_____ ПРИКЛАДНАЯ МЕХАНИКА

УДК 629.114-585.001.24

УНИВЕРСАЛИЗАЦИЯ И АВТОМАТИЗАЦИЯ РАСЧЕТА КИНЕМАТИКИ ПЛАНЕТАРНЫХ ПЕРЕДАЧ И ТРАНСМИССИЙ ТРАНСПОРТНЫХ СРЕДСТВ

В.Б. Самородов

Доктор технических наук, профессор. Заведующий кафедрой* Контактный тел.: (057) 707-60-66

А.О. Островерх

Аспирант* *Кафедра Автомобиле- и тракторостроения Национальный технический университет "Харьковский политехнический институт" ул. Фрунзе, 21, г. Харьков, Украина, 61002. Контактный тел.: (057) 707-60-66 e-mail:ostrov.sasha@gmail.com

Введение

Более 40 лет назад ведущий специалист в области планетарных передач проф. Кудрявцев В.Н. прогнозировал, что «с переходом от обычных передач к планетарным намного уменьшаются диаметры зубчатых колес и, следовательно, при одной и той же степени притупления инструмента можно значительно увеличить твердость рабочих поверхностей зубьев и этим повысить нагрузочную способность зацепления, что во многих случаях может послужить причиной вполне оправданного перехода к более качественным материалам, более совершенной технологии, использованию поверхностных упрочнений, переходу к более высокой степени точности и т.д. Все это, в свою очередь, способствует существенному снижению габаритов и веса»[2].

Относительно малые габариты, вес, низкие потери на трение, благоприятные виброустойчивые свойства, высокая надежность, возможность разветвления мощности в трансмиссиях транспортных средств с целью передачи энергии нескольким ведомым элементам, в том числе и с бесступенчатым регулированием, - все это неоспоримые достоинства планетарных передач, которые обусловили их эффективное применение в автомобиле- и тракторостроении, авиастроении, судостроении, станкостроении, связи и приборостроении, т.е. практически во всех областях современного машиностроения.

С повышением мощности и производительности сельскохозяйственных и промышленных тракторов, комбайнов, тяжелых грузовых автомобилей и дорожных машин вопрос модернизации трансмиссий в целом и отдельно коробок перемены передач или раздаточных коробок, главных передач и конечных бортовых передач требует совершенствования расчетных методов планетарных передач и в частности их универсализацию и автоматизацию.

В целом планетарные механизмы обеспечивают более широкий диапазон передаточных отношений при

Проиллюстрирована инвариантность кинематических матричных систем на примере механической трансмиссии с планетарными механизмами.Построена универсальная матричная методика расчета кинематики планетарных передач, основанная на введении характерных параметров которые учитывают вид зацепления зибчатых колес. Универсализирован и автоматизирован расчет кинематики планетарных передач, который позволяет определить функциональность и работоспособность трансмиссий транспортных средств.

меньших габаритно-массовых параметрах, разгрузку центральных валов и подшипников опор от радиальных усилий, способствуют меньшей напряженности зубчатых пар.

Анализ последних достижений и публикаций

Попытка введения характерных параметров, учитывающих вид зубчатых зацеплений и универсализация расчета кинематики планетарных механизмов, включая относительные скорости сателлитов, на основе классического кинематического анализа планетарных механизмов [1-5] была предпринята в работах [7,8]. Проблеме автоматизации анализа и синтеза планетарных передач посвящены десятки работ, из которых наиболее авторитетными трудами являются работы Кудрявцева В.Н., Кирдяшева Ю.Н. [1,2], Кристи М.К., Красненькова В.И., Вашеца А.Д. [3,4], Цитовича И.С. [5], Кисточкина Е.С., Бабаева О.М. [6]. На основании указанных работ целесообразно построить универсальную и весьма простую методику автоматизированного анализа кинематики сколь угодно сложных планетарных механизмов, не требующую обращения к классифицирующим справочным таблицам, формулам[1,2,5,6] или к громоздким графоаналитическим расчетным технологиям [3,4,6].

Цель работы

 Построение универсальной матричной методики расчета кинематики планетарных механизмов на основе введения характерных параметров, учитывающих вид зубчатых зацеплений.

2) Иллюстрация инвариантности кинематических матричных систем на примере механической трансмиссии с планетарными механизмами (рядами), не смотря на отличие в записи этих матричных систем с разными значениями указанных характерных параметров, по отношению к вектору неизвестных кинематических параметров.

Универсализация математической модели кинематики планетарных механизмов

На основании уравнения Виллиса [1-5] для трёхзвенного планетарного механизма (ТПМ), имеющего в общем случае двухвенцовые сателлиты имеем:

$$\frac{\omega_1 - \omega_3}{\omega_2 - \omega_3} = k = \pm \frac{z_{cr1} \cdot z_2}{z_{cr2} \cdot z_1} , (1) \ \frac{\omega_{cm} - \omega_3}{\omega_1 - \omega_3} = \pm \frac{z_1}{z_{cm1}} = S_1 , \quad (2)$$

$$\frac{\omega_{\rm cm} - \omega_3}{\omega_2 - \omega_3} = \pm \frac{z_2}{z_{\rm cm2}} = S_2, (3) \ k = \pm \frac{z_{\rm cr1} \cdot z_2}{z_{\rm cr2} \cdot z_1} = \frac{S_2}{S_1} , \qquad (4)$$

где индексы "1", "2", "3", "ст" относятся соответственно к абсолютным угловым скоростям ω солнечной (1), коронной (2) шестерен, водила (3) и сателлитов (ст); z₁, z₂ и z_{ст1}, z_{ст2} - числа зубъев на соответствующих шестернях; k - внутреннее передаточное отношение планетарного ряда (k<0, если ТПМ имеет внешнее и внутреннее зацепления и k>0 - в случае только внутренних или только внешних зацеплений [1-5]); z_{ст1} и zc_{т2} – числа зубъев в общем случае двухвенцовых сателлитов, входящих в контакт с солнечной (z_{ст1}) и коронной (z_{ст2}) шестернями; zст - число зубъев в случае одновенцовых сателлитов, S₁, S₂ – характерные параметры сателлитов, которые имеют физический смысл передаточных отношений зубчатых зацеплений. Знак при k автоматически определяется знаками характерных параметров сателлитов S₁ и S₂ следующим образом: S_{1,2}<0, если венец сателлита имеет внутреннее зацепление с солнечной или коронной шестернями и S_{1,2}>0 - в случае только внешних зацеплений. В случае одновенцовых сателлитов $z_{ct1}=z_{ct2}=z_{ct}$:

$$\frac{\omega_1 - \omega_3}{\omega_2 - \omega_3} = k = \pm \frac{Z_2}{Z_1}, (5) \quad \frac{\omega_{cm} - \omega_3}{\omega_1 - \omega_3} = \pm \frac{Z_1}{Z_{cm}} = S_1,$$
(6)

$$\frac{\omega_{\rm cm} - \omega_3}{\omega_2 - \omega_3} = \pm \frac{z_2}{z_{\rm cm}} = S_2, (7) \ k = \pm \frac{z_2}{z_1} = \frac{S_2}{S_1}.$$
(8)

Любое из уравнений (1)-(4) или (5)-(8)есть тождественное следствие трех других уравнений, что в итоге приводит к инвариантности кинематических базисных матриц ТПМ и, как будет показано ниже, – к инвариантности кинематических матричных систем трансмиссий в целом.

Основное кинематическое уравнение планетарного ряда и относительная угловая скорость сателлита ω_S в его относительном движении вокруг водила на основании формул (4)–(6) с учетом введенной выше аксиоматики для знаков характерных параметров S₁ и S₂ по виду зацепления (внешнего – «+» или внутреннего – «-») записываются в виде:

$$\omega_1 - k\omega_2 + (k - 1)\omega_3 = 0; \qquad (9)$$

$$\omega_{s} = \omega_{cm} - \omega_{3} = -S_{1}\omega_{1} + S_{1}\omega_{3};$$
(10)

$$\omega_{\rm s} = \omega_{\rm cm} - \omega_{\rm s} = -S_2 \omega_2 + S_2 \omega_3 \cdot \tag{11}$$

Особенностью уравнений (10), (11) является то, что знак их правой части изменен на противоположный по сравнению с рекомендациями трудов [1,2].

Как будет проиллюстрировано ниже введение в рассмотрение характерных параметров зубчатых зацеплений S_1 и S_2 с учетом их знаков от вида зацепления позволяет эффективно автоматизировать анализ кинематики сколь угодно сложных планетарных механизмов.

Кинематические базисные матричные уравнения ТПМ на основе (9)-(11) имеют вид[7,8]:

$$\begin{bmatrix} 1 & -k & k-1 & 0 \\ S_1 & 0 & -S_1 & 1 \end{bmatrix} \cdot \begin{bmatrix} \omega_1 & \omega_2 & \omega_3 & \omega_s \end{bmatrix}^1 = 0$$
(12)

$$\begin{bmatrix} 1 & -k & k-1 & 0 \\ 0 & S_2 - S_2 & 1 \end{bmatrix} \cdot \begin{bmatrix} \omega_1 & \omega_2 & \omega_3 & \omega_s \end{bmatrix}^{\mathrm{T}} = 0$$
(13)

Для наиболее распространенного и часто встречающегося в планетарных передачах, планетарного ряда с одновенцовым сателлитом соотношения для числа зубьев солнца (z₁), короны (z₂) и сателлита (z_{cm}) через радиусы этих зубчатых колес г₁ (солнца), г₂ (короны) и модуль т зубчатого зацепления имеют вид:

$$z_1 = \frac{2r_1}{m};$$
 $z_2 = \frac{2r_2}{m};$ $r_2 - r_1 = z_{cm} \cdot m,$ (14)
ткуда с учетом (5) - (8)

откуда с учетом

$$z_{cm} = \frac{z_1}{m} \cdot (|\mathbf{k}| - 1); \quad (15) \quad S_1 = \pm \frac{z_1}{z_{cm}} = \pm \frac{z_2}{|\mathbf{k}| - 1} \quad (16)$$

$$z_{\rm cm} = \frac{r_2}{m} \cdot \frac{|\mathbf{k}| - 1}{|\mathbf{k}|}; \quad (17) \quad S_2 = \pm \frac{z_2}{z_{\rm cm}} = \pm \frac{z_{\rm cm}}{|\mathbf{k}| - 1} \tag{18}$$

Кинематические базисные матрицы ТПМ из уравнений (12) и (13) с учетом соотношений (16), (18) удобно представить в виде:

$$\begin{bmatrix} 1 & -k & k-1 & 0\\ \pm \frac{2}{|k|-1} & 0 & \pm \frac{2}{|k|-1} & 1 \end{bmatrix}$$
(19)

$$\begin{bmatrix} 1 & -k & k-1 & 0 \\ 0 & \pm \frac{2|k|}{|k|-1} & \mp \frac{2|k|}{|k|-1} & 1 \end{bmatrix}.$$
 (20)

Для трёхзвенных дифференциальных механизмов, имеющих в общем случае двухвенцовые сателлиты на основании соотношений (1)-(4) имеем:

$$S_1 = \pm \frac{Z_2}{k \cdot Z_{cm2}}$$
(21)

$$S_2 = \pm \frac{Z_1 \cdot K}{Z_{cr1}}$$
 (22)

Кинематические базисные матрицы для ТПМ с двухвенцовыми сателлитами из уравнений (12) и (13) с учетом соотношений (21), (22) представляются в виде:

$$\begin{bmatrix} 1 & -k & k-1 & 0 \\ \pm \frac{Z_2}{k \cdot Z_{cr2}} & 0 & \mp \frac{Z_2}{k \cdot Z_{cr2}} & -1 \end{bmatrix},$$
 (23)

$$\begin{bmatrix} 1 & -k & k-1 & 0 \\ 0 & \pm \frac{z_1 \cdot k}{z_{cr1}} & \mp \frac{z_1 \cdot k}{z_{cr1}} & 1 \end{bmatrix}.$$
 (24)

Проиллюстрируем важное свойство инвариантности кинематических базисных матриц (12), (13); (19), (20) и (23), (24) и в целом инвариантность кинематических матричных систем на примере механической трансмиссии с планетарными механизмами по отношению к вектору неизвестных кинематических параметров, не смотря на отличие в записи этих матричных систем с разными значениями указанных выше характерных параметров зубчатых зацеплений S_1 и S_2 .

Рассмотрим универсальный подход к описанию кинематики двухдиапазонной механической трансмиссии (рис. 1), работающей а) - при включенном тормозе (T=1) и выключенном фрикционе (Φ =0), и б) - при включенном фрикционе (Φ =1) и выключенном тормозе (T=0).

Рисунок 1 - а) Кинематическая схема трансмиссии; б) структурная схема трансмиссии.

Кинематические подготовительные шаблоны с использованием кинематических базисных матриц в форме (12) и (13) имеет соответственно вид:

ω11	ω1	ω2	ω13	ω12	ω22	ωS1	ωS2
i1	1						
		i2	1				
1			k1-1	-k1			
S11			-S11			1	
1				k2-1	-k2		
S21				-S21			1
	-Ф	Φ					
					Т		
1							

a)

ω11	ω1	ω2	ω13	ω12	ω22	ωS1	ωS2
i1	1						
		i2	1				
1			k1-1	-k1			
			-S12	S12		1	
1				k2-1	-k2		
				-S22	S22		1
	-Ф	Φ					
					Т		
1							

б)

По приведенным кинематическим подготовительным шаблонам в среде MathCAD для вектора неизвестных кинематических параметров $\omega = [\omega_{11} \, \omega_1 \, \omega_2 \, \omega_{13} \, \omega_{12} \, \omega_{22} \, \omega_{S1} \, \omega_{S2}]^T$ с применением базисных матриц в форме (19) и (20) в случае а) (при включенном тормозе T=1 и выключенном фрикционе $\Phi = 0$) полные кинематические матричные системы трансмиссии имеют решения в виде, приведенном во фрагменте программы на рис. 2 :

Исходные данные: i₁=1,5; i₂=2; k₁= -2; k₂= -3; ω_{π} =100 рад/с.

	[i	I	1	0	0	0	0	0	0		(0)		(100)	
	0		0	i2	1	0	0	0	0		0		150	
	1		0	0	k ₁ - 1	-k ₁	0	0	0		0		-150	
	s ₁	1	0	0	-s ₁₁	0	0	1	0		0		-2J 50	
W =	1		0	0	0	k ₂ – 1	-k2	0	0	E=	0	lsolve (W,E) =	25	
	s ₂	1	0	0	0	-S ₂₁	0	0	1		0		<u>ر</u> م ۱	
	0		0	0	0	0	1	0	0		0		-100	
	1		0	0	0	0	0	0	0		(_{Wd})		-75	
	Г:	1	^		0	٥	0	0	^⁻		(0)		100	١
	1'1	1	v		v	v	Ų	v	Ŷ		ſ		160	I
	0	0	i2		1	0	0	Q	0		0		-150	I
	1	0	0		k1 - 1	-k ₁	0	0	0		0		-25	İ
_	0	0	0		-S ₁₂	S ₁₂	0	1	0	-	0		50	ļ
K =	1	0	0		0	k ₂ – 1	$-k_2$	0	0	E =	0	$ISOIVe(\mathbf{R}, \mathbf{E}) =$	25	
	0	0	0		0	-S22	s ₂₂	0	1		0		0	l
	0	0	0		0	0	1	0	0		0		-100	I
	1	0	0		0	0	0	0	0		(w,)		_75	ļ

Рисунок 2 - Фрагмент программы для трансмиссии в случае а).

Здесь $\omega = [\omega_{11} \omega_1 \omega_2 \omega_{13} \omega_{12} \omega_{22} \omega_{S1} \omega_{S2}]^T = lsolve(W,E) = lsolve(R,E). В данном случае иллюстрируется инвари$ антность полных кинематических матриц трансмиссии W и R по отношению к вектору неизвестных кине $матических параметров <math>\omega$, причем базисные матрицы ТПМ рассчитывались через передаточные отношения ТПМ в форме (19) и (20).

$$\mathbf{L} = \begin{bmatrix} \mathbf{i}_1 & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{i}_2 & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{k}_1 - \mathbf{1} & -\mathbf{k}_1 & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{5}_{11} & \mathbf{0} & \mathbf{0} & -\mathbf{5}_{11} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{5}_{21} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{k}_2 - \mathbf{1} & -\mathbf{k}_2 & \mathbf{0} & \mathbf{0} \\ \mathbf{5}_{21} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} \end{bmatrix} \quad \mathbf{E} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{w}_d \end{pmatrix}$$

$$\mathbf{M} = \begin{bmatrix} \mathbf{i}_1 & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{i}_2 & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{k}_1 - \mathbf{1} & -\mathbf{k}_1 & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix} \quad \mathbf{E} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0}$$

Рисунок 3 - Фрагмент программы для трансмиссии в случае a).

На рисунке 3 для случая а) иллюстрируется инвариантность полных кинематических матриц трансмиссии L и M по отношению к вектору неизвестных кинематических параметров ω , причем базисные матрицы TIIM в форме (12) и (13) включают характерные параметры зубчатых зацеплений S₁ и S₂, вычисленные через числа зубьев шестерен, входящих в планетарный механизм, по формулам (6) и (7).

Исходные данные к фрагменту программы на рис.3: $i_1=1,5$; $i_2=2$; $\omega_{\pi}=100$ рад/с; $(z_1=36; z_2=72; z_{c\tau 1}=18$ – числа зубьев первого планетарного ряда); $(z_1=17; z_2=51; z_{c\tau 2}=17 -$ числа зубьев второго планетарного ряда). Здесь $\omega = [\omega_{11} \ \omega_1 \ \omega_2 \ \omega_{13} \ \omega_{12} \ \omega_{22} \ \omega_{S1} \ \omega_{S2}]^T =$ lsolve (L,E)=lsolve(M,E).

Аналогичные фрагменты программы в среде Math-CAD приведены на рис.4, 5 для случая б) при включенном фрикционе (Φ =1) и выключенном тормозе (T=0), где также акцентируется внимание на инвариантности полных кинематических матриц трансмиссии по отношению к вектору неизвестных кинематических параметров $\omega = [\omega_{11} \ \omega_1 \ \omega_2 \ \omega_{13} \ \omega_{12} \ \omega_{22} \ \omega_{51} \ \omega_{52}]^T$.

На (рис.6 а) дана зависимость угловой скорости сателлитов обоих ТПМ от угловой скорости коленчатого вала тракторного двигателя ω[0, 300 рад/с]. В случае а) в пределах до 3000 об/мин угловой скорости коленчатого вала угловые скорости сателлитов не выходят за границу принятого в транспортном машиностроении ограничения ω≤600 рад/с (6000 об/мин) [5].

В случае б) это ограничение нарушено уже при ω =150 рад/с и трансмиссия не является функциональной (рис.6 б).

	[i1	1	0	0	0	0	0	0	(°)		(100)
	0	0	i2	1	0	0	0	0	0		-150
Ŧ	1	0	0	k ₁ - 1	-kı	0	0	0	0		-150
	s ₁₁	0	0	-s ₁₁	0	0	1	Q	F 0	lsolve $(T, E) =$	300
	1	0	0	0	k ₂ - 1	-k ₂	0	0	0		400
	\$ ₂₁	0	0	0	-s ₂₁	0	0	1	0		500
	0	-1	1	0	0	0	0	0	0		400
	[1	0	0	0	0	0	0	0_	(\mathbf{w}_d)		(300)
	[i1	1	0	0	0	0	0	0			
	0	0	i2	1	0	0	0	Û	0		100
	1	0	0	k ₁ – 1	- k ₁	0	0	0	0		-150
	0	0	0	-S ₁₂	S ₁₂	0	1	0	_ 0		-150
Y = 1 0 1	1	0	0	0	k ₂ – 1	-ko	0	0	E = 0	lsolve(Y,E) =	300
	0	0	0	0	-\$22	S22	0	1	0		400
	0.	-1	1	0	0	0	Ô	0	0		500
		۰ ۱	n.	0	n	n	Ň	n			400
	L.	1 0	×	~	5	•	0	°-	1 (Ma)		(300)

Рисунок 4 - Фрагмент программы для трансмиссии в случае б).

	[i ₁		1	0	0	0	0	C	0 O	1	(0)	i i	(100)
	0		0	i2	1	0	0	¢	0 0		0		-150
	1		0	0	k ₁ - 1	-k ₁	0	¢	0 0		0	lsolve (H, E) =	-150
	s ₁	1	0	0	-s ₁₁	0	0	1	0	-	0		300
II –	1		0	0	0	k ₂ -1	-k2	C	0 (10-	0		400
	S2	1	0	0	0	-s ₂₁	0	¢	1		0		500
	0		-1	1	0	0	0	C	0 0		0		400
	[1		0	0	0	0	0	¢	0		(w _d)	ļ	300
	[i]	1	0		0	0	0	0	0]		(0 `		(100)
	0	0	0 i ₂ 1		1	0	0	0	0		0		-150
	1	0	0	ł	s ₁ – 1	$-\mathbf{k}_1$	0	0	0		0		-150
V -	0	0	0	-	-s ₁₂	\mathbf{s}_{12}	0	1	0	F -	0	haba (U.D.	300
v=	1	0	0		0	k ₂ - 1	-k ₂	0	0	5-	0	Isolve (V,E) =	400
	0	0	0		0	-\$ ₂₂	\$ ₂₂	Û	1		0		500
	0	-1	1		0	0	0	0	0		0		400
	[1	0	0		0	0	0	0	٥J		w _d ,)	300

Рисунок 5 - Фрагмент программы для трансмиссии в случае б)

для случаев а) и б)

Выводы

 Проиллюстрирована инвариантность кинематических матричных систем на примере механической трансмиссии с планетарными механизмами.

 Построена универсальная матричная методика расчета кинематики планетарных передач, основанная на введении характерных параметров которые учитывают вид зацепления зубчатых колес.

3) Универсализирован и автоматизирован расчет кинематики планетарных передач, который позволяет определить функциональность и работоспособность трансмиссий транспортных средств.

Литература

- Планетарные передачи. Справочник /Под ред. В.Н. Кудрявцева и Ю.Н. Кирдяшева. –Л.: Машиностроение.– 1977.–536 с.
- Кудрявцев В.Н. Планетарные передачи. Машиностроение, 1966. – 307 с.
- Кристи М.К., Красненьков В.И. Новые механизмы трансмиссий. – М.: Машиностроение, 1967.– 216с.

- Красненьков В.И., Вашец А.Д. Проектирование планетарных механизмов транспортных машин. –М.: Машиностроение, 1986. –272с.
- Цитович И.С., Альгин В.Б., Грицкевич В.В. Анализ и синтез планетарных коробок передач автомобилей и тракторов. – Мн.: Наука и техника, 1987. – 224 с.
- Объемные гидромеханические передачи: Расчет и конструирование / О.М. Бабаев, Л.И. Игнатов, Е.С. Кисточкин и др.–Л.: Машиностроение, 1987.–256 с.
- Самородов В.Б. Генерация матричных моделей для гидрообъемно-механических трансмиссий произвольного вида //Системотехника автомобильного транспорта.– Харьков: ХГАДГУ, 1999.– С.61-68.
- Самородов В.Б. Системный подход к генерации математических матричных моделей для планетарных механических и гидрообъемно-механических трансмиссий произвольного вида //Вестник ХГПУ.– 1999.– Вып.46.– С.51-54.

УДК 621.876.1

ДИНАМИКА И ОПТИМИЗАЦИЯ ДИНАМИЧЕСКИХ ПАРАМЕТРОВ УПРУГИХ СВЯЗЕЙ КАНАТНЫХ ПОДЪЕМНИКОВ

А.П. Нестеров Профессор, доктор технических наук* Контактный тел.: (057)733-78-18

Т.Н. Осипова

Аспирант*

*Кафедра «Промышленный и автомобильный транспорт» Украинская инженерно-педагогическая академия ул. Университетская, 16, г Харьков, Украина

1. Постановка задачи

В канатах шахтных подъемников возникают динамические нагрузки при приложении моментов двигателей к подъемному барабану и при наложении механических тормозов [1, 2].

Рассмотрим двухклетьевую подъемную установку с качающимися площадками при снятии тормозных колодок и включении электродвигателей во время разгона подъемной машины.

2. Основное содержание

Конструктивная и эквивалентная динамическая крутильная схемы клетьевой подъемной установки с

