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ABSTRACT 

Plane channel with wall supported by springs and damper is considered 
to describe seal aeroelastic oscillations. One of the channel walls has two 
degrees of freedom and other wall is stationary. The investigation method 
is based on simulation of the non-stationary gas flow in a channel to 
determine the aerodynamic forces, followed by the analysis of the 
aeroelastic stability. 
Transient gas flow models are developed to obtain aerodynamic loads 
acting on the channel wall for two seal type (with smooth and finned 
channel). Corresponding rigidity and damping gas layer parameters 
obtained from these loads are included into the dynamic model of the 
seal for self-oscillations analysis. 
The effect of structural parameters on the implementation of convergent 
oscillation and self-oscillation modes is shown; a picture of the 
aeroelastic stability boundary is given. A paradox of destabilization of the 
system with the increasing damping is observed for a certain parameter 
set. 

 
 

INTRODUCTION  
Turbine engine performance, specific fuel consumption and service life are strongly defined by 

non-stationary processes, which may take place in seal ducts and channels between rotor and stator. 
Modern aircraft gas turbine engine have about 50-100 seals. Some of them have a smooth flowing 
channel (annular seals), other have a finned flowing channel (labyrinth seals). 

Gas flow influence on seal/channel elements and rotor dynamic behavior is of particular 
interest. Possible aeroelastic vibrations, especially self-oscillations of seal walls may cause fatigue 
failure of seals. As a result, lifetime of structure will be reduced, and operating costs will increase. 

The main subject of this paper is the simulating of seal wall aeroelastic oscillations induced by 
transient gas dynamic loads. Fig. 1 shows overall algorithm of the aeroelastic analysis. 

 

 
Fig. 1 The aeroelastic analysis algorithm 

 
AEROELASTIC SELF-OSCILLATIONS SMOOTH WALL 

Plane seal models with two degrees of freedom are considered to describe aeroelastic 
vibrations. Channel height  is considered to be small in comparison with its length L. Spring dampers 

                                                                 
1Corresponding author. Email tejoum@ciam.ru 



 
422 

with stiffness (k0, k1) and damping (с1) coefficients imitate seal structure characteristics. External 
pressure pe is constant. Moving wall is considered to be absolutely rigid. 

 

 
Fig. 2 Plane channel model with smooth walls 

 

If  is sufficiently small, then wall oscillations are described by equations 
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Here m is the wall mass; h and  are deviations from the static equilibrium position; ΔF and 

ΔM are the aeroelastic force and moment deviations from their values at the static equilibrium. These 
deviations can be represented as 
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Derivatives in equations (2) are called stiffness and damping gas seal coefficients. We have 
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Transient gas flow model is developed to obtain aerodynamic loads (force F and moment M) 

acting on the seal. Turbulent gas flow is generally described by a system of partial derivatives 
differential equations. This system consists of continuity equation, momentum equations, and energy 
equation. It also contains some equations, used to describe the turbulence model.  

At the same time, there is a lot of experimental data that allows us to define friction 
coefficients, depending on Reynolds number. Thus, the problem can be simplified to one-dimensional 
model that reduces calculation time. For 1D gas flow model, we can write continuity equation (4), 
momentum equation (5), energy equation (6), and state equation p RT   [3]. 
 

( ) ( )
0

S uS

t x

   
 

 
 (4)

1 2τ
0

u u p
u

t x x S

  
   

    
 (5)



 
423 

1
0

p

T T p
u

t x c t

   
  

   
 (6)

 
Here  is a gas density, u is a flow velocity, p is a pressure, and T* is a stagnation temperature. 

Shear stress τ  is equal to τ 2f u u  , where wall friction factor f for a turbulent flow is equal to 
0.3330.187 Rexf   . 

Deviations for  and h  are small, so the system can be linearized. One-dimensional modeling 
of transient gas flow in linear approximation is carried out using finite difference method with implicit 
scheme. In order to test the results, two-dimensional transient gas flow is analysed. The analysis is 
carried out using STAR-CD software. The difference between 1D and 2D model results (for 
aerodynamic force and moment) is less than 1,6%. Therefore it is valid to use one-dimensional linear 
approximation. 

Stiffness and damping gas layer coefficients are included into the dynamic model of the seal for 
self-excitation vibrations analysis and boundary of aeroelastic stability evaluation. 

Let us find the solution of system (1) in the following form 
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where  is a self-oscillations frequency, H and Φ are complex amplitudes. Combining (1), (2), (7) and 
writing non-trivial solution existence condition, we can determine parameters of self-excitation 
oscillations. 

Fig. 3 represents safe operating area 1, unstable area 2, and stability threshold 3 (harmonic 
self-oscillations curve). It must be noted, that for some seal parameters structural linear damping с1 
increase may cause oscillations increase and seal instability. This effect is similar to Mansour`s 
anomaly and can be explained as follows: there is no direct coupling between damping coefficient 
increase and damping work increase for such systems [1]. 

 

 
Fig. 3 Smooth seal stability region: 1 – safe operating area; 2 – unstable area; 3 – stability 

threshold 
 
Let us consider the behavior of characteristic equation roots  with damping coefficient с1 vary. 

As a result of characteristic equation numerical solution, two pairs of complex conjugate roots (1, 2) 
and (3, 4) are obtained. 
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The curves on the complex plane, represented in Fig. 4, show 1 and 3 versus с1 (increasing с1 
is indicated by arrows). For Re()<0 oscillations decrease exists. The intersection points of curves λ 
with ordinate axis Re()=0 correspond to periodic self-oscillations mode and the motion is unstable in 
area Re()>0. 

Fig. 5 shows complex amplitude ratio H/Φ for λ1..4 (self-oscillations points are marked by 
circles or triangles). 

 

   
Fig. 4 Roots  versus с1   Fig. 5 Amplitude ratio H/Φ versus с1 

 
Boundary of stability may qualitatively change, with variation of stiffness k0, k1. If k0, k1 are 

“small” values, then damping increasing turns the system from oscillations increase to oscillations 
decrease. Nonlinear effects appear with stiffness increasing (fig. 6). 

 

 
Fig. 6 Stability threshold for different stiffness 

 
So self-oscillations may be appearing in similar gas seal structures. For more complete stability 

analysis and flow condition influence on the seal dynamic behavior see [2, 3]. 
 

AEROELASTIC SELF-OSCILLATIONS FINNED WALL 
This method may be applied for the determination of aerodynamic stability for different seal 

types, for example for labyrinth seal with finned wall (see the Fig. 7). 
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Fig. 7 Plane channel model with finned wall (labyrinth seal) 

 
Gas flow at the labyrinth seal may be described by “one-volume” model [4] 
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where N is number of chambers between the fins, Si is cross-section chamber area, i is discharge 
coefficient 
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For checking the “one-volume” model results, two-dimensional transient gas flow is analysed. 

As before the difference between 1D and 2D model results is less than 2%. 
Fig. 8 shows stability region for finned channel. The effect of seal destabilization with increase 

damping coefficient isn’t displayed for selected seal parameters. 
 

 
Fig. 8 Finned seal stability region: 1 – safe operating area; 2 – unstable area; 3 – stability 

threshold 
 
The equations (1) and (8) can be joining to one nonlinear system, where 
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Numerical solution of this system for different damping coefficient values is confirm stability 
threshold (see the Fig. 8). As example, Fig. 9 shows h(t) and (t) behavior for small damping (point 
from unstable area, Fig. 8). 

 

 
Fig. 9 Wall oscillations for different damping 
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