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ABSTRACT 

Generating periodic solutions of Kepler problem in case of Hill's 
perturbation are investigated. Existence of two kinds of generated 
solutions by means of normal forms is proved. 

 
 

INTRODUCTION  
An efficient method of periodic orbits search is the method of generating solutions which was 

independently developed by A.D. Bruno [1] and M. Henon [2]. This method suggests to consider a 
nonintegrable problem as a perturbation of integrable one, therefore it makes possible to isolate such 
periodic solutions of unperturbed problem that may be continued into the periodic solution of 
nonintegrable one. 

We study generating solutions of Kepler problem in synodical coordinates which is perturbed 
with polynomial. This perturbation allows investigating families of period solutions of Hill's problem 
by periodic orbits of Kepler problem. The majority of known families of periodic solutions of Hill's 
problem were studied as continuation of generating solutions of a linear Hamiltonian system 
perturbed with singular function [3]. We propose to study families of periodic solutions of Hill's 
problem using the continuation of generating solutions of Kepler problem. These generating solutions 
are obtained with the help of approach described in [1, Chapter VII]. 

 
1.  HILL’S PROBLEM EQUATIONS AND THEIR PROPERTIES  

Hill’s problem is a limiting case of the well-known restricted three-body problem (RTBP). It 
describes the dynamics of a massless body (satellite) in the vicinity of the minor primary (Earth). 
Hill’s problem equations may be obtained in several ways but usually RTBP equations are 
transformed with so called Hill’s transformation. Hill’s transformation consists of two linear 
transformations. The first is a shift of coordinate origin at the position of the minor primary and the 
second is a special coordinate scaling. In the planar case Hill’s transformation is written in form 

 
ଵݔ = ߤ − 1 + ,ଵ/ଷܺଵߤ ଵݕ = ଵ/ଷߤ

ଵܻ,
ଶݔ = ,ଵ/ଷܺଶߤ ଶݕ = ߤ − 1 + ଵ/ଷߤ

ଶܻ
    (1) 

 
The easier way to obtain Hill's problem equations of motion is to apply Hill's transformation (1) 

to Hamiltonian of RTBP with generating function [4] or using Power Geometry technique [5]. 
Hamiltonian of the planar circular Hill's problem is 

 
ܪ = ଵ

ଶ
ଵݕ)

ଶ + ଶݕ
ଶ) + ଵݕଶݔ − ଶݕଵݔ − ଵ

௥
− ଵݔ

ଶ + ଵ
ଶ

ଶݔ
ଶ, where ݎ = ඥݔଵ

ଶ + ଶݔ
ଶ,  (2) 

here ݔ – vector of canonic coordinates, ݕ – vector of canonically conjugate momenta. Canonical 
equations of motion are invariant under finite group of transformations of order 4  
 

                                                             
1 Corresponding author. Email batkhin@gmail.com  



 
34 

Σଵ: (t, xଵ, xଶ , yଵ, yଶ) → (−t, xଵ, −xଶ , −yଵ, yଶ)
Σଶ: (t, xଵ, xଶ, yଵ, yଶ) → (−t, −xଵ, xଶ, yଵ, −yଶ)    (3) 

 
and their composition Σଵ ∘ Σଶ. In the configuration space these transformations act as axial 
symmetries relative to abscissa axis, ordinate axis and the coordinate origin correspondingly. The 
presence of these symmetries leads to the fact that all the families of periodic solutions form four 
classes. 

Nonsymmetrical orbits. Three more orbits correspond to each such orbit with the same period 
and initial conditions which are obtained with mentioned above transformations. 

Σଵ-symmetric orbits. One more orbit corresponds to each such orbit which is symmetrical 
with respect to the ordinate axis. 

Σଶ-symmetric orbits. One more orbit corresponds to each such orbit which is symmetrical 
with respect to the abscissa axis. 

Double symmetric orbits. These orbits are symmetrical with respect to coordinate axes to 
themselves. 

Hill's problem equations of motion possess the single first integral of motion which called 
Jacobi integral: 

 
ܥ = ଵݔ3

ଶ + ݎ/2 − ଵݔ̇
ଶ + ଶݔ̇

ଶ =  (4)    ܪ2−
 
and therefore it is nonintegrable problem [2]. 

Hill’s problem has complex set of one-parameter families of periodic solutions which can be 
continued into the periodic solutions of the RTBP. There are a lot of various applications of Hill's 
problem [4]. 
 
2. HILL’S PROBLEM AS A SINGULARLY PERTURBED LINEAR HAMILTONIAN 
SYSTEM 

Canonical change of variables ݔ = ඥ|ݕ ,ܺ|ܥ = ඥ|ܥ|ܻ allows to write Hamiltonian (2) of 
Hill's problem as a perturbation of linear Hamiltonian system ܪ଴ called Henon's intermediate problem 
with singular function ܴ: ܪ = ଴ܪ +  where ,ܴߝ

 
଴ܪ = ଵ

ଶ
( ଵܻ

ଶ + ଶܻ
ଶ) + ܺଶ ଵܻ − ܺଵ ଶܻ − ܺଵ

ଶ + ଵ
ଶ

ܺଶ
ଶ = ଵ

ଶ
, ܴ = − ଵ

௥
ߝ , = ଵ

|஼|య/మ.   (5) 
 
Normal form ܪ଴ = (ܳଵ

ଶ + ଵܲ
ଶ)/2 − 3/2 ଶܲ

ଶ of Hamiltonian ܪ଴ is obtained with the help of 
generating function ܵଶ(ܺ, ܲ) = ܺଵ( ଶܲ − ܺଶ) + ଶܲ(ܺଶ − 2 ଵܲ), which produces canonical variable 
change ܺଵ = ܳଵ + 2 ଶܲ, ܺଶ = ܳଶ + 2 ଵܲ, ଵܻ = − ଵܲ − ܳଶ, ଶܻ = − ଶܲ − ܳଵ. 

Canonical equations of motions defined by Hamiltonian ܪ଴ has one-parameter family of 
periodic orbits with period ଴ܶ =  in form of ellipses with semi-axes 1 and 2 and with the center at ߨ2
point (0, ܳଶ

଴). One more canonical variable change ܳଵ = ଵܲ ,߮ ݏ݋ܿܮ2√ =  of the first pair ߮ ݊݅ݏܮ2√
of conjugated coordinates together with time inversion ݐ = −߬ allow to write Hamiltonian ܪ଴ in the 
form ܪ଴ = ܮ− + 3/2 ଶܲ

ଶ. So one-parameter family of periodic solutions is defined by following 
values 

 
߮ = −߬, ܮ = 1 2⁄ , ܳଶ = ܳଶ

଴,  ଶܲ = 0    (6) 
 
The generating solutions of unperturbed problem satisfy condition ߲[ܴ] ߲ܳଶ

଴ = 0⁄ , where 
square brackets mean averaging along solution (6) (see Chapter VII, §1 [1]): 

 
[ܴ](ܳଶ

଴) = ଵ
ଶగ ∫ ܴ(ܳଶ

଴ , ߬)݀߬ = ଵ
ଶగ ∫ ௗఛ

ටொమ
బ൫ொమ

బିସ௦௜௡ ఛ൯ାଷ௦௜௡మఛାଵ

ଶగ
଴

ଶగ
଴    (7) 

 
Function (7) has the only extremum at the point ܳଶ

଴ = 0, therefore the only regular generating 
solution of Henon's intermediate problem is an ellipse (6) with center at the origin. This solution is 
easily identified with retrograde single-turn orbits of family f originally computed by J. Jackson 
(1913) and T. Matukuma (1932) (see [3]). The first order correction to the period of generating 
solution is computed by formula  ܶ = ଴ܶ + ߝ ଴߲ܶ[ܴ]/߲ܮ +  where averaging is calculated ,(ଶߝ)ܱ
along the generating solution (6). Finally, the asymptotic of the period of family f is of form 
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ܶ = ߨ2 − ൫√3ܭ2 2⁄ ൯/|ܥ|ଷ/ଶ +  (9)    ,(ଷି|ܥ|)ܱ

 
here ܭ is complete elliptic integral of the first kind. It is necessary to notice that the first order 
corrections to the period and initial conditions of the family f were calculated in [6] but formulas 
mentioned in the pages 345-346 are wrong. 

 
3.  HILL'S PROBLEM AS A REGULARLY PERTURBED KEPLER PROBLEM 

Hill's problem may be presented in a form of perturbed Kepler problem in synodical 
coordinates: ܪ෩ = ௄ܪ +  where ,ܴߝ

 
௄ܪ = ଵ

ଶ
ଵݕ)

ଶ + ଶݕ
ଶ) + ଵݕଶݔ − ଶݕଵݔ − ଵ

௥
, ܴ = ଵ

ଶ
ଶݔ

ଶ − ଵݔ
ଶ   (10) 

 
One can obtain Hamiltonian of Kepler problem in synodical coordinates for ߝ = 0 and Hamiltonian of 
Hill's problem for ߝ = 1. Let’s consider three main types of periodic solutions of Kepler problem: 
stationary points, circular orbits and elliptic orbits. It should be noticed that periodic solutions of 
Kepler problem in inertial (sidereal) coordinates are preserved in synodical coordinates in two cases: 
either sidereal orbit is circular or period of siderial orbit is commensurable with 2ߨ. We investigate 
only last case in this paper. 
 
3.1 Perturbation of the stationary points 

Stationary points of canonical equations of motion of Kepler problem form the unit circle ݎ = 1 
on the plane XOY, but perturbation ܴ from (10) destroys it and leaves two pairs of stationary points. 
First pair of stationary points with coordinates ൫±(1 + ,ଵ/ଷି(ߝ2 0൯ lays on X-axis and corresponds to 
the well known collinear Lagrange libration points. Second pair of stationary points with coordinates 
൫0, ±(1 − ߝ ଵ/ଷ൯ lays on Y-axis and tends to infinity whileି(ߝ → 1. It is possible to expect that 
periodic orbits situated outside the unit circle of stationary points will be destroyed at Hill's 
perturbation (10). 

 
3.2 Perturbation of elliptic orbits 

Let's write Hamiltonian of generating problem in modified Delaunay coordinates [7, Chapter 7] 
which provide the normal form of Hamiltonian ܪ௄  at vicinity of integral manifold of direct and 
retrograde elliptic orbits ࣞ݀ே and ࣞݎே [1, Chapter 7, §2]. The first approximation of normal form of 
Hamiltonian ܪ෩ is obtained by averaging of perturbation ܴ (see Chapter 3 [8]). So Delaunay variables 
(݈, ݃, ,ܮ  provide the following form of the functions (10) (ܩ

 
௄ܪ = ܩ− − ଵ

௅మ, ܴ = ଵ
ଶ

ଶݎ − ଷ
ଶ

 ଶℎ    (11)ݏ݋ܿ ଶݎ
 

here ݎ and ℎ are polar coordinates. Elliptic orbites are defined by the following values of Delaunay 
variables in case ߝ = 0: 
 

ܮ = ܩ ,ܽ√ = ᇱඥܽ(1ߝ − ݁ଶ), ݈ = ݃ ,ݐܰ = ߠ −  (12)    ݐ
 
here ܽ is a semimajor axis of the orbit, ݁ is its eccentricity, ܰ = ܽିଷ/ଶ is mean motion, ߠ is pericentre 
angle and ߝᇱ = ±1 specifies the direction of the motion. The value ߝᇱ݈ is mean anomaly which defines 
the position of the point on the elliptic orbit at specified moment of time, and the value ݃ defines the 
motion of the orbit pericentre, which uniformly rotate anticlockwise in synodical coordinates. Finally, 
 .is area integral of Kepler problem ܩ is defined by energy integral and ܮ

Let’s consider an integral manifold ℳ ∈ ࣞ݀ே ∪  ே which consists of periodic orbits withݎࣞ
rational mean motion ܰ = 1 + and with period ଴ܶ ݌/ݍ =  ෩ be a function of angleܪ Hamiltonian .݌ߨ2
variable ߠ and generalized momentum ܩ along manifold ℳ. Generating orbits are specified by 
condition  

 
,ߠ)ܴ]߲ ߠ߲/[(ܩ = 0      (13) 

according to formula (1.15) [1, Chapter 7], where square brackets means averaging along the elliptic 
orbit (12). The averaging of function ܴ is carried out over mean anomaly ݈, so 
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[ܴ] = ଵ
ଶగ ∫ ܴ(݈)ܰିଵ݈݀ଶగ(௣ା௤)

଴ . Function ܴ may be written in form ܴ = ܴଵ + ܴଶ, where ܴଵ =  ଶ/4ݎ−
and ܴଶ =  so condition (13) becomes ߠ 2ℎ. Since function ܴଵ does not depend on ݏ݋ܿ ଶݎ (3/2)−
trivial for its averaging. Function ܴଶ may be written in the form of Fourier series over mean anomaly 
with coefficients depending on Bessel functions of the first kind [9].  

The following statement is proved: 
 

[ܴଶ] =

⎩
⎪
⎨

⎪
⎧−

3ඥ݌య

2݁
,ᇱߝ)ଶ௣ܵ ߠ2 ݏ݋ܿ  ݌ ݂݅ (݁ + ݍ = 1,

−
3 ඥ݌య

√4య ݁
,ᇱߝ)௣ܵ ߠ2 ݏ݋ܿ  ݌ ݂݅ (݁ + ݍ = 2,

݌ ݂݅ 0 + ݍ > 2,

� 

 
where ܵ௣(ߝᇱ, ݁) = (1 − ݁ଶ) ܬ௣

ᇱ (݁݌) − ଶି௘మ

௣௘
(݁݌)௣ܬ + ᇱ݁√1ߝ − ݁ଶ ܬ௣

ᇱᇱ(݁݌) and ܬ௣ is Bessel function of 
the first kind. Function ܵ௣(ߝᇱ, ݁) was numericaly investigated for ݌ ≤ 1000 and it has following 
properties: 

1. ܵ௣(ߝᇱ, ݁) is analytical in the interval 0 ≤ ݁ < 1, 
2. ܵ௣(ߝᇱ, 1) = ݌/(݌)௣ܬ− < 0, 
3. Equation ܵ௣(ߝᇱ , ݁) = 0 has the unique root ݁௣

∗  in the interval 0 < ݁ < 1 if ߝᇱ = 1 and ݌ > 1. 
Thus there are two main families of generating solutions satisfying condition (13). 
Case 1. Symmetric orbits with ߠ = ݇ ,2/ߨ݇ = 0,1,2,3 and 0 < ݁ < 1.  
If ݌ + ݍ = 1 then evenness of integers ݌ and ݍ is different and there are two families of Σଵ-

symmetric orbits corresponding ߠ = 0,  and two families of Σଶ-symmetric orbits corresponding ߨ
ߠ = ,2/ߨ  .Some orbits for this case are shown on fig. 1 .2/ߨ3

 

 

 
Fig. 1 Single symmetric generating orbits for ݌ = 2, ݍ = −1, ݁ = 7/9, ᇱߝ = 1. 

 
If ݌ + ݍ = 2 then both ݌ and ݍ are odd and there are two families of double symmetric orbits 

with ߠ = 0,  .respectively. Some orbits for this case are shown on the fig. 2 ,2/ߨ
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Fig. 2 Double symmetric generating orbits for ݌ = 1, ݍ = 1, ݁ = 7/9, ᇱߝ = −1. 
Case 2. Asymmetric orbits with ߠ ≠ ݇ ,2/ߨ݇ = ݌ ,0,1,2,3 > ᇱߝ ,1 = 1 and ݁ = ݁௣

∗ . 
Approximate values of eccentricity ݁ corresponding to asymmetric generating orbits for ݌ = 2, … , 10 
are listed in table 1.  

 
Table 1 Critical value of eccentricity for asymmetric generating orbits 

N ࢖ࢋ ࢖
∗  

1 2 0.75822858044480 
2 3 0.85254323545950 
3 4 0.89215536030911 
4 5 0.91403781912693 
5 6 0.92797039943780 
6 7 0.93765362124966 
7 8 0.94479628596787 
8 9 0.95029677982004 
9 10 0.95467290426209 

 
Asymetric generating orbits are shown in fig. 3. Left picture corresponds the case ݌ = 2, ݍ =

−1 and right picture corresponds the case ݌ = 3, ݍ = −1. 
 

 
 
Fig. 1 Asymmetric generating orbits with ݌ = 2, ݍ = −1 (left) and ݌ = 3, ݍ = −1 (right). 
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