## *ОЛЬХОВСКАЯ Т.И.*, *СВИЧКАРЬ А.С.*, *ЮФЕРОВ В.Б.*, докт. техн. наук

## ИОННО-ВАКУУМНАЯ СИСТЕМА АНАЛИЗАТОРА ТЯЖЕЛЫХ ИОНОВ

На данный момент ни в одной стране мира нет полностью замкнутого топливного цикла и практически все отработанное ядерное топливо (ОЯТ) отправляется на вечное хранение. Ранее проводилась разработка физических принципов плазменной переработки ОЯТ на демонстрационном плазменном сепараторе [1]. Однако для однозначного подтверждения работоспособности метода необходимо провести массовый анализ уходящих ионов плазмы.

Целью данной работы является создание анализатора, позволяющего разделять смесь по массовым группам и определять их количество.

Разделение по массам происходит при движении предварительно ускоренных в электрическом поле заряженных частиц — ионов — в магнитном поле [2]. Радиус траектории частицы, прошедшей разность потенциалов U во взаимно перпендикулярных электрическом и магнитном полях, будет

определяться отношением M/e:  $R = \sqrt{2MU/e} \cdot c/H$ , где M – масса частицы, e – заряд частицы, H – напряженность магнитного поля. Таким образом, ионы, прошедшие через магнитное поле, будут разделены по их массам.

Масс-анализатор должен подсоединяться к плазменному сепаратору, как показано на рис. 1а. Но вначале необходимо создать и проверить работоспособность анализатора. Для этого нужно создать отдельный ионный источник (рис. 1б). На рис. 1 цифрами обозначено: 1 — сепарационная камера; 2 — система откачки; 3 — приемник ионов. Для эффективной работы анализатора в камере достаточно обеспечить вакуум на уровне 10<sup>-5</sup> Торр.

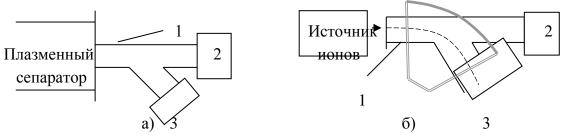



Рис. 1. Структурная схема масс-анализатора при подсоединении к сепаратору (a) и в общем случае (б)

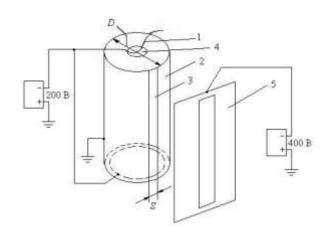



Рис. 2 Структурная схема источника ионов (иммерсионная линза).

Источник ионов имеет вид, показанный на рис.2.

1 - катод;

2 – камера источника ионов,
где происходит ионизация остаточного газа электронами;

3 – отверстие ионной эмиссии;

4 – отверстие электронной эмиссии;

5 – вытягивающая пластина

В объеме и на граничных поверхностях разрядной камеры источника происходят элементарные процессы газового разряда: диссоциация молекул, ионизация атомов, рекомбинация заряженных частиц и др. [3]. Уравнение ионизации и уравнение процесса перезарядки имеют следующий вид:

$$\frac{dn^{+}}{dt} = -\sigma_{01}n^{-}n_{0}V \qquad \frac{dn^{-}}{dt} = -\sigma_{10}n^{+}n_{0}V \qquad (1)$$

где  $n^+$ ,  $n^-$ ,  $n_0$  — концентрации положительных ионов, электронов в пучке и нейтрального газа соответственно;  $\sigma_{01}$ ,  $\sigma_{10}$  — сечения превращения нейтрального атома в положительный ион и положительного иона в нейтральный атом соответственно; V — скорость движения пучка.

Ток положительных ионов в камере определяется соотношением:  $I^+ \approx n_0 I^- \sigma_{01} L S_1/S$ , где  $I^-$  ток электронов; L – длина отверстия эмиссии;  $S_1/S$  – вероятность выхода ионов через отверстие ионной эмиссии ( $S_1/S = S_1/\pi D$ ). Подстановка приблизительных значений ( $n_0 = 3.5 \cdot 10^{11} \, \mathrm{cm}^{-3}$ ;  $\sigma_{01} = 3 \cdot 10^{-16} \, \mathrm{cm}^2$ ;  $S_1/S = 2/60 \approx 3 \cdot 10^{-2}$ ;  $L = 1 \, \mathrm{cm}$ ) дает следующее соотношение между  $I^+$  и  $I^-$ :  $I^+ \approx 3 \cdot 10^{-6} I^-$ . Значит, при  $I^- = 1 \, \mathrm{mA}$  имеем ионный ток  $3 \cdot 10^{-9} \, \mathrm{A}$ , что создает определенные трудности при его регистрации.

Выбор магнитной системы для анализатора рассмотрен в работе [4].

**Список литературы: 1.** *Юферов В.Б., Друй О.С., Ильичева В.О., Швец О.М., Винников Д.В., Ковтун Ю.В.* Резонансный плазменный сепаратор для разделения изотопов. Выбор параметров // Вестник НТУ «ХПИ». Серия. Электроэнергетика и преобразовательная техника. №35. 2004.С. 169-179. **2.** Изотопы: свойства, получение, применение. В 2 т. Т.1/ Под ред. *В.Ю.Баранова.*—М.:

ФИЗМАТЛИТ, 2005.—600 с. **3.** *Габович М.Д.* Физика и техника плазменных источников ионов.—М.: Атомиздат, 1972. **4.** *Свичкарь А.С., Ольховская Т.И., Юферов В.Б.* Выбор магнитной системы магнитного масс-анализатора ионов (в печати).