\_\_\_\_\_ ПРИНЛАДНАЯ МЕХАНИНА

УДК 629.114-585.001.24

Проиллюстрирована инвариантность кинематических матричных систем на примере механической трансмиссии с планетарными механизмами.Построена универсальная матричная методика расчета кинематики планетарных передач, основанная на введении характерных параметров которые учитывают вид зацепления зубчатых колес. Универсализирован и автоматизирован расчет кинематики планетарных передач, который позволяет определить функциональность и работоспособность трансмиссий транспортных средств.

# **УНИВЕРСАЛИЗАЦИЯ** И АВТОМАТИЗАЦИЯ РАСЧЕТА КИНЕМАТИКИ ПЛАНЕТАРНЫХ ПЕРЕДАЧ И **ТРАНСМИССИЙ ТРАНСПОРТНЫХ** СРЕДСТВ

В.Б. Самородов

Доктор технических наук, профессор. Заведующий кафедрой\* Контактный тел.: (057) 707-60-66

## А.О. Островерх

Аспирант\* \*Кафедра Автомобиле- и тракторостроения Национальный технический университет "Харьковский политехнический институт" ул. Фрунзе, 21, г. Харьков, Украина, 61002. Контактный тел.: (057) 707-60-66 e-mail:ostrov.sasha@gmail.com

### Введение

Более 40 лет назад ведущий специалист в области планетарных передач проф. Кудрявцев В.Н. прогнозировал, что «с переходом от обычных передач к планетарным намного уменьшаются диаметры зубчатых колес и, следовательно, при одной и той же степени притупления инструмента можно значительно увеличить твердость рабочих поверхностей зубьев и этим повысить нагрузочную способность зацепления, что во многих случаях может послужить причиной вполне оправданного перехода к более качественным материалам, более совершенной технологии, использованию поверхностных упрочнений, переходу к более высокой степени точности и т.д. Все это, в свою очередь, способствует существенному снижению габаритов и

Относительно малые габариты, вес, низкие потери на трение, благоприятные виброустойчивые свойства, высокая надежность, возможность разветвления мощности в трансмиссиях транспортных средств с целью передачи энергии нескольким ведомым элементам, в том числе и с бесступенчатым регулированием, - все это неоспоримые достоинства планетарных передач, которые обусловили их эффективное применение в автомобиле- и тракторостроении, авиастроении, судостроении, станкостроении, связи и приборостроении, т.е. практически во всех областях современного машиностроения.

С повышением мощности и производительности сельскохозяйственных и промышленных тракторов, комбайнов, тяжелых грузовых автомобилей и дорожных машин вопрос модернизации трансмиссий в целом и отдельно коробок перемены передач или раздаточных коробок, главных передач и конечных бортовых передач требует совершенствования расчетных методов планетарных передач и в частности их универсализацию и автоматизацию.

В целом планетарные механизмы обеспечивают более широкий диапазон передаточных отношений при меньших габаритно-массовых параметрах, разгрузку центральных валов и подшипников опор от радиальных усилий, способствуют меньшей напряженности зубчатых пар.

Анализ последних достижений и публикаций

Попытка введения характерных параметров, учитывающих вид зубчатых зацеплений и универсализация расчета кинематики планетарных механизмов, включая относительные скорости сателлитов, на основе классического кинематического анализа планетарных механизмов [1-5] была предпринята в работах [7,8]. Проблеме автоматизации анализа и синтеза планетарных передач посвящены десятки работ, из которых наиболее авторитетными трудами являются работы Кудрявцева В.Н., Кирдяшева Ю.Н. [1,2], Кристи М.К., Красненькова В.И., Вашеца А.Д. [3,4], Цитовича И.С. [5], Кисточкина Е.С., Бабаева О.М. [6]. На основании указанных работ целесообразно построить универсальную и весьма простую методику автоматизированного анализа кинематики сколь угодно сложных планетарных механизмов, не требующую обращения к классифицирующим справочным таблицам, формулам[1,2,5,6] или к громоздким графоаналитическим расчетным технологиям [3,4,6].

### Цель работы

- 1) Построение универсальной матричной методики расчета кинематики планетарных механизмов на основе введения характерных параметров, учитывающих вид зубчатых зацеплений.
- 2) Иллюстрация инвариантности кинематических матричных систем на примере механической трансмиссии с планетарными механизмами (рядами), не смотря на отличие в записи этих матричных систем с разными значениями указанных характерных параметров, по отношению к вектору неизвестных кинематических параметров.

### Универсализация математической модели кинематики планетарных механизмов

На основании уравнения Виллиса [1-5] для трёхзвенного планетарного механизма (ТПМ), имеющего в общем случае двухвенцовые сателлиты имеем:

$$\frac{\omega_{1} - \omega_{3}}{\omega_{2} - \omega_{3}} = k = \pm \frac{z_{cr1} \cdot z_{2}}{z_{cr2} \cdot z_{1}}, (1) \frac{\omega_{cm} - \omega_{3}}{\omega_{1} - \omega_{3}} = \pm \frac{z_{1}}{z_{cm1}} = S_{1}, (2)$$

$$\frac{\omega_{\rm cm} - \omega_3}{\omega_2 - \omega_3} = \pm \frac{z_2}{z_{\rm cm2}} = S_2, (3) k = \pm \frac{z_{\rm cr1} \cdot z_2}{z_{\rm cr2} \cdot z_1} = \frac{S_2}{S_1},$$
 (4)

где индексы "1", "2", "3", "ст" относятся соответственно к абсолютным угловым скоростям ω солнечной (1), коронной (2) шестерен, водила (3) и сателлитов (ст);  $z_1, \ z_2$  и  $z_{c\tau 1}, \ z_{c\tau 2}$  - числа зубьев на соответствующих шестернях; k - внутреннее передаточное отношение планетарного ряда (k<0, если ТПМ имеет внешнее и внутреннее зацепления и k>0 - в случае только внутренних или только внешних зацеплений [1-5]); z<sub>ст1</sub> и zc<sub>т2</sub> - числа зубьев в общем случае двухвенцовых сателлитов, входящих в контакт с солнечной ( $z_{cт1}$ ) и коронной ( $z_{cт2}$ ) шестернями; zcт - число зубьев в случае одновенцовых сателлитов, S<sub>1</sub>, S<sub>2</sub> - характерные параметры сателлитов, которые имеют физический смысл передаточных отношений зубчатых зацеплений. Знак при k автоматически определяется знаками характерных параметров сателлитов S<sub>1</sub> и S<sub>2</sub> следующим образом: S<sub>1,2</sub><0, если венец сателлита имеет внутреннее зацепление с солнечной или коронной шестернями и S<sub>1,2</sub> >0 - в случае только внешних зацеплений. В случае одновенцовых сателлитов  $z_{cr1} = z_{cr2} = z_{cr}$ :

$$\frac{\omega_{1} - \omega_{3}}{\omega_{2} - \omega_{3}} = k = \pm \frac{z_{2}}{z_{1}}, (5) \frac{\omega_{cm} - \omega_{3}}{\omega_{1} - \omega_{3}} = \pm \frac{z_{1}}{z_{cm}} = S_{1},$$
 (6)

$$\frac{\omega_{\rm cm} - \omega_3}{\omega_2 - \omega_3} = \pm \frac{z_2}{z_{\rm cm}} = S_2, (7) \quad k = \pm \frac{z_2}{z_1} = \frac{S_2}{S_1}.$$
 (8)

Любое из уравнений (1)-(4) или (5)-(8)есть тождественное следствие трех других уравнений, что в итоге приводит к инвариантности кинематических базисных матриц ТПМ и, как будет показано ниже, - к инвариантности кинематических матричных систем трансмиссий в целом.

Основное кинематическое уравнение планетарного ряда и относительная угловая скорость сателлита  $\omega_S$  в его относительном движении вокруг водила на основании формул (4)-(6) с учетом введенной выше аксиоматики для знаков характерных параметров S<sub>1</sub> и S<sub>2</sub> по виду зацепления (внешнего - «+» или внутреннего - «-») записываются в виде:

$$\omega_1 - k\omega_2 + (k-1)\omega_3 = 0; \qquad (9)$$

$$\omega_{s} = \omega_{cm} - \omega_{3} = -S_{1}\omega_{1} + S_{1}\omega_{3}; \qquad (10)$$

$$\omega_{s} = \omega_{sm} - \omega_{s} = -S_{s}\omega_{s} + S_{s}\omega_{s}$$
 (11)

Особенностью уравнений (10), (11) является то, что знак их правой части изменен на противоположный по сравнению с рекомендациями трудов [1,2].

Как будет проиллюстрировано ниже введение в рассмотрение характерных параметров зубчатых зацеплений  $S_1$  и  $S_2$  с учетом их знаков от вида зацепления позволяет эффективно автоматизировать анализ кинематики сколь угодно сложных планетарных механизмов.

Кинематические базисные матричные уравнения ТПМ на основе (9)-(11) имеют вид[7,8]:

$$\begin{bmatrix} 1 & -k & k-1 & 0 \\ S_1 & 0 & -S_1 & 1 \end{bmatrix} \cdot \begin{bmatrix} \omega_1 & \omega_2 & \omega_3 & \omega_s \end{bmatrix}^T = 0$$
 (12)

$$\begin{bmatrix} 1 & -k & k-1 & 0 \\ 0 & S_2 - S_2 & 1 \end{bmatrix} \cdot \begin{bmatrix} \omega_1 & \omega_2 & \omega_3 & \omega_s \end{bmatrix}^T = 0$$
 (13)

Для наиболее распространенного и часто встречающегося в планетарных передачах, планетарного ряда с одновенцовым сателлитом соотношения для числа зубьев солнца  $(z_1)$ , короны  $(z_2)$  и сателлита  $(z_{cm})$  через радиусы этих зубчатых колес г1 (солнца), г2 (короны) и

модуль m зубчатого зацепления имеют вид: 
$$z_1 = \frac{2r_1}{m}; \qquad z_2 = \frac{2r_2}{m}; \qquad r_2 - r_1 = z_{\rm cm} \cdot m, \tag{14}$$
 откуда с учетом (5) - (8)

(16)

$$z_{cm} = \frac{r_{1}}{m} \cdot (|\mathbf{k}| - 1); \quad (15) \quad S_{1} = \pm \frac{z_{1}}{z_{cm}} = \pm \frac{2}{|\mathbf{k}| - 1}$$

$$z_{cm} = \frac{r_{2}}{m} \cdot \frac{|\mathbf{k}| - 1}{|\mathbf{k}|}; \quad (17) \quad S_{2} = \pm \frac{z_{2}}{z_{cm}} = \pm \frac{2|\mathbf{k}|}{|\mathbf{k}| - 1}$$

$$(18)$$

Кинематические базисные матрицы ТПМ из уравнений (12) и (13) с учетом соотношений (16), (18) удобно представить в виде:

$$\begin{bmatrix} 1 & -k & k-1 & 0 \\ \pm \frac{2}{|\mathbf{k}|-1} & 0 & \mp \frac{2}{|\mathbf{k}|-1} & 1 \end{bmatrix}$$
 (19)

$$\begin{bmatrix} 1 & -k & k-1 & 0 \\ 0 & \pm \frac{2|\mathbf{k}|}{|\mathbf{k}|-1} & \mp \frac{2|\mathbf{k}|}{|\mathbf{k}|-1} & 1 \end{bmatrix}. \tag{20}$$

Для трёхзвенных дифференциальных механизмов, имеющих в общем случае двухвенцовые сателлиты на основании соотношений (1)-(4) имеем:

$$S_1 = \pm \frac{z_2}{k \cdot z_{cm2}} \tag{21}$$

$$S_2 = \pm \frac{z_1 \cdot k}{z_{cri}} \quad . \tag{22}$$

Кинематические базисные матрицы для ТПМ с двухвенцовыми сателлитами из уравнений (12) и (13) с учетом соотношений (21), (22) представляются в виде:

$$\begin{bmatrix} 1 & -k & k-1 & 0 \\ \pm \frac{z_2}{k \cdot z_{cr2}} & 0 & \mp \frac{z_2}{k \cdot z_{cr2}} & -1 \end{bmatrix},$$
 (23)

$$\begin{bmatrix} 1 & -k & k-1 & 0 \\ 0 & \pm \frac{z_1 \cdot k}{z_{cr1}} & \mp \frac{z_1 \cdot k}{z_{cr1}} & 1 \end{bmatrix}.$$
 (24)

Проиллюстрируем важное свойство инвариантности кинематических базисных матриц (12), (13); (19), (20) и (23), (24) и в целом инвариантность кинематических матричных систем на примере механической трансмиссии с планетарными механизмами по отношению к вектору неизвестных кинематических параметров, не смотря на отличие в записи этих матричных систем с разными значениями указанных выше характерных параметров зубчатых зацеплений  $S_1$  и  $S_2$ .

Рассмотрим универсальный подход к описанию кинематики двухдиапазонной механической трансмиссии (рис. 1), работающей а) - при включенном тормозе (T=1) и выключенном фрикционе ( $\Phi=0$ ), и б) - при включенном фрикционе ( $\Phi=1$ ) и выключенном тормозе (T=0).



Рисунок 1 - a) Кинематическая схема трансмиссии; б) структурная схема трансмиссии.

Кинематические подготовительные шаблоны с использованием кинематических базисных матриц в форме (12) и (13) имеет соответственно вид:

| ω11 | ω1 | ω2 | ω13  | ω12  | ω22 | ωS1 | ωS2 |
|-----|----|----|------|------|-----|-----|-----|
| i1  | 1  |    |      |      |     |     |     |
|     |    | i2 | 1    |      |     |     |     |
| 1   |    |    | k1-1 | -k1  |     |     |     |
| S11 |    |    | -S11 |      |     | 1   |     |
| 1   |    |    |      | k2-1 | -k2 |     |     |
| S21 |    |    |      | -S21 |     |     | 1   |
|     | -Ф | Φ  |      |      |     |     |     |
|     |    |    |      |      | Т   |     |     |
| 1   |    |    |      |      |     |     |     |

a)

| ω11 | ω1 | ω2 | ω13  | ω12  | ω22 | ωS1 | ωS2 |
|-----|----|----|------|------|-----|-----|-----|
| i1  | 1  |    |      |      |     |     |     |
|     |    | i2 | 1    |      |     |     |     |
| 1   |    |    | k1-1 | -k1  |     |     |     |
|     |    |    | -S12 | S12  |     | 1   |     |
| 1   |    |    |      | k2-1 | -k2 |     |     |
|     |    |    |      | -S22 | S22 |     | 1   |
|     | -Ф | Φ  |      |      |     |     |     |
|     |    |    |      |      | Т   |     |     |
| 1   |    |    |      |      |     |     |     |

б)

Рисунок 2 - Кинематические подготовительные шаблоны для двух скоростных диапазонов (включения а) и б)).

По приведенным кинематическим подготовительным шаблонам в среде MathCAD для вектора неизвестных кинематических параметров  $\omega = [\omega_{11} \ \omega_1 \ \omega_2 \ \omega_{13} \ \omega_{12} \ \omega_{22} \ \omega_{S1} \ \omega_{S2}]^T$  с применением базисных матриц в форме (19) и (20) в случае а) (при включенном тормозе T=1 и выключенном фрикционе  $\Phi=0$ ) полные кинематические матричные системы трансмиссии имеют решения в виде, приведенном во фрагменте программы на рис. 2 :

Исходные данные: i<sub>1</sub>=1,5; i<sub>2</sub>=2; k<sub>1</sub>= -2; k<sub>2</sub>= -3;  $\omega_{\text{д}}$ =100 рад/с.

Рисунок 2 - Фрагмент программы для трансмиссии в случае a).

.....

Здесь  $\omega = [\omega_{11} \ \omega_1 \ \omega_2 \ \omega_{13} \ \omega_{12} \ \omega_{22} \ \omega_{S1} \ \omega_{S2}]^T = lsolve(W,E) = lsolve(R,E). В данном случае иллюстрируется инвариантность полных кинематических матриц трансмиссии W и R по отношению к вектору неизвестных кинематических параметров <math>\omega$ , причем базисные матрицы ТПМ рассчитывались через передаточные отношения ТПМ в форме (19) и (20).

Рисунок 3 - Фрагмент программы для трансмиссии в случае a).

На рисунке 3 для случая а) иллюстрируется инвариантность полных кинематических матриц трансмиссии L и M по отношению к вектору неизвестных кинематических параметров  $\omega$ , причем базисные матрицы ТПМ в форме (12) и (13) включают характерные параметры зубчатых зацеплений  $S_1$  и  $S_2$ , вычисленные через числа зубьев шестерен, входящих в планетарный механизм, по формулам (6) и (7).

Исходные данные к фрагменту программы на рис.3:  $i_1$ =1,5;  $i_2$ =2;  $\omega_{\pi}$ =100 рад/с; ( $z_1$ =36;  $z_2$ =72;  $z_{c\tau 1}$ =18 – числа зубьев первого планетарного ряда); ( $z_1$ =17;  $z_2$ =51;  $z_{c\tau 2}$ =17 – числа зубьев второго планетарного ряда). Здесь  $\omega$ =[ $\omega_{11}$   $\omega_1$   $\omega_2$   $\omega_13$   $\omega_{12}$   $\omega_{22}$   $\omega_{S1}$   $\omega_{S2}$ ]<sup>T</sup>=lsolve (L,E)=lsolve(M,E).

Аналогичные фрагменты программы в среде Math-CAD приведены на рис.4, 5 для случая б) при включенном фрикционе ( $\Phi$ =1) и выключенном тормозе (T=0), где также акцентируется внимание на инвариантности полных кинематических матриц трансмиссии по отношению к вектору неизвестных кинематических параметров  $\omega$ =[ $\omega$ <sub>11</sub>  $\omega$ <sub>1</sub>  $\omega$ <sub>2</sub>  $\omega$ <sub>13</sub>  $\omega$ <sub>12</sub>  $\omega$ <sub>22</sub>  $\omega$ <sub>S1</sub>  $\omega$ <sub>S2</sub>]<sup>T</sup>.

На (рис.6 а) дана зависимость угловой скорости сателлитов обоих ТПМ от угловой скорости коленчатого вала тракторного двигателя ω[0, 300 рад/с]. В случае а) в пределах до 3000 об/мин угловой скорости коленчатого вала угловые скорости сателлитов не выходят за границу принятого в транспортном машиностроении ограничения ω≤600 рад/с (6000 об/мин) [5]

В случае б) это ограничение нарушено уже при ω=150 рад/с и трансмиссия не является функциональной (рис.6 б).

Рисунок 4 - Фрагмент программы для трансмиссии в случае б).

Рисунок 5 - Фрагмент программы для трансмиссии в случае б)



Рисунок 6 - Зависимости угловой скорости сателлитов от угловой скорости коленчатого вала тракторного двигателя для случаев а) и б)

### Выводы

- 1) Проиллюстрирована инвариантность кинематических матричных систем на примере механической трансмиссии с планетарными механизмами.
- 2) Построена универсальная матричная методика расчета кинематики планетарных передач, основанная

на введении характерных параметров которые учитывают вид зацепления зубчатых колес.

3) Универсализирован и автоматизирован расчет кинематики планетарных передач, который позволяет определить функциональность и работоспособность трансмиссий транспортных средств.

### Литература

- 1. Планетарные передачи. Справочник /Под ред. В.Н. Кудрявцева и Ю.Н. Кирдяшева. –Л.: Машиностроение.— 1977.—536 с.
- 2. Кудрявцев В.Н. Планетарные передачи. Машиностроение, 1966. 307 с.
- 3. Кристи М.К., Красненьков В.И. Новые механизмы трансмиссий. М.: Машиностроение, 1967. 216с.

- 4. Красненьков В.И., Вашец А.Д. Проектирование планетарных механизмов транспортных машин. –М.: Машиностроение, 1986. –272с.
- Цитович И.С., Альгин В.Б., Грицкевич В.В. Анализ и синтез планетарных коробок передач автомобилей и тракторов. Мн.: Наука и техника, 1987. 224 с.
- 6. Объемные гидромеханические передачи: Расчет и конструирование / О.М. Бабаев, Л.И. Игнатов, Е.С. Кисточкин и др.—Л.: Машиностроение,1987.—256 с.
- 7. Самородов В.Б. Генерация матричных моделей для гидрообъемно-механических трансмиссий произвольного вида //Системотехника автомобильного транспорта.— Харьков: ХГАДГУ, 1999.— С.61-68.
- 8. Самородов В.Б. Системный подход к генерации математических матричных моделей для планетарных механических и гидрообъемно-механических трансмиссий произвольного вида //Вестник ХГПУ.— 1999.— Вып.46.— С.51-54.

### УДК 621.876.1

# ДИНАМИКА И ОПТИМИЗАЦИЯ ДИНАМИЧЕСКИХ ПАРАМЕТРОВ УПРУГИХ СВЯЗЕЙ КАНАТНЫХ ПОДЪЕМНИКОВ

А.П. Нестеров

Профессор, доктор технических наук\* Контактный тел.: (057)733-78-18

# Т.Н. Осипова

Аспирант\*

\*Кафедра «Промышленный и автомобильный транспорт» Украинская инженерно-педагогическая академия ул. Университетская, 16, г Харьков, Украина

Определены области минимальных коэффициентов динамичности канатов в пространстве параметров жесткости и диссипации за счет дополнительных упруго-вязких вставок

### 1. Постановка задачи

В канатах шахтных подъемников возникают динамические нагрузки при приложении моментов двигателей к подъемному барабану и при наложении механических тормозов [1, 2].

Рассмотрим двухклетьевую подъемную установку с качающимися площадками при снятии тормозных колодок и включении электродвигателей во время разгона подъемной машины.

### 2. Основное содержание

Конструктивная и эквивалентная динамическая крутильная схемы клетьевой подъемной установки с