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The article is devoted to nonlinear oscillation of passive systems which 
have force-displacement characteristics with rectangular loops of 
hysteresis resulting from the dry friction force. Under certain conditions 
when force-displacement characteristic has segment of zero stiffness the 
resonance frequencies are shifted in area of higher frequencies defined 
by the size of this segment.  

 
 

INTRODUCTION  
The possibility of creation systems with quasi-zero-stiffness for protection of dynamic objects 

is now well known nowadays [1]. In the article [2] shows the possibility to creation systems with 
force-characteristics with rectangular hysteresis's loops resulting from the dry friction force (Fig.1). 
Height of  hysteresis’s loops is determined by the dry friction force R (where constFFqR −⋅= **, , 
q  is the coefficient, which determines the height of loops, *F  is the restoring force without the 
friction force). If the coefficient q  is more than 1 then the restoring force are absent, so 10 ≤≤ q . 
Variants when 1>q  are not checked.  

 

 
Fig. 1 Force characteristics with loops of hysteresis 

а – without segment of zero stiffness; b – with segment of zero stiffness ( 0,0 xx− ) 
 

Oscillation under the harmonic excitation )cos(0 ϕ+⋅⋅ tpF  (where 0F  is the amplitude of the 
correction force; p is the frequency; ϕ  is the initial phase) are determined both analytically and 
numerically. Loops of hysteresis are defined analytically by functions, shown in Fig. 1; (where k is 
the coefficient, which determines the inclination of loop’s sides; for diagrams in the Fig. 1, k = 10000; 
x0 is the value, which determines the size of segment of zero stiffness). 
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1. OSCILLATION OF SYSTEMS WHICH HAVE FORCE-CHARACTERISTICS WITH  
RECTANGULAR LOOPS OF HYSTERESIS WITHOUT SEGMENT OF ZERO STIFFNESS 

Six transcendental equations are solved in order to determine analytically the oscillation of 
systems with force-characteristics described in Fig.1, a. Oscillations under the subject to harmonic 
excitation ( )cos(0 ϕ+⋅⋅ tpF ) are determined numerically as well. Loops of hysteresis are described 
by functions shown in Fig. 1, a. The differential equation of the moving object with mass m  is: 

 
                   { }**0 )()()()cos( FxsignxsignFqtpFxm ⋅+′⋅⋅−+⋅⋅=⋅ ϕ ,         (1) 

 
For numerical solution it is possible to determine the oscillations for different coefficients q 

(Fig. 1, a). For 1=q , under the next relation 96.0/)2( 0* ≥⋅ FF , the oscillations are vanished. The 
amplitude-frequency characteristics are derived for the next relation: 96.0/2 0* ≤⋅ FF . The 
amplitude-frequency characteristic for 8.0/2 0* =⋅ FF  and HF 1000 =  is described in Fig. 2, a. The 
results of analytical and numerical solutions are considered coincident.  

 
2. OSCILLATION OF SYSTEMS WHICH HAVE FORCE-CHARACTERISTICS WITH 
RECTANGULAR LOOPS OF HYSTERESIS WITH SEGMENT OF ZERO STIFFNESS 

In order to determine analytically the oscillations for force characteristics shown in Fig. 1 ,b 
with segments of zero stiffness ( 00 ≠x ) and disturbing force )cos(0 ϕ+⋅⋅ tpF  it is necessary to solve 
nine transcendental equations [2]. The oscillations are determined numerically by solving the next 
differential equation: 
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Ti obtain the analytical solution, the nine transcendental equations are reduced to the one which 

is solved by the dichotomy method. Author can solve it in a specific frequency range which less than 
1p  (Fig. 2, b).  
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Fig. 2 Amplitude-frequency characteristics (q = 1) 
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The results of the analytical solution were coincided with results of the numerical one, but 
numerical solution of differential equation (2) was obtained for any frequencies of harmonic 
excitation p .  

For 00 =x  the amplitude-frequency characteristic obtained by solution of differential equation 
(2) is in coincident with amplitude-frequency characteristic obtained by solution of differential 
equation (1) (Fig. 2, a).  

For 1=q  and 96.0/)2( 0* ≥⋅ FF  for the case when 00 ≠x  (Fig. 1, b) oscillation do not vanish 
as for the case when 00 =x  (Fig. 1, a), but resonance’s frequencies are shifted in area of higher 
frequencies. The shift depends on the area of section with zero stiffness, 0x : the more smaller is the 
area, the more bigger is the shift (Fig. 2, b). For the numerical solution of differential equation (2) for 
set-up parameters two resonance’s frequencies ( 2

*
1
*, pp  - Fig. 2, b) are determined. Resonance 

oscillation (first resonance’s frequencies) are shown in Fig. 3, a. “Oscillation stop” takes place starting 
from the specific frequency **p  (Fig. 3, b).  

Relations between the first resonance’s frequencies, “oscillation stop” frequencies and the size 
of segment of zero stiffness are shown in the Fig. 4.  

 

 
 

mxFFHFkgm 1.00;2/2;100;500 0*0 ==⋅==  

а) - first resonance’s frequency ( 1
*1p ); b) “oscillation stop” ( **p ) 

Fig. 3 Oscillations  
 

 
 

2/2;100;500 0*0 =⋅== FFHFkgm  
а) first resonance’s frequencies б) frequencies of “oscillation stop” 

Fig. 4 Dependences of critical frequencies from size of segment of zero stiffness 
 

Oscillation of systems, which force characteristics shown in Fig. 1, b, were determined also for 
excitation [ ][ ]ϕ+⋅⋅ tpsignF cos0 . The next differential equation is solved:  

  
[ ][ ] [ ]

[ ][ ] [ ] [ ][ ]ϕ+⋅⋅=⋅++⋅⋅
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***                          (3) 

 
 Within specific parameters the oscillation frequency becomes in several times less than the 

frequency of excitation (Fig. 5). The frequency range of that effect exists is sufficiently narrow. (for 
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1;0;005.00;125;100 *0 ===== qmxHFHF ϕ  [ ]4.29.1 −⊂p ). For these parameters the 
relation of the oscillation frequency to the excitation frequency is little bit more than three (Fig. 5). 
This effect is not observed for the excitation )cos(0 ϕ+⋅⋅ tpF . 

 

 
0;005.00;125;100;2 *0

1 ===== − ϕmxHFHFcp  
a) coordinate of oscillating body;  b) excitation  

Fig. 5 Oscillation contraction for the excitation [ ][ ]ϕ+⋅⋅ tpsignF cos0  
 

 It should be noted that for the described cases the oscillations with stopping can be observed 
(dependences of the coordinates from time are rectangular, as shown in the Figs. 3, 5), that is, specific 
for the systems with dry friction.  

 
CONCLUSIONS 

The considered systems of passive type with force characteristics, shown in Fig. 1, can be 
widely applied in scientific and technical areas, such as seismic protection, suspension brackets, 
impact protection and so on. The studies showed that numerical approach of the oscillations 
determination for described systems is more preferable than the analytical one. Some interesting 
effects were revealed for the numerical approach.  

For the system with force characteristics shown in Fig. 1, a, the resonance frequency converges 
to zero. For definite ratio of the correction force to the amplitude of excitation force the oscillation 
vanish. If for that ratio the segment of zero stiffness appears on the characteristics (Fig. 1, b) then 
oscillations do not vanish but the resonance frequency is shifted into the area of high frequencies (Fig 
2, b). In this paper the frequencies of "oscillation stop" were defined.  

For the excitation force [ ][ ]ϕ+⋅⋅ tpsignF cos0  the multiple decreasing of oscillation frequencies 
was revealed in comparison to the frequency of excitation force in the small diapason of the 
frequencies with force characteristics shown in Fig. 1, b.  

For system with force characteristics, shown in Fig.1 the frequencies with "oscillation stops" 
were determined, both for excitation force )cos(0 ϕ+⋅⋅ tpF  and [ ][ ]ϕ+⋅⋅ tpsignF cos0 .  
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