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The recent progress in the study of the energy localization and solitons in 
a variety of nonlinear systems where the effects of discreteness and 
periodicity become important, is overviewed.  

 
 

The recent progress in the study of the energy localization and solitons in a variety of nonlinear 
systems where the effects of discreteness and periodicity become important, is overviewed. This 
panoramic presentation will cover (i) generation and control of optical gap solitons in waveguide 
arrays and photonic lattices, including the most recent observation of polychromatic gap solitons and 
dynamics localization of light generated by a supercontinuum source, (ii) localized matter waves of 
Bose-Einstein condensates in two- and three-dimensional optical lattices, (iii) discrete localized 
modes in composite metamaterials and nanophotonic structures, and (iv) energy localization in carbon 
nanotubes and graphene nanoribbons.  

First of all, the most important recent advances in nonlinear photonics where many of novel 
theoretical findings have been verified in experiment, is emphasized. This includes the observation of 
surface solitons in one- and two-dimensional photonic lattices, the observation of polychromatic 
"rainbow" gap solitons in photonic lattices generated by a supercontinuum source [1], the generation 
of topologically stable spatially localized multivortex solitons, etc. 

One of the recent concepts in the theory of nonlinear waves is associated with a novel type of 
broad nonlinear states which appear in the gaps of the bandgap spectra of periodic systems such as 
light waves in periodic photonic lattices and Bose-Einstein condensates in optical lattices. These 
localized states cannot be treated by familiar multi-scale asymptotic expansion techniques, and they 
can be better understood as truncated nonlinear Bloch waves [2]. I demonstrate that these self-trapped 
localized nonlinear modes can be found in one-, two-, and three-dimensional periodic potentials, and 
they have been readily observed in experiments on nonlinear self-trapping of matter waves in one-
dimensional optical lattices. 

Finally, the energy localization in graphene structures and demonstrate the existence of 
spatially localized nonlinear modes in the form of discrete breathers in carbon nanotubes and 
nanoribbons [3], is discussed. In nanotubes with the chirality index )0,(m  there exist three types of 
discrete breathers associated with longitudinal, radial, and torsion anharmonic vibrations, however 
only twisting breathers survive in a curved geometry remaining long-lived modes even in the 
presence of thermal fluctuations. 
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We present a novel principle of vibration energy trapping based on 
vibration analogue of nonadiabatic Landau-Zener tunneling. We 
demonstrate analytically and numerically that in a system of two weakly 
coupled pendulums or oscillators, linear or nonlinear, an efficient 
irreversible transfer of vibration energy from one subsystem to another 
occurs when the coupled subsystems pass through the internal 
resonance. The internal resonance takes place due to parametric drive 
when the length, mass or spring stiffness of at least one of the 
pendulums or oscillators varies in the course of vibrations. Nonlinear 
effects result in a separatrix mode of vibration energy transfer, in the 
vicinity of which the irreversible character of the energy transfer is 
substantially enhanced. 

 
 

INTRODUCTION  
Tunneling is one of the most striking manifestations of quantum behavior and has been the 

subject of extensive research both in fundamental and applied physics. A well-known generic 
example of tunneling phenomenon is Landau-Zener tunneling (LZT), in which a quantum system 
subject to an external force tunnels across an energy gap between anti-crossing energy levels [1,2]. 
Quantum LZT was observed in semiconductor superlattices for electrons, as well as in optical lattices 
for ultracold atoms and Bose-Einstein condensates. In the case of electrons in semiconductor 
superlattice, the external force responsible for nonadiabatic energy-level crossing and LZT is exerted 
by an external electric field. LZT of optical waves was observed in optical lattices [3] and optical 
waveguide arrays [4]. Recently, LZT of bulk and surface acoustic waves in ultrasonic superlattices 
was predicted and observed [5,6]. Effective external forces in optical or acoustic LZT are produced by 
the perturbation of the corresponding optical or ultrasonic lattice. 

The common feature of the aforementioned examples of nonadiabatic LZT is the irreversible 
(and almost unidirectional) exchange of energy between two states caused by external forces or 
perturbations. The possibility of this type of exchange would also be desirable in vibrating mechanical 
systems, e.g., in towers or in an airplane’s wings. Here the impact excitation threatening the structural 
integrity of the system must be irreversibly transferred to a sacrificial subsystem. It turns out that a 
system governed by equations similar to that of a quantum system can in fact be designed. We noticed 
earlier a profound analogy between adiabatic quantum tunneling and energy exchange between 
weakly coupled oscillators, both linear and nonlinear [7]. In this work we present a vibration analogue 
of nonadiabatic quantum Landau-Zener tunneling that reveals a new type of energy trapping. We 
demonstrate analytically and numerically that a Landau-Zener-like transition can take place in a 
system of two weakly coupled oscillators. This can occur when the length, mass or spring stiffness of 
at least one of the oscillators varies during vibration. In result, an efficient irreversible transfer of 
vibration energy from one oscillator to another takes place when the coupled subsystems pass through 
the internal resonance. Such mechanical oscillatory systems represent new types of energy traps. 
These can be easily generalized for the dynamic protection of more complex systems from vibro-
impact actions, with numerous potential applications in nano-, micro-, and macromechanics. 
Nonlinear effects can enhance the irreversible character of the vibration energy transfer.  
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1.  IRREVERSIBLE TRANSFER OF VIBRATION ENERGY IN LINEAR COUPLED 
PARAMETRIC SYSTEMS 

We consider a system of two plane pendulums with lengths l1 and l2, and masses m1 and 
m2, weakly coupled by a spring (with a comparable with l1 

[ ]

( )2221112

222111

2
22

22

2
12

11

sinsin
2
1

)cos1()cos1(
2
1

ϕϕ

ϕϕϕϕ

llk

lmlmg
dt

dlm
dt

dlmL

−−

−+−−















+






=

equilibrium length). The Lagrange 
function of the system is written as follows:  
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where 1ϕ  and 2ϕ  are the deflection angles, and  k12 is the spring constant. Let l1 be a constant and l2
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be a function of time. Then the corresponding equations of motion are:  
 

      (2)  

 
We assume that  

                                           ))(1()( 212 tltl ∆+=                                                             (3) 

where )(2 t∆ describes a (relatively small) change in time of 2l .  In order to avoid a superfluous 
decrease in 2l , in the following we assume that  
 

                                       )/tanh()( 22222 TtTft −=∆ δ                                                     (4) 
 

where 2δ  and 12 /ωf  are independent small parameters of the same sign, 11 / lg=ω .  
Since the LZT is basically linear phenomenon, we start with the analysis of linearized Eqs. (2) 

for the case of 11 <<ϕ and 12 <<ϕ .There are several ways to proceed from two real equations of the 
second order (2) to four complex equations of the first order. Following the approach used in [8], we 
introduce two complex envelopes 1a   and 2a of the real deflection angles 1ϕ  and 2ϕ : 
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where we assume that 2,112,1 / ad td a ω< < . As follows from Eq. (5), the real part of the variable 

ia determines the envelope of iϕ , while its imaginary part determines the envelope of  the 
dimensionless time derivative 1// ωϕ d td i , 2,1=i . These properties of complex envelopes allow us 

to easily relate the envelope modulus ia with the vibration energy of the linearized i -th pendulum: 
2

15.0 iii amg lE = .  
Substituting Eqs. (3) and (5) in linearized Eqs. (2), we get the following two evolution 

equations for the complex envelopes 1a   and 2a  in the main approximation with respect to small 
parameters 2δ , 12 /ωf , and 2

112 /µωk ( )/1/1/(1 21 mm +=µ  is a reduced mass of 1m  and 2m ):  
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We also obtain two corresponding equations for the complex-conjugated envelopes *

1a and *
2a . 

The total vibration energy of the coupled pendulums is given by ),(5.0 2
22

2
111 amamgl +  which is 

the integral of motion.  For 2Tt < and )(2 t∆  given by Eq. (4), Eqs. (6) coincide with  the modified 
description of the quantum Landau-Zener-like transition [3]. The multiple scale expansion procedure, 
presented, e.g., in [9], leads to similar complex evolution equations. 

The same Eqs. (6) describe the dynamics of the complex envelopes of the displacements 1u  
and 2u  of two oscillators with masses 1m  and 2m and springs with equal coefficient of stiffness 1κ  or 
two oscillators with equal masses 1m  and springs with coefficients of stiffness 1κ  and 2κ , weakly 
coupled by a spring with coefficient of stiffness 112 κ<<k , when either 2m or 2/1 κ  changes in time 
according to Eq. (3) ( 2,1l  should be replaced by 2,1m  or  2,1/1 κ ). Introducing two complex envelopes 

1a   and 2a  of the real displacements 1u  and 2u  according to Eq. (5), under the same assumption 
2,112,1 / ad td a ω< < we obtain LZT-like Eqs. (6) for the complex envelopes 1a   and 2a . Here now 

111 / mκω = and parameter 2m  equals 1m  in the evolution equation for 2a . 

The asymptotic analytical solution of Eqs. (6) for large positive t  with )(2 t∆  given by Eq. (4) 

and the initial conditions 1)( 2
1 =− ∞a , 0)(2 =− ∞a  can be written as:  
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This equation describes the part of the initial vibration energy that is retained asymptotically in 

pendulum 1. 
To check the efficiency of the system of pendulums in the capacity of an energy trap, we 

calculated the time evolution of vibration energies of the coupled pendulums from the solution of 
linearized Eqs. (2) for the deflection angles 1ϕ  and 2ϕ and compare it with the numerical solution of 
LZT-like Eqs. (6) for the complex envelopes 1a  and 2a . Since the damping of low-frequency 
vibrations of pendulums is very small, the effect of damping on the energy exchange between 
pendulums can be neglected in the main approximation.  

In Fig. 1 we plot the vibration energies 1E and 2E  of pendulums 1 and 2 with 21 mm = and their 
total energy TE  versus time from the solution of linearized Eqs. (2) (lines 1, 2 and 3) alongside with a 
solution of LZT-like Eqs. (6) (lines 4 and 5) and with the LZT-like prediction, given by Eq. (7), for 
the part of initial vibration energy which is retained asymptotically in pendulum 1, line 6. The initial 
conditions correspond to the impact excitation of pendulum 1. The following realistic parameters and 
initial conditions were taken: 305.01 =l  m, 2 4 4.01 =m  kg, 7 8 5.01 2 =k  N/m, 22.02 =δ ,                     

0 6 2.02 =f  1−s  and 6.152 =T  s, and  
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Fig. 1. Solid lines 1, 2 and 3: Vibration energies 1E and 2E  of pendulums 1 and 2 and their 
total energy TE  versus time as solutions of linearized Eqs. (2). Dashed lines 4 and 5: 
Vibration energies of pendulums 1 and 2 as solutions of LZT-like envelope Eqs. (6). Solid 
line 6: Part of initial vibration energy which is retained asymptotically in pendulum 1, given by 
Eq. (7). Parameters used in the calculations are given by Eqs. (3), (4) and (8) in the case of 
equal pendulum masses.    

 
As one can see, the irreversible and intensive energy flow from the pendulum 1 to the 

pendulum 2 occurs. One can also conclude from Fig. 1 that the LZT-like envelope equations (6) 
correctly reflect the regularities of the process during its initial stage, when the most intensive 
resonance energy transfer occurs. The LZT-like prediction for the part of initial vibration energy, 
which is retained asymptotically in pendulum 1, is also impressively confirmed in our simulations, 
although the factor R  in Eq. (7) is not small ( 85.2=R ). According to our simulations, this value of 
R gives an approximate upper limit of the applicability of Eq. (7) for the considered classical systems. 
Large enough saturation time 2T  influences only the transient dynamics without affecting the 
asymptotic energy of pendulum 1. 

From the physical point of view, the irreversible energy exchange revealed above can be 
considered as the targeted energy transfer (TET) [7,10]. The exact internal resonance is fulfilled when 

12 ll =  (or 12 mm = , 12 κκ = ) and the eigenfrequencies of the coupled oscillators become equal 
(which occurs at 22 / ft δ= ). As the system moves out of resonance (for 22 / ft δ> ), there is no 
considerable reverse energy flow from pendulum 2 to pendulum 1. This phenomenon makes the 
second oscillator a vibration energy trap.  

Our calculations also show that the use of the lower or larger mass of pendulum 2 does not 
essentially suppress the irreversible TET. By corresponding change of the parameters 2δ and 12k  
together with the ratio between 2m and 1m ,  we can obtain a good agreement with the LZT-like 

prediction given by Eq. (7) both for 12 mm <  (e.g., for 12 5.0 mm = ) and 12 mm > (e.g., for 

12 2mm = ). Importantly in all the considered cases, the most interesting for possible applications time 
evolution and average asymptotic value of vibration energy of pendulum 1 are correctly described by 
conservative LZT-like equations (6), although the original classical system is a non-conservative one.  

 
2.  IRREVERSIBLE TRANSFER OF VIBRATION ENERGY IN NONLINEAR COUPLED 
PARAMETRIC SYSTEMS 

Now we describe briefly the effect of nonlinear properties (anharmonicity) of the coupled 
pendulums or oscillators on the irreversible vibration energy exchange between them. The effect of 
nonlinearities on the energy transfer in the considered coupled parametric system, described by Eqs. 

(2), increases with the increase of initial pulse given to pendulum 1, which is proportional to )0(
.

1ϕ . 
In Fig. 2(a) we present numerical solution of nonlinear Eqs. (2) for the time dependence of energies of 

the coupled pendulums in the case of relatively high initial pulse given to pendulum 1, 93.7)0(
.

1 =ϕ  
rad/s for 21 mm = , when the rest of parameters is the same as in Fig. 1. Due to energy transfer from 
pendulum 1 and parametric drive, at 15≈t s pendulum 2 finds itself in the whirling mode, in which 
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the reverse energy flow to pendulum 1 is suppressed. Such transition to the whirling mode of 
pendulum 2 is clearly seen in Fig. 2(b), which shows time dependence of pendulums deflection 
angles. Thus figure 2(a) demonstrates that nonlinear effects, together with optimized initial conditions 
and other parameters of the system, can make the energy transfer very effective: almost 100% energy 
of pendulum 1 is irreversibly transferred to pendulum 2 in 10 seconds.   

 

 
Fig. 2 (a) Vibration energies 1E and 2E  of pendulums 1 and 2 and their total energy TE  
versus time as solutions of nonlinear Eqs. (2), lines 1, 2 and 3, respectively. (b) Deflection 
angles 1ϕ  and  2ϕ  versus time as solutions of nonlinear Eqs. (2), lines 1 and 2, respectively. 
Parameters used in the calculations are given by Eqs. (3), (4)  and (8) in the case of 

93.7)0(
.

1 =ϕ  rad/s and equal pendulum masses. 
 
For the high enough initial pulse given to pendulum 1, it will immediately be excited to the 

whirling mode, in which further energy transfer to pendulum 2 is strongly suppressed. This means that 
the considered parametric system is characterized by an effective TET separatrix, which detaches two 
modes with almost complete and strongly suppressed incomplete energy exchange. TET separatrix is 
known for the energy transfer in passive nonlinear systems, in which the nonlinearity substantially 
changes the rate and completeness of the TET through the self-trapping of energy in one of the 
coupled subsystems [7,10]. Our results demonstrate that nonlinearities of the coupled elements can 
substantially affect TET in the active (parametric) systems also.  

 
CONCLUSIONS 

 We present a novel principle of trapping of the vibration energy.  This principle is based on 
the profound analogy that we have found between the irreversible transfer of the vibration energy in a 
classical parametric system and quantum nonadiabatic Landau-Zener tunneling. We demonstrate 
analytically and numerically that in a system of two weakly coupled pendulums or oscillators an 
efficient irreversible transfer of vibration energy from one subsystem to another occurs when the 
coupled subsystems pass through the internal resonance. Nonlinear effects can substantially enhance 
the irreversible character of the transfer of the vibration energy. The revealed phenomena open up the 
possibility of designing the fundamentally new types of energy traps for the dynamic protection of 
various nano-, micro-, and macromechanical systems.   
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