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Universal AC response of a 1DLuttinger liquid ring
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Abstract

The response of a spinless ballistic Luttinger liquid ring to an oscillating in time magnetic 
ux is considered in the discrete
spectrum limit. The dependence of the magnitude of both AC response and the DC current on the frequency and magnitude
of a magnetic 
ux at nonzero temperatures is calculated. ? 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The existence of thermodynamic equilibrium (per-
sistent) currents [1–4] in normal-metal rings threaded
by a magnetic 
ux � is one of the most intriguing phe-
nomena in mesoscopic physics [5] where the underly-
ing quantum e�ects appear on a macroscopic level. In
the simplest one-dimensional case the persistent cur-
rent Ipc is a manifestation of the Aharonov–Bohm ef-
fect [6] in solids with a discrete spectrum. The current
Ipc is the derivative of the free energy F over the mag-
netic 
ux Ipc =−9F=9� [7,8] and it is periodic in �
with a period of �0 = h=e.
The persistent currents were predicted as in the

ballistic case [9,10] and in the di�usive one [11]. The
experimental discovery [1–3] of such currents greatly
increases the interest in this subject [12–44]. Note
that in the ballistic case the magnitude of a measured
current [3] agrees with the theoretical estimation
[45] based on a model of noninteracting electrons.

However, the analogous theory for disordered rings
[46–52] predicts a current much less than the exper-
imentally observed one [1,2]. It seems that the in-
terplay of disorder and electron–electron interactions
plays a crucial role for the theory of persistent cur-
rents in disordered rings [53–67]. But this question is
open yet.
On the other hand, the study of the response of

isolated (without leads) rings to a time-dependent
magnetic 
ux [11,68–76] showed that the reactive
(nondissipative) response is an intrinsic feature of
phase-coherent samples (L’(T )/L, where L’ is a
phase breaking length; L is the size of a sample).
Such a response corresponds to a free acceleration
of electrons [71] and it is diamagnetic in nature.
The magnitude of a correspondent nonequilibrium
(dynamic) current is larger than that of a persistent
current [72,77]. As emphasized in Ref. [72], the ex-
istence of dynamic currents can be quite relevant
for a description of experiments on disordered rings.
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However, the experimental study of an AC response
of di�usive rings [4] gives results which di�er from
the theoretical one [76]. In view of this, to better un-
derstand the role of nonequilibrium currents it seems
useful to study an AC response of rings in the ballis-
tic case where, as mentioned above, the theory and
experiment are in agreement with each other.
The aim of this paper is a theoretical descrip-

tion of an AC response of a 1D ballistic system of
spinless electrons. The accounting of an electron
spin and high dimensions will be given elsewhere
but, as it seems, this does not change results qual-
itatively. We consider a response to a magnetic

ux.

�(t) = ��+ �! sin(!t): (1)

On the one hand, such a dependence can be more
easily realized in experiment compared to a widely
used model of a magnetic 
ux growing linearly
with time [11,68,77–80]. On the other hand, in this
case the state of a system is periodic in time that
greatly simpli�es the analysis in the long time limit.
Within the framework of the master equation for the
density matrix in a relaxation time approximation
[71] we consider both thermodynamic equilibrium
(persistent) as well as nonequilibrium (dynamic)
currents vs. both the frequency ! and the ampli-
tude �! of a magnetic 
ux. At �! → 0 we also
use the linear response theory based on the Kubo
formula.
The paper is organized as follows. In Section 2

we formulate the task under consideration and write
down the main equations. We derive the expression
for a time-dependent density matrix and discuss the
frequency window where such an expression is valid.
In Section 3 we analyse the current in a ring. In the
high-frequency limit the AC response I! does not de-
pend on interelectron interactions and the regime of
coupling to a reservoir (either at a �xed number of
electrons N0 in a ring or at a �xed chemical potential
�). The time-average current IDC does not depend on
the frequency ! of a magnetic 
ux and in the limit of
�! → 0 it coincides with a thermodynamic equilib-
rium (persistent) current Ipc( ��). But the 
uctuations
of IDC are very sensitive to the frequency because of
dynamic excitation of energy levels. In conclusion we
summarize the results.

2. The model and basic equations

Let us consider a one-dimensional impurity-free
ring of length L with a �xed number of electrons N0
threaded by a magnetic 
ux �(t) (Eq. (1)). We as-
sume that the magnetic 
ux slowly varies in time and
the usually applied adiabatic approximation is valid
[11,68,77]. In this case the energy levels En of a sys-
tem depend parametrically on �(t)

En(t) = En(�(t)); (2)

where En(�) is an eigenenergy at a constant magnetic

ux. In the ballistic case it is En(�) ∼ (n+ �=�0)2
[9,10,45,81]. The adiabatic approximation implies that
the frequency ! is less than the level spacing �F ∼
En+1 − En near the Fermi level 1

!.�F=˜: (3)

In a one-electron picture this condition means that
the magnetic 
ux (as well as a corresponding cyclic
boundary condition for an electron wave function)
change is small during a time of an electron 
ight
around the ring.
We assume an energy exchange between a ring and

a reservoir that �xes an electron temperature T in a
ring in equilibrium. Note that the inelastic interaction
between electrons in a ring and an environment (a
reservoir) plays a speci�c role in the ballistic case.
As is well known in the static case (!= 0), the
ground-state energy (and the thermodynamic poten-
tial) is periodic in � with a period of �0 [7,8] that
is due to inelastic interactions with a reservoir (while
the eigenenergies En are quadratic in �). Out of equi-
librium the interplay between an energy absorption
from the electric �eld E= L−1 d�=dt and an energy

1 Note that results of the present paper also may be applied
to semi-ideal (with a weak disorder) systems if we limit the fre-
quency ! from below. This is due to the following [77]. Be-
cause of disorder-induced gaps the static dependence En(�) of
a nonideal system becomes periodic in �. However, if the mag-
netic 
ux depends on time the electric �eld E = L−1 d�=dt can
lead to Landau–Zener tunneling through such gap [78,80] that
restores a square dependence En(�(t)) ∼ (n + �(t)=�0)2 typical
for the ballistic case. The probability of Landau–Zener tunneling
is P = exp(−
) [80,82] with 
 ∼ �2=(eEL�F) (� is a character-
istic forbidden gap). Assuming 
→ 0 (P → 1) we have to limit
the frequency !/!min with ˜!min ∼ �2=�F. Such a restriction
allows to consider a semi-ideal system as an ideal (ballistic) one
with no gap at the crossing of energy levels.
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dissipation into a reservoir de�nes a nonequilibrium
state of electrons in a ring which we will describe
by the density matrix �̂(t) [71]. Within the relaxation
time approximation, which is valid if the coupling to
a reservoir is weak (see e.g., Ref. [71] and references
therein), we write down the master equation for the
density matrix in the adiabatic regime (Eq. (3)) as
follows:

9�̂
9t =−�−1� (�̂− �̂eq); (4)

where ��(T ) is the inelastic relaxation time (T is the
reservoir temperature); �̂eq is the equilibrium (diago-
nal) density matrix with elements

�(n)eq (t) =
exp(−En[�(t)]=T )∑
n exp(−En[�(t)]=T )

: (5)

Here En(�) is a many-electron energy level as a
function of �. If the coupling between a ring and a
reservoir is small we can use the eigenenergies of an
isolated ring. We derive the dependence En(�) con-
sidering the system of interacting electrons in a
ring as a Luttinger liquid [83]. The Lagrangian LLL
of a spinless Luttinger liquid in a bosonic form
is [84].

LLL =
˜v
2g

{
1
v2

(
9�
9t

)2
−
(
9�
9x

)2}
; (6)

where v; g are Haldane’s parameters [83] which de-
pend on interelectron interactions in a ring. In the con-
tinuous (rotary invariant) limit they satisfy vg= vF,
where vF = �˜�0=m∗ is the Fermi velocity (�0 is the
mean electron density in the ground state; m∗ is the
electron e�ective mass). For noninteracting electrons
g= 1. �(x; t) is a boson �eld.
The Aharonov–Bohm interaction with a magnetic


ux � is described by the Lagrangian LAB [84]

LAB =
2˜
L
�1=2 9�9t

(
kj
2
+
�
�0

)
; (7)

where kj is a topological number dependent on the
parity of the number N0 of electrons in a ring: kj = 0
(1) if N0 is odd (even).
The Euclidean (in an imaginary time �) action

SE =−
∫ L

0
dx

∫ �

0
d�(LLL + LAB) (8)

(where � = ˜=T ) determines the partition function Z
through the path integral over the �eld �

Z =
∫
D� exp(−SE=˜): (9)

In the ballistic case the dependence Z(�) is deter-
mined by the extremal trajectories �(0)k (�) =

√
�k�=�

(zero modes) obeying the twisted boundary conditions
�(x; �+ �) = �(x; �) +

√
�k (k is an integer). Substi-

tuting �(0)k into Eq. (9) and performing summation
over k we get [85–87]

Z(�) = A
∞∑

n=−∞
exp(−En=T ); (10)

En(�) = �F

(
n+

�
�0
+
N0 − 1
2

mod 1
)2
; (11)

where �F = 2�˜vF=L. The factor A includes a 
ux-
independent plasmon contribution.
Thus, using Eqs. (4), (5) and (11) we can calculate

the nonequilibrium density matrix �̂(t). Note that in
the used model (Eq. (4)) the density matrix stays di-
agonal with a normalization

∑
n �

(n) = 1. The formal
integration of Eq. (4) gives

�(n)(t) = �(n)(0)exp(−t=��)
+
1
��

∫ t

0
dt′ �(n)eq (t

′)exp
(
t′ − t
��

)
; (12)

where �̂(0) is the density matrix at t = 0 (e.g., if the os-
cillating magnetic 
ux �! sin(!t) starts at t = 0 then
�̂(0) = �̂eq( ��)). Below we focus on the behaviour of
a system in the long-time limit.

t/ ��;�t (13)

which is independent of �̂(0). Here �t = 2�=! is the
period of an applied 
ux. In this case the density matrix
is periodic in time with a period of �t that is due to
a periodicity of �̂eq(�(t)) and it is as follows:

�̂(t) =
�−1�

exp(�t=��) − 1
∫ �t

0
dt′ �̂eq(t+ t

′)exp(t′=��):

(14)

From this equation it is obvious that in the qua-
sistatic regime (!.�−1� ) the density matrix is
(quasi)equilibrium and depends on time as �̂(t) =
�̂eq(�(t)). In the opposite extreme nonequilibrium
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Fig. 1. Current in units of I0 = evF=L for ��=�t = 0 (1); 0.02 (2);
0.1 (3) and 1 (4) is plotted vs. time. The parameters are: N0 is
odd; T = 0:02�F; �� = 0; �! = 5�0.

(dynamic) regime (!/ �−1� ) the density matrix is
independent of time

�̂dy =
1
�t

∫ �t

0
dt′ �̂eq(t

′): (15)

Note that the dynamic regime is consistent with the
adiabatic approximation (Eq. (3)) when broadening
� ∼ ˜=�� of energy levels is small compared to the
level spacing �F.
In the following we will discuss the dependence of

the response of a ring on both the frequency and the
amplitude of a magnetic 
ux.

3. Response of a ballistic ring

The current I(t) in a ring is

I(t) =
∑
n
�(n)In; (16)

where In =−9En=9� is a current carried by level En
[7,8,11]. Substituting Eqs. (5), (11) and (14) into Eq.
(16) we can numerically calculate the current. Some
results of such calculations are presented below.

3.1. AC current

The dependence I(t) is depicted in Fig. 1 at sev-
eral values of a magnetic 
ux frequency != 2�=�t
(at �xed ��). It is visible that at !.�−1� the current

is periodic in � with a period of �0 (i.e., the current
frequency !I corresponds to the change of the mag-
netic 
ux � through the ring by �0 : !I ∼ 4!�!=�0,
if �!¿�0). More precisely, the current has the fol-
lowing harmonics:

I(t) ∼ sin
(
2�
��+ �! sin(!t)

�0

)

=sin
(
2�

��
�0

){
J0

(
2��!
�0

)

+2
∞∑
n=1

J2n

(
2��!
�0

)
cos(2n!t)

}

+2cos
(
2�

��
�0

) ∞∑
n=1

J2n+1

(
2��!
�0

)

×sin([2n− 1]!t); (17)

where Jn is the Bessel function. Strictly speaking,
this equation determines the current harmonics at
T ¿T ∗ = �F=�2. At lower temperatures (T ¡T ∗) it
is necessary to use I =

∑
n an sin(2�n�(t)=�0) [45].

At the same time, at !/ �−1� the current oscillates
with the frequency ! and its amplitude further grows
up. Such a dynamic diamagnetic response corre-
sponds to a free acceleration of electrons in an electric
�eld E= L−1 d�=dt produced by a time-dependent
magnetic 
ux �(t) [71] and it is a characteristic of
normal-metal rings with a discrete spectrum either
ballistic [77] or di�usive [71,72,76]. Thus, in the dy-
namic regime without both the relaxation (!/ �−1! )
and interlevel transfers (˜!.�F) the system of elec-
trons displays a universal diamagnetic response. Now
we show that in the ballistic case such a response
does not depend on interelectron interactions and the
amplitude of the current I! increases linearly in �!.

3.1.1. Linear response: �! → 0
In this section we do not use the density matrix

formalism and calculate I! using the Kubo formula
for the linear response function � (a current–current
correlation function). Note that in Ref. [71] using the
density matrix formalism within a linear response the-
ory the generalization of the Kubo–Greenwood for-
mula for the conductance with respect to diamagnetic
e�ects which are essential for a ring-lime geome-
try was done. In the present paper we will use the
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density matrix formalism beyond the linear response
approach. Of course, within the linear response and at
appropriate frequencies (see below) the results of the
present subsection (obtained within the Kubo linear
response formalism) coincide with those obtained us-
ing the density matrix approach in consent with Ref.
[71].
In accordance with the linear response theory [88]

at �! → 0 we write I! = �(!)�!, where �(!) =
i˜−1

∫∞
0 dt exp(i!t)〈Î(t)Î(0)− Î(0)Î(t)〉 (here Î

is a current operator and 〈· · ·〉 means averaging
over the equilibrium state). At �rst we calculate
the Matsubara response function [89] �M(!n) =
˜−1

∫ �
0 d� exp(i!n�)〈Î(�)Î(0)〉, where !n = 2�n=�

is the Matsubara frequency (n is an integer). Then
�(!) is an analytical continuation of �M(!n) with
respect to �(i!n) = �M(!n). We calculate �M within
a model, Eqs. (6) and (7). In a bosonic represen-
tation the current is I(�) = ie�−1=29�=9�. Using the
expansion �(�) = � (0)(�) + �−1

∑
n �n exp(−i!n�)

we can write �(!n) =−e2!2n=�˜�〈|�n|2〉 (here 〈x〉=∫
D�x exp(−SE=˜)). Because in a rotary invariant

case under consideration the current does not depend
on x we may calculate I at any point, say at x = x0.
This allows to integrate out 
uctuations in � for all x
except x = x0 [90]. As a result, we obtain an e�ective
action as follows:

Se� = ˜
∑
n
|�n|2 |!n|g�

tanh
(
L|!n|
2v

)
+ S0: (18)

The term S0 due to zero modes and the Aharonov–
Bohm interaction (Eq. (7)) is irrelevant for �M.
Using Se� we can easily perform averaging: �M =
−(e2g|!n|=2�˜) coth (|!n|L=2v). Substituting |!n|=
i! we �nally obtain

�(!) =−e
2g!
2�˜ cot

(
!L
2v

)
: (19)

At !.�F=(�˜g) we have �(!) =−e2vF=(�˜L). Thus
for such frequencies the current amplitude does not
depend on !

I! =−2I0�!=�0; (20)

where I0 = evF=L. The same expression for the cur-
rent (with a di�erent expression for I0) was obtained
in Ref. [72] for a di�usive ring containing noninter-
acting electrons in the limit of !→ 0. As follows
from the above expression, in the ballistic (rotary in-
variant) case the diamagnetic current does not depend

on interelectron interactions (the parameter g) even
as a thermodynamic equilibrium (persistent) current
(which depends on the product vg= vF only) [84,81].
As emphasized in Refs. [72,91], the dynamic cur-

rent qualitatively di�ers from the thermodynamic
equilibrium (persistent) current. In particular, this is
due to relaxation processes. The persistent current Ipc
is a characteristic of a quasistatic regime (!.�−1� ).
In this regime the amplitude of an AC current is [71]

I! =
9Ipc( ��)
9 ��

�!; !.�−1� : (21)

Note that this regime is not described by a response
function (Eq. (19)) that is due to the following. The
model Lagrangian equations (6) and (7) do not con-
tain the terms describing an energy exchange with a
reservoir. In fact, omitting such terms (which are pro-
portional to �−1� ) supposes !n/ �−1� . Thus the dy-
namic response (Eq. (20)) is valid at

�−1� .!.�F=(�˜g): (22)

Within the framework of a density matrix formal-
ism we now calculate an equilibrium response as well
as a dynamic one and verify that the inelastic rate �−1�
separates the (quasi) equilibrium regime from the dy-
namic one. Moreover, we show that Eq. (20) holds at
any values of �!.

3.1.2. Dynamic response at �! ∼ �0
One of the important di�erences between the bal-

listic case and the di�usive case is the character of the
dependence of an electron spectrum on the magnetic

ux. In the former case the spectrum is quadratic in
� (Eq. (11)) and the properties (of a ring) become
periodic in � with a period of �0 because of the re-
laxation to the ground state (the state with a minimum
energy) that is due to an energy exchange with a reser-
voir (the characteristic rate is �−1� ). While, in the dif-
fusive regime the electron spectrum itself is periodic
in � with a period of �0 [11] because impurity scat-
tering opens gaps at energy levels crossing and forms
microbands En(�) = En(�+ �0) [7,8,11]. Therefore,
if the magnetic 
ux amplitude is large (�! ∼ �0) the
response crucially depends on the case under consid-
eration. In the di�usive case the current oscillates with
a Josephson frequency!J = eV=˜, where V = |d�=dt|
[11]. At the same time, in the ballistic case such oscil-
lations are rather characteristic for a quasistatic regime
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Fig. 2. The temperature dependence of the �rst harmonic I! of
a current in units of I0 for the quasistatic regime (!.�−1� ) at
�� = �0=2 (1); 0 (2) and for the dynamic regime (!/ �−1� ) (3).
The parameters are: N0 is odd; �! = �0=4.

(!.�−1� ) and they disappear completely with increas-
ing frequency (see Fig. 1).
In the dynamic regime (!/ �−1� ) the density matrix

(Eq. (15)) is independent of time. Using Eqs. (1), (5),
(11), (15) and (16) we �nd that the current oscillates
with a frequency ! and its amplitude I! is given by
Eq. (20) which, therefore, is valid at any value of �!.
Note that the quadratic dependence of energy levels
on � is important.

3.1.3. Dependence of an AC response on
frequency !
Using Eqs. (1), (5), (11), (14) and (16) we can

calculate the response of a ring at arbitrary !. At
�rst, we consider the limit �! → 0. In the quasistatic
regime (!.�−1� ) it is �̂= �̂eq and from Eq. (16) it
follows that (with the accuracy of O(�2!)) the current
amplitude I! is de�ned by Eq. (21), where Ipc( ��) =∑

n �
(n)
eq ( ��)In( ��). In the dynamic regime Eq. (20) has

to be used. At low temperatures (T.T ∗) Eqs. (20)
and (21) give same results at �� corresponding to a
“diamagnetic” piece of dependence Ipc( ��) (e.g., �� ∼
0 ifN0 is odd), Fig. 2 (curves 2 and 3).With increasing
temperature (T/T ∗) the quasistatic response van-
ishes (because of the vanishing of a persistent cur-
rent [45]). However, the dynamic response survives,
Fig. 2 (curve 3) (it is temperature independent while

Fig. 3. The dependence of the �rst harmonic I! of a current in
units of I� = 2I0�!=�0 on the degree of nonequilibration (the
parameter ��=�t; �t = 2�=!). The parameters are: N0 is odd;
T = 0:5�F.

L’(T )/L). So, at high temperatures (T/T ∗) the
AC response of a ballistic ring must signi�cantly grow
with increasing frequency above the inelastic relax-
ation rate �−1� . The dependence I!(!) is depicted in
Fig. 3.
Further we consider �nite values of�!. The numer-

ical calculations show that at T/T ∗ the amplitude
I! is linear in �! at arbitrary !. However, at low tem-
peratures (T.T ∗) the dependence I!(�!) is signi-
�cantly a�ected by the frequency (see Fig. 4). In
the quasistatic regime such a dependence comes from
the Bessel functions (Eq. (17)). At the same time, in
the dynamic regime it is I! ∼ −�! (Eq. (20)). Note
that with increasing ! the higher harmonics In! tend
to zero (see Fig. 5 for the third harmonic).

3.1.4. Dynamic response in the regime � = const
Throughout the paper we consider N0 = const. In

this section we allow a particle exchange between a
ring and a reservoir that �xes the chemical potential �
in the ring. We will show that this does not a�ect the
dynamic response of a ballistic ring. In the limit�! →
0 this statement follows from the fact that including
the Lagrangian Lex [85,86]

Lex =
�
�1=2

9�
9x − Ec

L
(Ne − CVg=e)2 (23)
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Fig. 4. The dependence of the �rst harmonic I! of a current in units
of I0 on �! in units of �0 for the quasistatic regime at �� = �0=2
(1); 0 (2) and for the dynamic regime (3). The parameters are:
N0 is odd; T = 0:02�F.

Fig. 5. The dependence of the third harmonic I3! of a current in
units of I0 on �! in units of �0 for ��=�t = 0 (1); 0.02 (2); 0.1 (3)
and 0.2 (4). The parameters are: N0 is odd; T = 0:02�F; �� = 0.

(where Ne = �−1=2
∫ L
0 dx∇�+ N0 is the number of

electrons in a ring; Ec = e2=(2C); C and Vg are the
capacitance and the potential di�erence between a
ring and a reservoir, respectively) describing a par-
ticle exchange between a ring and a reservoir does
not change a current–current correlation function (Eq.
(19)). Thus, expression (20) is also valid in the regime
� = const.

Fig. 6. The dependence of the �rst harmonic I! of a current in
units of I0 on �! in units of �0 for the regime � = const at
��=�t = 0 (1); 0:1 (2); 0:5 (3) and ∞ (4). The parameters are:
T = 0:02�F; �� = 0; �c = �F; �c = 1=4.

At �nite values of �! we will use the master equa-
tion (4). To obtain �̂eq we calculate the spectrum in
the regime � = const. The calculation of the partition
function Z� in the model equations (6), (7) and (23)
is quite analogous to that for the regime N0 = const
and it is done in Refs. [85–87]. Here we write down
the result

Z� = A
∑
Ne
exp(�Ne=T )

∞∑
n=−∞

e−Eln=T ; (24)

Eln(�) = l� + �c(l=2 + �c)2 + �F

(
n+

�
�0

+
Ne − 1
2

mod 1
)2
: (25)

Here �c = �F=g2 + 4Ec; l= Ne − N0; �c = (4(eVg −
�)=�c)mod 1. The equilibrium density matrix �̂eq is
the same as in Eq. (5) with respect to an obvious
replacement n→ {ln}. With regard to other details
the calculations are quite similar to those for N0 =
const. In particular, the reasons of Section 3.1.2 are
still correct. The dependence I!(�!) for the regime
� = const at some values of! is depicted in Fig. 6. So,
the dynamic response does not depend on the regime
of coupling to a reservoir (either N0 = const (Fig. 4,
curve 3) or � = const (Fig. 6, curve 4)).
However, the regime of coupling to a reservoir is

important because of the following. As emphasized in
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Ref. [77], in the ballistic case the relaxation towards
the equilibrium associates with a large momentum
transfer. Therefore, the particle exchange with a reser-
voir may be the main source of such a relaxation.
Thus, in the regime � = const the inelastic rate �−1�
is expected to be larger compared with the regime
N0 = const. The estimation of an inelastic relaxa-
tion time in the regime N0 = const is �� ∼ 10−8–
10−7 s [77].

3.2. DC current

Because the current (Eq. (16)) is periodic in time
with a period of �t = 2�=! the time-averaged current
IDC is

IDC =
1
�t

∫ �t

0
dt I(t): (26)

This current is periodic in both �� and�! with a period
of �0 and its magnitude is of the order of IDC ∼ I0 =
evF=L. Note that IDC is not a zero-frequency limit of
an AC current I! (which is rather a derivative of the
persistent current over the magnetic 
ux (Eq. (21)))
but it is a persistent current itself (which is strongly
modi�ed by �!).
It can be easily shown that in the ballistic case (be-

cause of En ∼ (n+ �=�0)2) the DC current does not
depend on the frequency ! and, in fact, it is deter-
mined by a dynamic (independent of time) density
matrix (Eq. (15)). Substituting Eqs. (14) and (16) into
Eq. (26) we have IDC =

∑
n �

(n)
dy In. At �! → 0 from

Eq. (15) we obtain �̂dy = �̂eq + O(�
2
!) and, as a con-

sequence, IDC = Ipc( ��). However, at ��!¿ 0 the dy-
namic density matrix di�ers from an equilibrium one
(see Fig. 7). As a result, the dependence IDC( ��) is
considerably changed (see Fig. 8a) and at some val-
ues of �! it may display a �0=2 periodicity in �� (see
Fig. 8b).

3.2.1. Fluctuations of a DC current in the dynamic
regime
The dynamic density matrix determines the DC

current at arbitrary ! by a formal way. In fact,
�̂dy describes the state of a system in an extreme
nonequilibrium (dynamic) regime only. The distinc-
tive feature of this regime (!/ �−1� ) is the dynamic
excitation of quantum levels in the ring (see Fig. 7).

Fig. 7. Diagonal elements �n of a density matrix for the qua-
sistatic regime (1) and for the dynamic regime at �! = 2�0
(2) and �! = 5�0 (3). The parameters are: N0 is odd;
T = 0:2�F; �� = �0=2. Lines are guides to the eye.

The energy levels of a system change (Eq. (11)) in
accordance with a cyclic evolution of a magnetic 
ux.
In the quasistatic regime with increasing magnetic

ux � ∼ �! sin(!t) the system relaxes to the state
with a minimum (at given �) energy Emin = En with
n ∼ −�=�0 and, as a consequence, the system passes
in series through all the states with |n|¡nmax, where
nmax ∼ �!=�0 (note, n= 0 corresponds to the ground
state at �= 0). However, in the dynamic regime
during the period �t = 2�=! the system does not
have time to relax to the ground state (the relaxation
time is ��/�t). Therefore, in the dynamic regime
all the states with |n|¡nmax are excited (see Fig.
7). Because of a spectrum discreteness the number
of excited levels changes discontinuously when the
amplitude �! changes by �0. This e�ect is irrele-
vant for IDC but it is important for higher degrees
of a current. In particular, it a�ects considerably
the 
uctuations of IDC. In the quasistatic regime the
current 
uctuations are considered in Ref. [87]. The
nature of such (thermodynamic equilibrium) 
uctu-
ations is as follows. When the system stays (during
a time ∼ ��) in one of the (many-particle) eigen-
states (say, n) the current in a ring is j = In. Because
of interaction with a reservoir, during a time / ��
the system will “visit” di�erent eigenstates m with a
probability �(m)eq that causes the current to 
uctuate
near 〈 j〉t = Ipc, where 〈· · ·〉t means averaging over
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Fig. 8. DC current IDC in units of I0 is plotted vs. DC magnetic

ux �� for (a) �! = 0 (1); �0=4 (2); �0=2 (3); 3�0=4 (2) and
(b) ’! = 0:4�0 (1); 0:9�0 (2). The parameters are: N0 is odd;
T = 0:02�F.

time. The analogous reasoning may be applied to the
dynamic regime (because the dynamic density ma-
trix (Eq. (15)) is time-independent, averaging over
time is equivalent to averaging over the quantum
states n with a probability �(n)dy ). In this case during a
time ∼ �� the current in a ring j(t) = In =−2I0(n+
��=�0 + �! sin(!t)=�0) oscillates with a frequency
!/ �−1� near jDC =−2I0(n+ ��=�0). Note that the
amplitude of an AC current does not 
uctuate because
j! =−2I0�!=�0 does not depend on the number n
of a quantum state. In contrast, the DC current jDC

uctuates on a time scale / ��. The mean square

Fig. 9. Mean square 
uctuations of a DC current for the dynamic
regime. The parameters are: N0 is odd; T = 0:01�F.


uctuations are expressed as

〈�I 2DC〉=
∑
n
{4I 20 (n+ ��=�0)2�

(n)
dy − I 2DC}: (27)

The quantity 〈�I 2DC〉 is periodic in �� with a period
of �0 and in the limit of �! → 0 it coincides with
the mean square 
uctuations of a persistent current.
The dependence 〈�I 2DC〉 on �! is depicted in Fig. 9.
Note that with increasing temperature (T ¿�F) the
peculiarities corresponding to dynamic excitation of
energy levels are washed out.

4. Conclusion

We have considered the response of a ring-like bal-
listic spinless Luttinger liquid to a time-dependent
magnetic 
ux �(t) (Eq. (1)) in the discrete spectrum
limit at nonzero temperatures. We assume that the
magnetic 
ux oscillates slowly in time (Eq. (3)). In
this case the states of a system adiabatically follow the
magnetic 
ux: En(t) = En(�(t)). The dependence of
the current magnitude on both the frequency !.�F=˜
and the amplitude �! of the magnetic 
ux has been
studied. We use both the master equation for the den-
sity matrix and the Kubo formalism (at small �!) and
consider both equilibrium as well as nonequilibrium
(dynamic) currents in a ring.



358 M.V. Moskalets / Physica E 8 (2000) 349–359

The amplitude of the �rst harmonic I! of a current
depends considerably on both the frequency ! (Fig.
3) and the temperature T . In the low-frequency limit
(!.�−1� ) the response (I!) (Eq. (21)) decreases with
increasing temperature (Fig. 2) (because of vanishing
of persistent currents at T/T ∗). At the same time
the high-frequency (!/ �−1� ) response (the dynamic
response) is temperature independent. In the dynamic
regime the response is diamagnetic and the current
amplitude I! is linear in �! (Eq. (20)). In addition,
the dynamic response does not depend on both the
strength of interelectron interactions and the regime
of coupling to a reservoir (either N0 = const or � =
const).
The DC current IDC does not depend on the fre-

quency ! but it is very sensitive to the amplitude �!
(Fig. 8). In contract, the DC current 
uctuations de-
pend on ! and in the dynamic regime they greatly
di�er from those in the quasistatic regime. This is a
consequence of dynamic excitation of system levels
by a periodic magnetic 
ux (Fig. 7). In the discrete
spectrum limit the number of excited levels changes
by ∼ 1 when �! changes by �0. As a result, the
mean square 
uctuations of a DC current displays a
quantized-like behaviour as a function of �! (Fig. 9).
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