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SOME REMARKS ABOUT QUASI-STEADY DYNAMICS 
 

1 ABSTRACT  
Keldysh Institute of 
Applied Mathematics  
Moscow, RUSSIA 

 
A mechanical system consisting of two interacting subsystems is 
considered. When the interaction is removed, one subsystem is 
Hamiltonian and the other one is a dissipative linear oscillatory system. 
Integral manifolds theory is used to study the motions that are 
established after the high-frequency normal oscillations of the dissipative 
subsystem are damped. Evolution equations are constructed to describe 
a behavior of the Hamiltonian subsystem over long time interval. 

 
 

1. SYSTEM DESCRIPTION. BASIC ASSUMPTIONS 
We consider a dynamical system consisting of two interacting subsystems, HS  and DS . When 

the interaction is removed, the subsystem HS   becomes the Hamiltonian system with  n  degrees of 
freedom  and the subsystem DS   becomes a dissipative linear oscillatory system with  m   degrees of  
freedom.  The  characteristic  period  of   oscillations   in subsystem  DS    and  the  characteristic  
damping  time  of  these oscillations are comparable in magnitude and  much  smaller  than the 
characteristic time of motions in HS .  Below we will call HS  the damped system and DS  the damper 
one. 

The equations of motion of the system DH SS +  can be written in Routhian form: 
 

RQP −∇=• ,  RPQ ∇=• ,     Φ−∇=∇−∇ •
vqv RR)(                                  (1) 

 
Here T

nPP ),,( 1 =P  and T
nQQ ),,( 1 =Q  are canonical variables used to describe the motion in 

HS , T
mqq ),,( 1 =q  is the generalized coordinate vector of the damper with •= qv .  Dots denote 

derivatives with respect to time t . 
The Routhian function R in (1) is a combination of the Hamiltonian H  of subsystem HS , the 

Lagrangian L of subsystem DS , and a function K  characterizing the interaction of the subsystems:  
 

LKHR −+=  
 
Given these assumptions the Lagrangian L  and the dissipative function Φ  of the damper can 

be written in the form 
 

[ ]),(),(
2
1),,( 2 qqvvqv Λ−= −εε ML ,     ),(

2
1),( vvv D
ε

ε =Φ                           (2) 

1/ <<= HD TTε  
Here M , Λ  and D  are positive-definite symmetric matrices with constant coefficients,  DT  and HT  
are characteristic times of processes in DS  and HS  respectively. 

We take 
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to be the interaction function with )0,0,,()),(,),,(( 1 QPQPQPu q Kuu T

m ∇==  , Γ  is an 
antisymmetric matrix whose elements are functions of P , Q  and the function 

)(),,( 2
2 qOK =qQP , 2/122

1 )(|| mqqq ++== q . 
 With this choice of K  the system DH SS +  is a finite-dimensional model of systems 
encountered in studies of the motion of a deformable solid about its centre of mass (Section 5). 
 
2.  MAIN THEOREM 

When studying the dynamics of DH SS +  over time intervals comparable to or substantially 
greater than HT , it is desirable to consider the motion of the damper to be forced and to describe it by 
the relations of the form 

 
),,(* εQPvv = ,    ),,(* εQPqq =                                                (3) 

 
Substituting (3) into the equations for •P , •Q  in (1) we obtain a closed system of equations 
describing the behavior of subsystem HS  after the normal oscillations of the damper have decayed 
away. 

Various modifications of these equations for the quasi-steady motions of specific systems were 
constructed in [1-3]. There have been attempts [4,5] to give a justification for using such equations to 
describe the regular components of the motion by boundary function theory methods [6]. 

Relations (3) define a hypersurface Σ , m2dim =Σ  in the phase space of the system 

DH SS + . If this hypersurface is invariant with respect to the phase flow of the system, it is called an 
integral manifold (IM) [7,8]. 

Theorem. For sufficiently small values of the parameter ε system (1) possesses an IM Σ  
described by the relations of the form (3). On the manifold Σ  system (1) is equivalent to the system  

 

)),,(),,,(,,( ** εε qvqqvvQPP QQ KH ∇−−∇=•                                    (4) 

)),,(),,,(,,( ** εε qvqqvvQPQ PP KH ∇+∇=•  

 

The functions ),,(* εQPv , ),,(* εQPq  satisfy the inequalities 
 

1
2

* |),,(| Cεε ≤QPv ,    1
2

* |),,(| Cεε ≤QPq ,    0const1 >=C  
 

The proof of this theorem consists of constructing a special contraction mapping ℑ  on the set 
of functions specifying hypersurfaces in phase space [9].  
 
3.  APPROXIMATE EQUATIONS FOR QUASI-STEADY MOTION 

It is not difficult to find that in quasi-steady  motion  
 

},{12 Huv −Λ−= ε                                                       (5) 
 

with an error of )( 3εO , and 
 

},{11312 HD uuq −−− ΛΛ+Λ−= εε                                                   (6) 
 

with an error of )( 3εO . Here },{ ⋅⋅  are Poisson brackets for the subsystem HS . 
Substituting expressions (5),(6) into (4) we obtain a system of approximate equations for the 

quasi-steady motion 
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},{ˆ 113 HDUH uP QQ
−−• ΛΛ−−∇= ε                                               (7) 

},{ˆ 113 HDUH uQ PP
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The nearly-Hamiltonian system of equations (7) describes the influence of the interaction with 

the damper on the dynamics of subsystem HS  to an accuracy of )(εO  over a time interval 3−ε . 
 

4.  EVOLUTION OF QUASI-STEADY MOTION IN AN INTEGRABLE SUBSYSTEM HS  
Suppose that T

nII ),,( 1 =I , T
n ),,( 1 ϕϕϕ =  are “action-angle” variables in HS .  In ϕ,I  

variables the equations of quasi-steady motion have the form 
 

ωεε ϕϕϕ
TUDUH 113

2
2 −−• ΛΛ−∇−=I                                              (8) 

ωεεωϕ ϕ
TUDUH 113

2
2)( −−• ΛΛ+∇+= III  

 
Here )()( II I H∇=ω  is the frequency vector of the subsystem HS . 

The variables of (8) separate: the I  variables are slow ( )( 2εO=•I ) and the ϕ  variables are 
fast  ( )1(O=•ϕ ). 

We shall study the behavior of the slow variables using an averaging method [10]. For 
simplicity we restrict ourselves to the case when the Fourier series of the function ),( ϕIu  with 
respect to ϕ  contains a finite number of terms 
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In system (8) we perform two consecutive averaging changes of variables 
 

)~~,
~~()~,~(),( 21 ϕϕϕ III →→  

 
The first change of variables removes the second-order terms in ε  in the slow variable equations and 
is a canonical transformation with generating function 
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The second change of variables removes terms of the third order in ε  depending on ϕ  from 
the slow variable equations. In asymptotically small neighborhoods of the resonance surfaces  

 
)2||,(0),( NZ n ≤∈=>< kkkIω  

 
the introduced changes of variables become meaningless. The properties of the solutions of system (8) 
at resonance must be investigated by the methods described in [11, Chapter III]. 

Far from the resonance surfaces the behavior of the slow variables with accuracy )(εO  in the 
time interval 3−ε  is described by the following evolution equations (we use the original notation for 
the averaged variables) 

 
)),(( III ωω effΦ−∇=•                                                         (9) 

 
where 
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The quadratic form ),( IωeffΦ in (9) is an analogue of the function ),( εvΦ in (1) and describes the 
dissipation of energy in quasi-steady motion 

)()),(()),,,(( 4
* εωεεϕ Oeff +Φ>>=Φ<< IIIv  

 
5.  THE DH SS +  SYSTEM AS A MODEL OF A DEFORMABLE SOLID PERFORMING 
TRANSLATIONAL-ROTATIONAL MOTION 

In many investigations, for example, when studying the dynamics of large space structures or 
the tidal evolution of planetary rotation [3,12,13], the question arises of the translational-rotational 
motion of a deformable body in a potential field. 

The motion of a deformable body with respect to its centre of mass consists of the rotation of 
the body as a whole and the elastic displacements s  of its individual elements. The dissipation of 
mechanical energy during relative displacements leads to the damping of high-frequency normal 
oscillations and influences the motion of the body as a whole. 

As a rule, the decay time of the natural oscillations is considerably less than the characteristic 
time of the motion of the body as a whole. Hence quasi-steady motion is fundamental for a 
deformable body. 

We say that the system DH SS +  is an N th order model if the subsystem HS  describes the 
motion of the body as a whole taking no account of deformation, while the subsystem DS  describes 
the deformation of the body on the basis of a finite-dimensional approximation of the deformation 
field, using forms of free oscillation corresponding to the N  lowest frequencies of the body. 

As  ∞→N   the right-hand sides of equations for quasi-steady motion for models of 
corresponding order form a rapidly converging functional series. This enables us to consider low-
order models for a qualitative analysis of the influence of deformations on the motion of specific 
objects. 
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