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Nonlinear normal modes in some pendulum systems and a 
stability of these modes are analyzed. Namely, dynamics of the spring 
pendulum and of the 2-DOF system, containing a linear oscillator and the 
attached pendulum, is considered. Nonlinear normal modes are obtained 
as by the multiple scales method, as well by construction of trajectories 
in configuration space. Stability of nonlinear normal modes is 
investigated by using the Mathieu and Hill equations, and by the 
algebraization of the equations in variations. Numerical simulation 
confirms an exactness of obtained analytical results.   

 
 

INTRODUCTION  
Pendulum systems are classical models in mechanics and theory of nonlinear vibrations. Their 

analysis permits to select important nonlinear dynamical effects [1,2]. Besides, such systems are used 
in engineering, in particular, in the absorption problems [3,4], and to describe some physical 
processes [5,6]. In spite of numerous investigations of the pendulum dynamics, as in the past [7], as 
well at present [8,9], analytical results are obtained only for vibrations having not large amplitudes. In 
this work new asymptotical methods and numerical simulations are used to construct nonlinear 
normal modes and analyze their stability.  Dynamics of the spring pendulum and of the 2-DOF 
system, containing a linear oscillator and the attached pendulum, is considered as for small, as well 
for large vibration amplitudes. Stability of the nonlinear normal modes is investigated too.   

 
1.  PENDULUM SYSTEMS UNDER CONSIDERATION   

A model of the spring pendulum is shown in the Fig.1. Free vibrations of the system is 
described by two generalized coordinates, ρ  and ϕ . Dissipation forces are not taken into account.   

 

 
Fig. 1. The spring pendulum 

 
Equations of motion are the following: 
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Terms of the power more than three by ϕ  in Taylor expansions of the functions ϕcos  and 
ϕsin , are discarded. One has the next transformation for a case of small values of the angle and 

spring dilation: ϕ µϕ→ , 0 zρ ρ µ− → , where µ  is a small parameter. Then the equations of 
motion can be rewritten as  
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where 
0

gml
c

ρ = −  is the spring extension in the system equilibrium position. 

It is possible to select two next vibration modes in the system: а) longitudinal vibrations, when 
the rotation is absent, )(,0 tzz ==ϕ ; b) coupled vibrations, )(),( tzzt == ϕϕ .   

The other two-DOF system is shown in the Fig. 2. A pendulum in the system can be considered 
as absorber of linear vibrations of the main linear oscillator. Vibrations of the system is described by 
two generalized coordinates, x  and θ .  

 
Fig. 2. The two-DOF system containing the pendulum as absorber.   

 
Equations of motion are here the following:  
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Using the Taylor expansions for functions ϕcos  and ϕsin , we save only terms of the power 
not more than three by ϕ . One assumes that the mass of the pendulum is essentially smaller than one 
of the linear subsystem. Using the next transformation, 2 2m mε→ , where ε  is a formal small 
parameter, it is possible to obtain equations of motion of the form: 
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Two vibration modes exist in the system, namely: a) coupled vibrations, ( )x x t= , ( )tθ θ= ; b) 

localized vibration mode, when values of vibration amplitude of the pendulum are essentially large 
than ones of the linear subsystems of the mass 1m .   

 
2. NONLINEAR NORMAL MODES IN PENDULUM SYSTEMS  
 
2.1. Construction of nonlinear normal modes for small amplitudes  

To construct the mode of coupled vibrations for the system (2) the multiple scales method is 
used. Namely, series by the small parameter: 2

0 1 2 ...z z z zµ µ= + + + , 2
0 1 2 ...ϕ ϕ µϕ µ ϕ= + + + , and  

the presentations 0 1 2

0 1 2
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( , ) ( , , ,...; ),

z t z T T T
t T T T
µ µ

ϕ µ ϕ µ
=

=
 where 0T t= , 1T tµ= , 2

2 ,...T tµ= , are used. The next 

transformations to construct the periodic solution are not presented here. As a result, on has the 
periodic solution of the system (2):  
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where mc /1 =ω , mg /2 =ω , expressions of the functions ( )0 0 2 3, ,...A A T T= , 

( )0 0 2 3, ,...B B T T= , ( )0 0 2 3, ,...C C T T= , ( )0 0 2 3, ,...D D T T=  are not presented here. One has the very 
good coincidence of the analytical results and numerical simulation by the Runge-Kutta method for 
nor large vibration amplitudes.  

In the Fig.3 it is presented a comparison of the analytical results and numerical simulation by 
the Runge-Kutta method for nor large vibration amplitudes. In the Fig.3,а it is shown a change in time 
of the variation z , and in the Fig. 3,б it is shown a change of the variation ϕ .  
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                                Fig. 3,а                                                            Fig. 3,б 

Fig.3. Mode of the coupled vibrations obtained by the method of multiple scales and by the 
numerical simulation.  

 
The same approach is used to construct vibrations of the system (3). A good correspondence of 

the analytical and numerical results is obtained.  
 

2.2. Construction of nonlinear normal modes for large amplitudes  
To construct coupled vibrations with large amplitudes theory of nonlinear normal modes 

(NNMs) is used [10-12]. Equation for trajectories of motions )(ϕzz =  for the system (2) may be 
obtained of the form:  
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where prime means a derivation by ϕ ; V  and K~  are respectively the system potential energy and the 
system kinetic energy. Equation (6) has singular points on the maximal equipotential surface, 

0=−Vh . Additional boundary conditions guarantee an analytical continuation of the NNM 
trajectory to this surface [10-12]:  
                021 2

000 =−+−+−++′− )/)(z(K~mg)z)(lz(K~cK~gzm ϕρµρµρϕ ,                  (7) 
where 0ϕϕ = , and 0=ϕ . Solution of the boundary problem (6) and (7) can be obtained in power 
series by ϕ . Amplitudes values 0ϕ ϕ=  depending on the energy value 

0h h=  are obtained too. 
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Numerical simulation shows a very good exactness of the analytical solution for large vibration 
amplitudes (Fig.4).   

 

Fig.4. Trajectory of mode of coupled vibrations in configuration space. Entire line represents 
the analytical solution; point line represents the checking numerical calculation.  

 
Construction of the mode of coupled vibrations in the power series by ϕcos ,  

( ) ( )2 2
0 1 0 1 2 0 1 2cos cos cos cos ...z z zϕ µ α α ϕ α ϕ µ β β ϕ β ϕ= + = + + + + + + ,                  (8) 

is very effective for large vibrations too.  
Nonlinear normal modes of the system (3) are determined by construction of their trajectories 

in a configuration space too. Equations and boundary conditions similar to ones (6), (7), are used. The 
power series are used for the NNMs construction. In Fig. 5 trajectories of the NNMs are presented. 
The non-localized mode of coupled vibrations, obtained in the form )(θxx =  is shown in Fig 5.a, and 
the localized mode, determined in the form )(xθθ = , is shown in the Fig. 5b.  

                             
                   Fig.5a.                                                                          Fig 5.b.  

 
Fig.5. Trajectories of mode of coupled vibrations in the system (3) configuration space.  

Fig.5a. Trajectory of the mode of coupled vibrations; Fig.5b. Trajectory of localized mode. 
 

3. STABILITY OF NONLINEAR NORMAL MODES IN PENDULUM SYSTEMS   
 

Stability of longitudinal motions investigated in details by many authors. The equation in 
variations, which are orthogonal to the rectilinear trajectory of the longitudinal vibration mode, is 
considered. The stability analysis may be made by reduction of the equation in variations to the 
Mathieu equation, or by the method of Hill determinants. In the last variant results are very close to 
ones obtained by the checking numerical simulation.  
Stability of mode of the coupled vibrations are investigated by approach which is connected with the 
well known classical definition of stability by Lyapunov [13,14]. In this case the values of variables 
are compared with their initial values. Necessary condition of stability of motion is the following:  

                            

                                  ( )( ) ( )( ) ( )( ) ( )( )2 2 2 2
0 0z t t zϕ ξ ϕ∆ + ∆ ≤ ∆ + ∆ ,       (9)  

where ( ) ( ) 0z t z t z∆ = − , ( ) ( ) 0t tϕ ϕ ϕ∆ = − , kzz /)0( 0=∆ ,  k/)0( 0ϕϕ =∆ . Here 0z  и 0ϕ  
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Fig.6. Boundaries of the stability/instability regions of the longitudinal vibrations.  

 
are initial values of the corresponding variables. It exists some arbitrariness in choosing of the 
constants k,ξ . It is used that 100,10 == kξ . Violation of the condition (9) shows to instability of 
the solution. Numerical calculation is made in points of some mesh on a plane of the system 
parameters until boundaries of the stability/instability regions on this plane will be stabilized. These 
boundaries are shawn in Fig.7 on the plane of parameters mgc /0

2 ρω =  and A  which is the angle 
vibrations amplitude. The instability region is inside of the lines.  

 

 
Fig.7. Boundaries of the stability/instability regions for mode of coupled vibrations.  

 
The pairs of solutions fork from the mode of coupled vibrations in bifurcation points which 

correspond to the stability/instability boundaries. Examples of trajectories of these forking solutions 
are shown in Fig. 7 for different values of the angle amplitude.  

 
Fig.8. Trajectories of forking solutions in the pendulum configuration space.   

 
In the Fig.9 it is presented boundaries of the stability/instability regions for the mode of 

coupled vibrations for the system (3), obtained by using the reduction to the Mathieu equation 
(exterior lines), and by using the more exact method of the Hill determinants (interior lines). Unstable 
vibrations are observed inside the lines. The forking solutions are shown for some values of the 
system parameters in the Fig. 10.  

Stability of the localized vibration mode is investigated by the Hill determinants for the 
equation in variations. It is obtained that regions of the mode instability are very narrow.  
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Fig.9. Boundaries of the stability/instability regions of the non-localized mode of the system (3) 

 

 
Fig.10. Trajectories of the forking solutions for the non-localized vibration mode. 

 
 
CONCLUSIONS 

 The nonlinear normal modes in pendulum systems and their stability are investigated both for 
small, and for large vibration amplitudes Numerical simulation shows a good exactness of the 
obtained analytical results.    
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