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In this work a new approach to the modelling of vibroimpact systems was 
proposed. Verification criteria estimating the quality of the identified 
model of contact interaction were offered. The applicability of the 
approach was shown for numerical and experimental studies of a real 
shake-out machine. 

 
 
INTRODUCTION  

Dynamics of vibroimpact machines is quite a peculiar area of mechanical engineering. On the 
one hand oscillations with impact have very complex nature. On the other hand this dynamical 
process has to be modelled with high precision as soon as it concerns the robust design of such 
machines. Particularly, a good estimate of the value of the altering forces acting on their elements is 
really essential for the durability of the design. This motivates the development of a new model for 
the dynamics of vibroimpact systems proposed in this work. This model is elaborated here with a 
strong reference to the highly loaded shake-out machines. Such machines are used to separate the 
casting from its mould. For the dynamics of these machines the two specific factors are of a major 
significance. The first factor is the impact of the moulding upon shake-out grid. That takes place when 
a heavy moulding comes into contact with the oscillating grid and is characterized by high impact 
velocities and high impact loads. The other factor considered is the damage of the mould. At each 
collision some amount of sand lumps breaks off from the moulding. This separation dissipates some 
part of the kinetic energy. 

In the developed model there’s a strong emphasis on the two phenomena. We propose a new 
approach to their treatment. The key feature of this approach is that it enables to overcome the 
uncertainty that is characteristic for the considered class of mechanical systems. Generally most of the 
constructive elements of a shake-out machine have clearly and easily determined mechanical 
properties. The design parameters such as the mass of the grid frame, the stiffness of the elastic 
supports, the properties of the dampers are well known and are controlled by the designer. The 
uncertainty comes from the two factors mentioned above that govern the impact interaction of the 
moulding and the shake-out grid. The impact force is the key quantity that describes this interaction. It 
is influenced by many different factors some of which are random to a great extend. The existing 
models found in the literature [1 - 6] postulate only some simplistic laws expressing this dependency. 
Such an empirical approach can not capture in detail the important characteristics of the impact 
process, namely the duration of the impact, the amplitude and the time distribution of the impact force 
and the amount of energy dissipated during the collision at all the possible conditions. 

 
APPROACH DESCRIPTION  

The approach is described here for two-body vibroimpact system depicted on the Fig. 1. It 
represents in general the shake-out machine as soon as only vertical motion of its elements is 
considered. Such representation captures all the peculiar features this work is focused on. The first 
body 1m  can be viewed as the grid frame. It rests on elastic supports of total stiffness 1C  and dampers 
of viscosity 1H . It oscillates under action of a cyclic force tA ωsin . In the real shake-out machine 
this force is produced by debalance drive. The second body 2m  represents the moulding. It 
periodically falls onto the first body and pops back into the air. Hence there’s a non-linear one-sided 
constraint between these two bodies that is only active when they are in contact. 
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Fig. 1 Ttwo-body vibroimpact system 
 
According to the proposed approach the form of this impact interaction is not postulated and is 

initially unknown. The model for the impact force is established by an identification procedure based 
on the specially designed verification criteria. 
 
BASIC MODEL 

This procedure starts with the basic model that is set up in the beginning and does not change 
during the verification. First of all, it describes the known part of the examined object. For the 
considered vibroimpact system the equation of motion are well established and can be written as 
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Secondly, the initial setting postulates some properties the identified part of the developed 

model is either known or assumed to possess. In the considered case this concerns the unknown 
impact force F  only. The main assumption about this force is that it depends on the interpenetration 

21 ww −=ζ  of the two bodies and the penetration velocity 21 ww 

 −=ζ  
 

( )ζζ ,FF = .      (2) 
 
As if it were produced by a viscoelastic interface layer as depicted on Fig. 2. This layer 

effectively represents the elastic deformations of the moulding and its dissipative damage. Based on 
the representation (2) of the unknown impact response some further conditions can be formulated. 
Thus naturally the following two conditions must hold 

 
0=F , 0<ζ ,      (3) 
0≥F .       (4) 

 
The first one expresses the fact that the contact force vanishes when there’s no interpenetration 

(no contact) of the bodies. The second follows from a natural assumption that the force between the 
moulding and the grid is non-adhesive. Another property of F  we determine in the initial setting 
concerns the influence of the penetration velocity. The dependency of F  on ζ  is introduced in order 
to represent the dissipative damage of the moulding that we link to the viscoelastic layer. We 
postulate that damage and separation of sand lumps from the moulding takes only place when 
penetration velocity is positive. That means that the negative values of ζ  have no effect on the 
impact force: 

 
( ) ( )0,, ζζζ  FF = , 0<ζ .     (5) 

 
We also guarantee the dissipativeness of the impact response by introducing another condition 

related to the penetration velocity: 
 

( ) ( )0,, ζζζ FF > , 0>ζ .     (6) 
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The effect of these conditions on the character of impact interaction is illustrated on Fig.2. 
Consider a single collision depicted on the penetration-force diagram on Fig.2. Point 1 on this 
diagram corresponds to the moment of time t1 0)( 1 =tζwhen the bodies come into contact ( ) with 
some positive impact velocity .0)( 1 >tζ  At this moment one will observe a jump of the force F from 
0 value before contact to a positive finite value 0)0,0())(,0())(),(( 111 =>= FtFttF ζζζ   after the 
impact. The penetration grows until the repulsive contact force stops the motion of the two bodies 
towards each other at time t2

0)( 2 =tζ
, corresponding to the point 2 on the diagram. At this moment the relative 

velocity changes its sign from the positive to the negative, hence . The subsequent unloading 
is elastic and according to (5) follows the curve )0,(ζF  to the point 3 at which the two bodies 
disengage and the contact force vanishes again.  It should be noted that the viscoelastic loading branch 
1-2 is always above the elastic unloading branch 2-3 in case if contact interaction law (2) satisfies the 
condition (6). This fact guarantees the positiveness of the hysteresis of the impact force and a priori 
dissipativeness of the identified model. The Fig. 2 illustrates the above discussed effect of the 
constraints (3-6) in the two-dimensional phase space for a single phase trajectory of a typical 
collision. 
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Fig. 2 The loading curve for a single collision (a) and the general form of the viscoelastic 

force (2) satisfying the conditions (3-6) (b, c) 
 

 
PARAMETRIC APPROXIMATION 

With the initial setting at hand one can begin the identification of the unknown part, which in 
the considered case is the unknown impact force F . One needs to establish it as a function of the 
penetration ζ  and the penetration velocity ζ  which would satisfy the conditions (3-6). In this 
approach this function is sought for in the form of a series expansion in the domain 0,0 >> ζζ   (for 
the other values of ζ  and ζ  the impact force is determined then according to the identities (3) and 
(5)). Particularly, one can think of a polynomial representation 
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parameterized by unknown positive coefficients iα  that need to be established. 

The approximate law of the dependency of the impact force on the penetration and its velocity 
given by (7) has to be verified. This is done by comparison of the numerical simulation results 
obtained for the approximate model of the impact interaction. 
 
VERIFICATION CRITERIA  

In order to validate the approximation (7) some definite verification criteria have to be chosen. 
One can think of different quantities measures that would estimate the discrepancy between the 
prediction provided by approximate model and the real behaviour observed in the experiment. One 
can take different dynamic parameters of the examined vibroimpact system for this comparison. In the 
proposed approach the time distribution of the identified impact force is verified towards its 
experimental values. Particularly we focus on the on the steady-state oscillations regime since that is 
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most essential for the performance of the shake-out machine. Consider two time distributions of the 
impact force for the steady oscillations with frequency πων 2=  and period ν/1=T  plotted on the 
Fig. 3. One curve EF  is experimentally derived at the considered regime. The other NF  is obtained 
from a numerical simulation with all the known parameters set to be identical to the experiment and 
some approximate model for the impact interaction parameterized by coefficients iα . We put both 
distributions on a common time axis setting the beginning of the impact both in the experiment and 
the simulation to a same time point *t . The difference between the non-negative values )(tFE  and 

)(tFN  as well as the durations of the impulse Eτ  and Nτ derived from the experiment and the 
simulation is essential for the verification. 
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Fig. 3 Numerically predicted time distribution of the impact impulse at the steady-state 

regime compared to the experimental observation 
 

In order to measure this discrepancy we introduce several functionals of the time distributions 
)(tFE  and )(tFN : 
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This functionals have the properties of a norm 
 

0≥kI  ∀  ^
NF , ^

EF , k ;     (9) 

0=kI  =>  ^^
EN FF ≡ , 3,2=k .    (10) 

 
The lesser is their value the closer is the simulation results to the experimental observation, and 

hence the better is the approximation (7) for some definite set of the parameters iα  to the true impact 
interaction law. 

 
VERIFICATION 

We identify the parameters iα  of the approximate model by minimizing the value of one of the 
norms in (8). The choice of the functional turns out to be really essential. In order to illustrate this 
consider a model verification problem. 

Assume hat the impact force is really expressed by  
 

( ) 0,   ,21 >+= ζζζαζα F ,     (11) 
 

with the known msNmN ⋅⋅=⋅= 7
2

8
1 1028.1,1006.2 αα . In this artificial situation the 

approximation (7) with only two members of the series reproduces this “real” impact interaction law 
for 11 αα =  and 22 αα = . Consider then the sensitivity of the functionals kI  to the identified 
parameters. It is known that 0),( 21 =ααkI , since for these values of expansion coefficients ),( ζζ F  
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coincides with ),(^ ζζ F  and hence )()( tFtF NE =  (the experimental curve )(tFE  is attained from the 
virtual numerical experiment just repeats the simulation). On the Fig. 4 one can see the values of 

),( 21 ααkI  in the domain ,1003.1[ 8
1 ⋅∈α ×⋅ ]1009.3 8 ,1064.0[ 7

2 ⋅∈α ]1092.1 7⋅ . One can observe 
that the functionals 2I  and 3I  have a distinctive minimum at 11 αα = , 22 αα = . To the contrary the 
functionals 1I  and 4I  display bad sensitivity towards the identified parameters, which will definitely 
hinder the minimization procedure. The situation can be improved by introducing an alternative 
functional 2/)( 410 III +=  that is their combination and has better shape as can be seen on the Fig. 5.  
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Fig. 4 Variation of verification norms with 1I  (a), 2I  (b), 3I  (c), 4I  (d) 
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With a good choice of the 
functional norm one obtains 
stable convergence of the 
identification process. The 
minimization can be 
performed by an accelerated 
coordinated descent method. 
Particularly the choice of 2I   Fig. 5 Enhanced functional ( ) 2410 III +=  

 

functional lead to the following results. The consequent iterations are shown on the Fig. 6. The curves on 
the Fig. 7 show the convergence of the impact force distribution )(tFN  to its “exact” value. 
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Fig. 6 Iterative minimization process for 2I  
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Fig. 7 Proximity of the impact force for the 
consequent iterations to its exact distribution 

 

Fig. 8 The predicted character of the time 
distribution of the impact force by the 

approximate model 
 

The verification procedure displays for this model problem the performance similar to the 
illustrated above for the two other functionals 3I  and 0I . Thus minimization of 2I , 3I  or 0I  can be 
advised as the verification criteria for the general case. 
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APPROACH PERFORMANCE 
The proposed approach was employed for the identification of the model for the impact force 

between the grid frame and the moulding for the shake-out machine produced by Azovmash. A 4-
member polynomial expansion was taken for the verification. 

The proposed approximation captures most of the key characteristic features of the real impact 
interaction, which was proposed by the sensitivity analysis [7]. Particularly the non-linear members 
allow to introduce a shift of the maximum of the impact force from the beginning of the collision 
closer to its middle part (Fig.8). 

Ultimately a good agreement of the experimental data with the simulation with the identified 
model was achieved. Fig.9 shows the discrepancy between the experimental and numerical values of 
the stresses in the shake-out grid frame controlled during the verification [7]. The result model 
provides a very good prediction of the parameters of the dynamics of the examined vibro-impact 
system such as duration of the impact impulse, accelerations and force amplitude in the shake-out 
machine with a precision of 11-18% [7].  

 
CONCLUSIONS 
 In this work a new approach to the 
modelling of vibroimpact systems was 
proposed.  

The main distinctive features of this 
approach as well as the key result are 
summarised below. 

1. The approach does not postulate any 
certain form of the contact interaction model, 
but suggest its identification through a 
verification procedure. 

2. During this identification the 
physical peculiarities of the dynamical 
process are taken into account. Particularly, 
the damage of the moulding due to the 
applied shock is considered. It is effectively 
represented by a non-linear viscoelastic 
contact layer. 

3. Different verification criteria 
estimating the quality of the identified model of contact interaction were offered in this work. Their 
performance was illustrated for a model verification problem, based on which the final 
recommendations for their choice were made. 

4. The applicability of the approach was shown for numerical and experimental studies of a real 
shake-out machine. It enabled to achieve high precision in the description of its dynamics.  

The approach is extendable on a broader class of vibro-impact systems and used for their 
analysis and synthesis. 
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Fig. 9 Comparison of numerically predicted and 
experimental values of controlled stress in the 

shake-out grid frame character of the time 
distribution of the impact force by the 
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ABSTRACT 

The appearance of the data the author accidentally came upon during 
hand-made analog computer (by three years his senior Mr. M. Abe using 
vacuum-tubes as his research project) experiments on the 27th of 
November, 1961 was like a broken egg with jagged edges. The original 
sheet of data was now kept at Brookheaven National Laboratory in New 
York (BNL Photography Division Negative No. 1-380-90). The data was 
eventually recognized as a chaotic attractor first obtained in an actual 
physical system. In this presentation the author would like to reproduce the 
unforgettable situation before the study of chaos began. 

 
INTRODUCTION 

In this presentation, periodically forced oscillatory phenomena are leading as a whole. The 
subject matters of reflections were nothing but the author’s subjective accounts. Accordingly, he 
presumed to write proper nouns, and each subject was restricted within the possible inspections by 
references and/or survived materials. 
 
2. SYNCHRONIZATION PHENOMENA 

When a periodic force is applied, or a periodic signal is injected to self-oscillatory systems, 
the behavior of the systems is synchronized with the external signal depending on a frequency and an 
amplitude of the external force. Such effects are well known as synchronization phenomena. And a 
region of (control) parameters (frequency and amplitude of external signal) is called synchronization 
regime. Self-oscillatory systems generate respective fixed oscillations whose (angular) frequencies 
and amplitudes are maintained constants which depend on system structures and parameter values of 
consstituent elements. 

When control parameters are given outside of synchronization regimes, asynchronous beat 
oscillations appear. It is well-known that the mechanism of synchronization is classified into two 
kinds, that is, frequency entrainment (pull-in) and (amplitude) quenching. Consequently, for 
intermediate values of external signals between the above mentioned two mechanisms, there may 
appear overlapped regime of both mechanisms in general, that is, coexisting attractors may be 
observed. The boundaries of different regimes are called bifurcation sets on the parameter plane. 

Asynchronous beat oscillations observed in the periodically forced van der Pol’s oscillator 
were represented by invariant simple closed curves of the mapping  ܶ ◌ defined by using solutions of the 
equation. While among beat oscillations in general periodically forced self-oscillatory systems chaotic 
oscillations were subsisted. It was the author who first disclosed a chaotic oscillation in a periodically 
forced negative resistance oscillator. Since he met the data (like a broken egg), it rubbed him with the 
question “What are the possible steady states of a nonlinear system?” It seemed to give him intuitions 
that were shape of the attractor and movement of stroboscopic images on the attractor. In this section, 
Broken Egg (chaotic) Attractor and Local Bifurcation Sets are briefly explained. In both following 
Figures 1 and 2, items (a) were obtained in 1961, while items (b) were in 2006, truly 45 years was 
elapsed between these materials were obtained. The differential equation under study was 
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