681.3

(),

 $X = (x_1, x_2, x_3, ..., x_m)$

(1)

 $\Omega = \prod_{j=1}^{m} \frac{P(x_j/D_q)}{P(x_j/D_w)}$ (2)

 $P(D_q) + P(D_w) = 1$ (3)

 $P(D_q) \quad P(D_w) - P(D_w) = P(D_w) - P(D_w) - P(D_w) - P(D_w) = P(D_w) - P$ D_q D_w x_j D_k ,

> $A = \frac{1 - \beta}{\alpha} \cdot B = \frac{\beta}{1 - \alpha}$ (4)

 D_w D_q

 D_w . D_q . <*B*, D_{w} .

 $\mu(x_j/D_k),$

"). e_i , e_0 , e_1 , e_2 , e_3 , e_0 , e_3

$$e_0 \ge e_1 \ge e_2 \ge e_3$$
, $\sum_{i=1}^{3} e_i = 1$ (5)

 $\mu_1(x/D_k)$:

$$\mu_1(x_j/D_k) = e_i \cdot \mu(x_j/D_k). \tag{6}$$

, (,

),

,

:

.1.

, - w_i . -

 D_k .

2. (2) (6) -

$$\Omega = \prod_{j=1}^{m} \frac{P(x_{ji}/D_q) \cdot \mu_1(x_j/D_q)}{P(x_{ji}/D_w) \cdot \mu_1(x_j/D_w)}$$
(7)

,

46

3. $\mu(x_j/D_k) \qquad \qquad - \\ \mu(x_j/D_k) \qquad \qquad - \\ k_i.$

 $h(x_j/D_k) = k_1 P(x_{ji}/D_k) + k_2 \mu_1 (x_j/D_k),$ (8)

 $k_{i} > 0, \ \sum k_{i} = 1, \ i = \overline{1,2},$ $\Omega = \prod_{j=1}^{m} \frac{h(x_{j} / D_{q})}{h(x_{j} / D_{w})}.$ (9)

, -

,

004.048

• •, • •

, ,

•

, ,

•

,

· () -

-. , -. , -

· , -

. ,