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The model of nonlinear vibrations of one disk rotor supported by two 
journal bearing is obtained. The fluid film of journal bearing is described 
by the Reynolds’ equation. Shaw-Pierre nonlinear modes, harmonic 
balance method and continuation technique are used to study the rotor 
dynamics. Self-sustained vibrations of the rotor take place at rotor 
angular velocity much lower then the angular velocity of Hopf 
bifurcation. These self vibrations occur due to saddle-node bifurcations.  

 
 

INTRODUCTION 
Self-sustained vibrations of rotors take place due to influence of carrier fluid film on the rotor 

motions. Self-sustained vibrations lead up to failure of several turbines [1]. Now the modern methods 
of nonlinear dynamics are used to analyze the self-sustained vibrations of rotors [2]. Akers [3] 
analyzed the pressure of a fluid film of the journal bearing. Poznjak [4] analytically describe the 
pressure of fluid film as a function of general coordinates, velocities and acceleration. Olimpiev [5] 
obtained the asymptotic solution of the Reynolds’ equation using the variational approach. Karintsev, 
Shul’genko [6] obtained the model of pressure in fluid film of short journal bearings. The vibrations 
of symmetric rotor supported by short journal bearings are treated in [7]. Ovcharova, Goloskokov [8] 
analyzed the rotor forced vibrations accounting short journal bearings. They described the shaft 
dynamics by three discrete masses. Muszynska [9, 10] considers the symmetric rotor with one journal 
bearing. The mathematical model of rotor dynamics based on experimental data is treated. 

In this paper one disk rotor supported by two journal bearings are considered. Shaw-Pierre 
nonlinear modes are used to study self-sustained vibrations of rotor.  

 
1. PROBLEM FORMULATION AND MAIN EQUATIONS 

It is assumed that the disk is rigid and the shaft is elastic (Fig.1). The shaft is supported by two 
short journal bearings.  

 

    

Fig. 1 Sketch of one disk rotor 
 

During disk vibrations, the parts of the shaft in journal bearings A and B are vibrated too. The 
vibrations of the journals A and B (Fig.1) is described by the general coordinates ( )11, yx  and 
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( )22, yx , respectively. Two journal bearings are identical. Forces of carrier fluid film occur due to 
journal motions. The projections of these forces on the axes x  and y  are denoted by ( );; iix yxF  

( );; iiy yxF  2,1=i . The rotor is rotated with constant angular velocity Ω  about z  axes; the angular 
velocity of the disk has the following form: 
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Then angular velocity of the rotor has following form: 213 sinθθθ  +=Ω . The kinetic energy 

of the disk are the following form: 
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where yx,  are displacements of the point, when the axis of the shaft and the disk are intersected; 

pe II ,  are diametrical and polar moment of inertia of the rotor, respectively. The shaft potential 
energy has the following form:  
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where 122211 ,, ccc  are elements of stiffness matrix, 
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The equations of system motions with respect to the general coordinates 
( )221121 ,,,,,,, yxyxyx θθ  have the following form: 
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Under the action of the gravity, the rotor takes up some equilibrium positions, which defines by 

the following values of the general coordinates: ( )221121 ,,,,,,, yxyxyx θθ . The rotor vibrations with 
respect to this equilibrium position are analyzed. Then the following change of the variables is used: 
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As a result the following dynamical system is derived: 
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The forces of carrier fluid film of short journal bearing are obtained as: 
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where BL  is a length of short journal bearing; φ  is an angle of center lines. It is assumed, that the 
fluid film is disposed in the region [ ]πθ ;0∈ . The pressure of the fluid film ( )θ,1zp  is determined 
from the solution of Reynolds’ equation [2]. This solution for the short journal bearing has the 
following form: 
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where µ  is a fluid viscosity; 1z  is local longitudinal coordinate of a journal bearing. The value h  is 
determined as: ( ) ( ) ,sincoscos φθφθθ +−+−=+= yxcech  where c  is the nominal clearance 
between the shaft and the bearing.  

Future analysis of fluid film forces will be carried out for the journal bearing A. The obtained 
results are true for the journal bearing B, if the general coordinates ( )11, yx  are changed on ( )22, yx . 

The following dimensionless variables and parameters are used in the future analysis: 
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Then the forces of the fluid film can be presented as: 
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where ( ) ( ) ( ) ( )
τ

φθφθ
d

dyxH =′+−+−= ;sin~cos~1 11 . 

The equilibrium position of the rotor under the action of gravity is determined. Then 
equilibrium of the journal A can be presented as: 
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The dynamics of the rotor with respect to the equilibriums positions is analyzed. Then the 

change of the variables (5) is rewritten with respect to dimensionless variables: 
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0,0, =+→+→ iyyyxxx iiiiii  Then the nonlinear forces (10) are presented as power series 

with respect to 1111
~,~,~,~ yxyx ′′ : 
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where 0,0, ; YX FF  are constant parts of fluid film forces; 1,1, ; YX FF  are linear parts of forces with 

respect to 1111
~,~,~,~ yxyx ′′ ; 3,3,2,2, ;;; YXYX FFFF  are nonlinear parts of the forces of the second and the 

third orders with respect to the general coordinates and velocities. The nonlinear forces (12) are 
substituted into (6). As the result, the equations of rotor motions have the following matrix form: 
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where [ ] [ ] ;~,~,~,~;,,, 2211121

TT yxyxqyxq == θθ ),( 11 qqW ′  are vector of nonlinear parts of forces 
(12). Nonlinear terms within the cubic summands of q  and q  are included in the model of self-
sustained vibrations of rotor. 
 
2.  THE METHOD OF DYNAMICS ANALYSIS 

Now the nonlinear modes for self-sustained vibrations analysis are considered. The motions 
of the system (13) close to the Hopf bifurcation are analyzed. Then the linear part of the system (13) 
can be presented as: 
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where [ ] [ ] [ ] ;,..., 81

TT vqqqzzz ===   E  is an identity matrix. As follows from the results of the 
numerical simulations, all eigenvalues of the matrix [ ]Γ  are complex conjugate; the solution of the 
system (14) has the following form: 
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If the equilibrium position loses stability, then in this bifurcation point two characteristics 
exponents have the following values: 12,1 χλ i±= . The rotor loss of stability describes by the 
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The following equation is true: 
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These two equations can be rewritten as 
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Combining (16) and (17), the linear part of the nonlinear mode is obtained as 
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The nonlinear terms are added into the equation (18) to study nonlinear modes of the self-
sustained vibrations. Then the nonlinear mode can be presented as 
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In order to obtain coefficients of the nonlinear part (19) classical Shaw-Pierre nonlinear modes 

are used [11].  
In order to obtain the motions, which are not nonlinear modes, harmonic balance method is 

used. Then the motions can be presented in the following form:  
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The solutions (20) are substituted in (13); the system of nonlinear algebraic equations with 

respect to amplitudes and frequency ω,,...,, 210 DAA  is derived. This system is solved numerically in 
order to obtain the frequency response. 

 
3.  NUMERICAL ANALYSIS 

Numerical solution of the nonlinear algebraic system is used to study amplitudes of self-
sustained vibrations. Fig. 2 shows the frequency response of the rotor. The eigenvalues of linear 
system is calculated to obtain the point of the Hopf bifurcation. At srad1710=Ω  the equilibrium 
loses stability and Hopf bifurcation take place. As the result, the unstable self vibrations occur. These 
unstable limit cycles undergo saddle-node bifurcation at the point 1A . The alternative branch of self 
vibration was found. This branch marked as ( )222 BAC . The curve ( )22 AC  of this branch describes the 
stable limit cycles, which become unstable at point 2A , where saddle-node bifurcation occur. 
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Direct numerical integration take place to verify the semi-analytical solutions. The Runge-Kutta 
method is used. Initial conditions for the direct numerical integration were chosen from the results of 
harmonic balance method. The calculation results are shown on Fig.2 as points. The solutions 
obtained by harmonic balance method are in good agreement with numerical simulation of the system. 

 

 

Fig. 2 The frequency response  
 

CONCLUSIONS 
Bistability of self vibrations of one disk rotor is investigated. Two types of stable motions are 

observed at [ ] srad /1700;300∈Ω . The first type reflects the uniform rotation of rotor. Self-
sustained vibrations occur due to saddle-node bifurcation 2A . 
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