) [19,35,39]. For
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Fig. 2. Dependence of the mean square fluctuations 612 of
a current in units of I3 on temperature at even values of
No =const (1) and at g = const (2) for & =0 and &,/2. The
parameters are o, =0; g = 1; E, = 0.
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Fig. 3. Dependence of the mean square fluctuations 5I% on the

magnetic flux for \/4g/4. = 1(1); 0.3(2); 0.2(3) and for fixed even
values of Ny(4). The parameters are T = T*/2; 5, = 0.24.

the spectrum Eqgs. (4) and (5) we have y = 24y /®3.
At T > T* the persistent current vanishes and from
Eq. (10) we obtain Eq. (9). Note that for the free-
electron gas model (g = 1; E, = 0) in the regimes
u = const Eq. (10) leads to 6I* = I35N?, where 6N?
is the mean square fluctuation of the number of
electrons in the ring. The dependence SI*(T) is
depicted in Fig. 2 in both the regimes N, = const(1)
and p = const(2). We see that at T < T* the mean
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Fig. 4. Dependence of the mean square fluctuations 6I* on

temperature for fixed even values of Ny(1) and for \/4r/4. =
0.6(2); 0.7(3); 1(4). The parameters are @ = 0; 6, = 0.15.

square fluctuations of the current oscillate as
a function of the magnetic flux with a period of @,.
The amplitude of such oscillations is two times
larger in the regime N, = const in comparison with
the regime p = const (for non-interacting elec-
trons). Using Egs. (5), and (7) we may calculate 51>
for interacting electrons. Some results of numerical
calculations are depicted in Figs. 3 and 4. Thus, the
increase of repulsive interactions (g < 1) in a ring
and/or a charging energy (E. > T), effectively
isolating a ring from a reservoir, strengthen PCFs
in a ring. Note that at points of degeneracy of the
charging energy (5, = =+ 1/4), the period of the
dependence SI1%(9) halves.

In summary, we have considered the effect of
interelectron interactions on thermal fluctuations
in a one-dimensional ballistic ring containing spin-
less electrons. We have shown that the suppression
of particle exchange between the ring and the reser-
voir enhances persistent-current fluctuations at low
temperatures. Also, we predict the existence of high
temperature PCFs which grow with the temper-
ature but vanish in the macroscopic limit as L~ /2.
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