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Problems The model of nonlinear vibrations of one disk rotor supported by two
Kharkov, Ukraine journal bearing is obtained. The fluid film of journal bearing is described

by the Reynolds’ equation. Shaw-Pierre nonlinear modes, harmonic
Oleksii V. Borysiuk balance method and continuation technique are used to study the rotor
NTU KhPI dynamics. Self-sustained vibrations of the rotor take place at rotor
Kharkov, Ukraine angular velocity much lower then the angular velocity of Hopf

bifurcation. These self vibrations occur due to saddle-node bifurcations.

INTRODUCTION

Self-sustained vibrations of rotors take place due to influence of carrier fluid film on the rotor
motions. Self-sustained vibrations lead up to failure of several turbines [1]. Now the modern methods
of nonlinear dynamics are used to analyze the self-sustained vibrations of rotors [2]. Akers [3]
analyzed the pressure of a fluid film of the journal bearing. Poznjak [4] analytically describe the
pressure of fluid film as a function of general coordinates, velocities and acceleration. Olimpiev [5]
obtained the asymptotic solution of the Reynolds’ equation using the variational approach. Karintsev,
Shul’genko [6] obtained the model of pressure in fluid film of short journal bearings. The vibrations
of symmetric rotor supported by short journal bearings are treated in [7]. Ovcharova, Goloskokov [8]
analyzed the rotor forced vibrations accounting short journal bearings. They described the shaft
dynamics by three discrete masses. Muszynska [9, 10] considers the symmetric rotor with one journal
bearing. The mathematical model of rotor dynamics based on experimental data is treated.

In this paper one disk rotor supported by two journal bearings are considered. Shaw-Pierre
nonlinear modes are used to study self-sustained vibrations of rotor.

1. PROBLEM FORMULATION AND MAIN EQUATIONS
It is assumed that the disk is rigid and the shaft is elastic (Fig.1). The shaft is supported by two
short journal bearings.
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Fig. 1 Sketch of one disk rotor

During disk vibrations, the parts of the shaft in journal bearings A and B are vibrated too. The
vibrations of the journals A and B (Fig.1) is described by the general coordinates (xl,yl) and
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(xz, yz), respectively. Two journal bearings are identical. Forces of carrier fluid film occur due to
journal motions. The projections of these forces on the axes X and Yy are denoted by FX(Xi ; yi);

Fy(xi Y ); i =1,2. The rotor is rotated with constant angular velocity Q about Z axes; the angular
velocity of the disk has the following form:

— ~(3) ~(3) ~(3)
a):a)lel +w262 +0)383

w, = 0,086, cos b, + 6, sin b, O

w, = 6, cosh, — 6, cos b, sin b,

Then angular velocity of the rotor has following form: Q = 6?3 + 6’1 sin @,. The kinetic energy
of the disk are the following form:

T - ?e(eg +67 cos? 0, )+ 7"(93 +6,sin0,f +?(X2 +y?) @
where X,y are displacements of the point, when the axis of the shaft and the disk are intersected;
lel p are diametrical and polar moment of inertia of the rotor, respectively. The shaft potential
energy has the following form:
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where C;;,Cy,,C;, are elements of stiffness matrix, ¢; = I—l; G, = |—2

The equations of system motions with respect to the general coordinates
(X, ¥,6,,6,,%, Y, %, Y,) have the following form:

. Xo — X
mx+011(X—§1X2—§2X1)+C12(92— 2| 1j:—mg

N Y2 Y
my+cu(y—§1)’2_§2Y1)_012(91+ 2 | 1j:0
| 0, cos? 0, — 1 6,6, sin 20, + 1 ,0;sin 6, + 1 ,Q6, cos b, —7"9192 sin 20, +

Yo=Y
I

N R . —
(4)
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%_Gzcnj(y—ﬁ)’z_ﬁyl) (gZClZ_I_J(gl y2| Y1j Fy (4, Y1)

c c X, — X
§1C11+|L2j(x_§1xz_§2X1)+(%+§1C12](92_ ZI 1]:_FX(X27V2)

clﬁ+g1qz)(91+y2|_ylj—(glql Cllzj(y §2%1=61Y2)= Fy (%, ¥2)

Under the action of the gravity, the rotor takes up some equilibrium positions, which defines by
the following values of the general coordinates: (X, 37671672@ Vi, X, 372). The rotor vibrations with
respect to this equilibrium position are analyzed. Then the following change of the variables is used:

(X, Y. 01,0, %, Y1, %z, Y2)_>

o= ~ - - - _ ©)
> (X4, T4 Y, 0461, 0+ 05, %+, Yo+ Vi, %o + %, Vo + V)
As a result the following dynamical system is derived:
x=RY 1.6,-1,06,+RY =0 ©
my=RY 1.6, +1,Q0,-R? =0
where Rgl) FY (%, Y1)+ FY (%, Y2); RX = I:x (%, Yo) + I:x (% %1);
RP? = llFY (%, Y1) - |2FY (X, ¥,); RY = |1Fx (%, Y1) - I2Fx (%, Y2)-
The forces of carrier fluid film of short journal bearing are obtained as:
Lb” L T
F, =—[ [(cos(6 + 4)p(6, Z)R)Kedz; F, = ” sin(6 + ¢)p(6, z)R)Adz @)
00 00

where Lg is a length of short journal bearing; ¢ is an angle of center lines. It is assumed, that the

fluid film is disposed in the region @ € [0; z]. The pressure of the fluid film p(z,6) is determined
from the solution of Reynolds’ equation [2]. This solution for the short journal bearing has the

following form:
3 oh _oh
h/; {Q% 25}21( z-Ly) (8)

where ¢ is a fluid viscosity; z is local longitudinal coordinate of a journal bearing. The value h is

determined as: h=c+ecosé = c— xcos(6 +¢)— ysin(@ +¢), where c is the nominal clearance

between the shaft and the bearing.
Future analysis of fluid film forces will be carried out for the journal bearing A. The obtained

results are true for the journal bearing B, if the general coordinates (X, ;) are changed on (X,, Y, ).
The following dimensionless variables and parameters are used in the future analysis:

i-z—f Yj="—; H:D; r=Qt 9)
C
Then the forces of the fluid film can be presented as:
L3B/'l RQ % v H 7 ivii 37 o1
H % cos(6 + g){ X, sin(6 + ¢)— ¥, cos(6 + ¢)— 2%/ cos(8 + @) 2, sin(6 + ¢)}dO

2c? (10)

3
Fy = LB: 59 j H 3 sin(0 + ¢){ X, sin(0 + ¢)— ¥, cos(6 + ¢) - 2X{ cos(6 + ¢)- 2V, sin(6 + 4)}d6
C" 0

Fx =
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where H =1— % cos(6+ ¢)— Visin(6+¢); ( ) :%.
T

The equilibrium position of the rotor under the action of gravity is determined. Then
equilibrium of the journal A can be presented as:

X0 =—6C0SPy; Yio=—6SiNgy, 190y = 71— ‘912 /(451) (11)

The dynamics of the rotor with respect to the equilibriums positions is analyzed. Then the
change of the wvariables (5) is rewritten with respect to dimensionless variables:

% =% +%0: Y = Y +Yio;i =12. Then the nonlinear forces (10) are presented as power series

with respect to X, V,, X, Y, :

Fx =Fxo+ FX,l()?ll Y1, X4, yl')Jr Fx,z(ily Y, X4, y£)+ Fx,s(il’ Y1, X4, yll)Jf

S S STy S S STy S S STy (12)
Fe =R+ FY,1(X1’Y1’X1vy1)+ FY,Z(Xl’yl’Xl’y1)+ FY’3(X1,y1,X1,y1)+...

where F, ;F, , are constant parts of fluid film forces; F, ;F,  are linear parts of forces with

respect to X, V,, X, V,: F,,;F, ,;F,;F,, are nonlinear parts of the forces of the second and the

third orders with respect to the general coordinates and velocities. The nonlinear forces (12) are
substituted into (6). As the result, the equations of rotor motions have the following matrix form:

M +[G]a=[K,]Ja+[D;]a +W(q, q) (13)

where q=[x, 6., Y, 02]T ol =[@,371,§2,)72]T; W(q,,q) are vector of nonlinear parts of forces
(12). Nonlinear terms within the cubic summands of g and ¢ are included in the model of self-
sustained vibrations of rotor.

2. THE METHOD OF DYNAMICS ANALYSIS
Now the nonlinear modes for self-sustained vibrations analysis are considered. The motions
of the system (13) close to the Hopf bifurcation are analyzed. Then the linear part of the system (13)

can be presented as:
) 0 E
7= z=r]z (14)
-Q -F

where z = [zl,..., 28]: [q q]T = [q V]T; E is an identity matrix. As follows from the results of the

numerical simulations, all eigenvalues of the matrix [F] are complex conjugate; the solution of the
system (14) has the following form:

4
2(t) = Z[CZjWZj eXp(lzjt)Jr CyjaWoj EXP(/lzj—lt)] (15)
i
where Ay =2, 4 ;Wy; =Wy, ;Cy; =Cy;4; () is denoted the complex conjugation.

If the equilibrium position loses stability, then in this bifurcation point two characteristics
exponents have the following values: A,, =i y;. The rotor loss of stability describes by the

following particular solution of the system (15): z(t) = C,W, exp(A,t)+CW, exp(4;t), where
W, =y, —-i6,;C, =KY—iK®; 4 = —iy;: KY KP are  constants  of  integration;
v = {71(1) e 718 }; 5, = {51(1) ey O } This solution can be presented as

7, ()= +6n,(t); v=18 (16)
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where 1, (t) = 2exp(a1t)[Kl(1) cos(z,t) - K2 sin( th)J;

m,(t) =-2 E‘Xp(alt)[Kl(l) sin( )+ K{? COS(th)J-
The following equation is true:

x=7m®+5m, 0 x=rm®+85n,1)
These two equations can be rewritten as

O] ®)

x5” — %o Xy —xp
nO="gs6 o0 TO="g 5 650 a7
717017 — 1170 717017 T 1170
Combining (16) and (17), the linear part of the nonlinear mode is obtained as
0] [ay ay]
y a3 Aagp
0 |an asp {X} 8)
0, 85 a5 | X
an g
10, ] [ ap |
200 oD gl

= v=2,..8 v#5.
1) (5 5) o(1) ' 2 1) (5 e 'V e
R I

The nonlinear terms are added into the equation (18) to study nonlinear modes of the self-
sustained vibrations. Then the nonlinear mode can be presented as

where a,, =

q; =Q;(X,V) =a;X+a,,V+a;X° +a,V’ +asXv+..

: 2 2 i
0 = Qua(X\V) =@y, 1 X+ 8y, oV + 8y, 3X" + 84,4V +8y, s XV+..; | =2,

In order to obtain coefficients of the nonlinear part (19) classical Shaw-Pierre nonlinear modes
are used [11].

In order to obtain the motions, which are not nonlinear modes, harmonic balance method is
used. Then the motions can be presented in the following form:

x= A, + A cos(wt) 6 =B, + B, cos(wt)+ B, sin(wt) (20)
y =C, +C, cos(wt)+C, sin(wt) 6, = D, + D, cos(wt)+ D, sin(wt)

The solutions (20) are substituted in (13); the system of nonlinear algebraic equations with
respect to amplitudes and frequency Ay, A,...,D,, ® is derived. This system is solved numerically in
order to obtain the frequency response.

3. NUMERICAL ANALYSIS
Numerical solution of the nonlinear algebraic system is used to study amplitudes of self-
sustained vibrations. Fig. 2 shows the frequency response of the rotor. The eigenvalues of linear

system is calculated to obtain the point of the Hopf bifurcation. At Q =1710 rad/s the equilibrium
loses stability and Hopf bifurcation take place. As the result, the unstable self vibrations occur. These
unstable limit cycles undergo saddle-node bifurcation at the point A, . The alternative branch of self
vibration was found. This branch marked as (C,A;B,). The curve (C,A,) of this branch describes the

stable limit cycles, which become unstable at point A, , where saddle-node bifurcation occur.
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Direct numerical integration take place to verify the semi-analytical solutions. The Runge-Kutta
method is used. Initial conditions for the direct numerical integration were chosen from the results of
harmonic balance method. The calculation results are shown on Fig.2 as points. The solutions
obtained by harmonic balance method are in good agreement with numerical simulation of the system.
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Fig. 2 The frequency response

CONCLUSIONS
Bistability of self vibrations of one disk rotor is investigated. Two types of stable motions are

observed at Q € [300;1700]rad/s. The first type reflects the uniform rotation of rotor. Self-
sustained vibrations occur due to saddle-node bifurcation A,.
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