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It is shown that wide class of equations in partial derivatives (PDEs) is 
equivalent to a system of functional linear algebraic equations. It permits 
to construct exact and approximate solutions and to determine the 
solution character of evolution with respect to “limit attracting solution” 
according to eigenvalues of the matrix corresponding to the equation 
under consideration. K.A.Volosov proposes the alternative classification 
for PDE solutions on eigen values.  

 
 

INTRODUCTION  
 
The new important property of wide class PDE was found by K.A.Volosov [1-5] {see also 

www.aplsmath.ru}. One considers now a simple case of two independent variables yx, . For an 
arbitrary transformation of the variables, namely, ),(),,( δξδξ yyxx == , it is possible to present 
all PDEs of the second order, or more, as bAX = , that is as a system of linear  algebraic equations 
with respect to derivatives of the initial variables ),(),,( δξδξ yx  on the new variables 

δξ , : '''' ,,, δξδξ yyxx . This algebraic system has the unique solution. The same presentation is possible 
for a case of three and more independent variables ,...,, tyx ,  

In the present paper, we suggest this new approach to obtain closed formulae for exact solutions 
of the Kolmogorov-Fokker-Planck (KFP) equation. New identity is obtained which follows from 
conditions of the obtained algebraic system solvability. Eigenvalues are calculated in obvious form.  

In this case these eigenvalues are functions of independent variables, but we use the classical 
terminology as in each specific point these ones are numbers. As far as there are only few exact 
solutions of the KFP eqauation (1), we refer to the analogy with quasilinear parabolic equations (7) 
which are well studied by many investigators who found around one hundred of exact families of  
solutions. We can calculate the pointed out eigenvalues for these exact solutions. Based on this 
comparison some important conclusion is made and it is proposed some hypothesis on the nature of 
the solutions evolution to so-called “attractive limits” solution of the same equation. This hypothesis 
by our opinion can be extended to evolution of the Cauchy problem solutions for the non-stationary 
KFP equation of the form (1) [6]. 

 
1. ANALYSIS OF THE  KFP EQUATION ( with Sinitsyn S.O.)   

One considers a stochastic system under periodic and white noise external excitations:  
,)),(( ''

oytyCosxx ξωλα +==+  
where oξ  is the Gaussian white noise. Then one considers the KFP equation which follows from this 
system 
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                    ,0)()( '''''' =−++− yyyxxt pppyCospxp εωλα                                      (1) 
where ),,( tyxpp =  is the density function of  probability and  ωλεα ,,,  are constants. 

The proposed algorithm works in assumption that all used functions are continuously 
differentiable ones. 

One considers for a beginning a case when in (1) ).,( yxpp =  It is introduced the following 
arbitrary transformation of variables: 

                                      ).,(),( ),(),,( δξδξδξ Uyxp yyxx ===  

We note that .0det '''' ≠−= ξδδξ yxyxJ  
One introduces the following relation:  

               ),,(),(),,( δξδξδξ Y
x
p

yyxx =
∂
∂

== ).,(),(),,( δξδξδξ T
y
p

yyxx =
∂
∂

==  

One obtains from here the following formulas: 

     ,det),( JYyUyU δξ
ξδδξ
=

∂
∂

∂
∂

−
∂
∂

∂
∂ .det),( JTxUxU δξ

ξδδξ
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∂
∂

+
∂
∂

∂
∂

−                      (2) 

Equation (1) in new variables takes the form 
    .0),(),()),((det/)( '''' =−−+−+ δξαδξαδξλεω δξξδ UYxyCosYJTxTxT              (3) 
As ),( yxp  is the continuously differentiable function, it must be realized a condition of 

equality of mixed derivatives,  
  =)),(),,(('' δξδξ yxp yx )),(),,(('' δξδξ yxp xy , in the variables .,δξ  It can write this 

equality in the form: 
 

         −
∂
∂

∂
∂

+
∂
∂

∂
∂

−
ξδδξ
xYxY 0=

∂
∂

∂
∂

+
∂
∂

∂
∂

ξδδξ
yTyT

                                                 (4) 

The system of equations (2)-(4) will be analyzed by two stages. 
 
Theorem  1. 
 The implicit system of linear algebraic equations  (2)-(4),  bAX =  ,with regards to the 

derivatives '
4

'
3

'
2

'
1 ,,, δξδξ yXyXxXxX ==== has the next unique solution: 

      ),(),,(),,(),,( 4
'

3
'

2
'

1
' δξδξδξδξ δξδξ gtgtgxgx ====                                    (5) 

It is possible to calculated the functions_ 4,...,1),,( =igi δξ  in obvious form, for example, 

).,(/)]()),()),((([),( 1
''''''

1 δξδξαδξλαωεδξ ξδδξξξ PTUTUUYxYyCosUTTTg +−−+−−=
 Matrix A  has the following form:  
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.     

Vectors bX ,  have the forms: 
                         ),0,0,0(,),,,( 41234 bbXXXXX == τ , 

where  
+== UaPgb αδξδξ [),,(),( 33114 ),(]))],((),([ '''

ξξξ εωδξλδξα TUTUYyCosx +−+−  

+−= Ua α[34 ),(]))],((),([ '''
δδδ εωδξλδξα TUTUYyCosx −+−−      ).,(144 δξPa =  

+−+−−+= )([]][))],((),([[[),( '''2''''
1 ξξδξδξδ ωεδξλδξααδξ UTYTUTTUYyCosxUYP

−−++−++− '''''''''' ]))),((),(([[)([]][ ξδδξδξδξδδ δξλδξαωαωε UYyCosxTYYUUYUTYUT  

.))]]))),((),((([ '''
δξδ δξλδξαω YyCosxTU −+  

 
The vector symbol τ  means a conjugation. The eigenvalues can be wrote of the form   
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],[
2
1),,(, 312331 DMPa −=== λδξλλ ],[

2
1

4 DM +=λ  

].4)([2)(, ''2'''2'''
ξδδξδδξδ TUUTTUTTTDUTTM −++=−= ◊  

 
At the second stage, we consider the new first-order system (5) with respect to the functions 

).,(),,( δξδξ yx It is well known that the solvability of a system of this type is verified by calculating 
the second mixed derivatives of the functions ),(),,( δξδξ yyxx ==  on the arguments ξ  and 

δ : ,''''
ξδδξ xx = ''''

ξδδξ yy =  [3, p.83], and [4, p.5]. 

 Example.  It is considered the more general equation KFP (1), where the second term is 
changed for ,))(( '

xpxmα  where the last function is arbitrary twice continuously differentiated 
function. For concrete calculations the following function is selected: 

).1)/(exp()1)(exp()( +−= xxxm ββ  If the solvability condition is satisfied, we can found the 
exact solution for the equation (1) with ),,,( tyxpp =  having the parameter σ . It is existed a 
passage to the limit by this parameter, to a stationary solution (obtained for ),( yxp ) having the some 
fixed value of this parameter.   Corresponding formulae, which are analogical to (2)-(4) can be found 
in [3, p.89], [4, p.12].  

 
Theorem  2 
 Let us solution of the equation (1) is the following:   

),,()]4/()2/(exp[),,( 2 tyxWtyttyxp εωεωα −+= , which follows from the above 
presented condition of solvability, where the function ),,( tyxW   is a solution of the equation 

.0)())(( ''''' =−+−+ yyxxt WWyCosWxmWW ελαα  
The exact solution of this equation has the form ,0)),,()exp(,()( =−− tyxWtxHyCos σ  

here the function ),,( ηxH    ),,,()exp( tyxWtση −=   is a  solution of the equation  
                         +−−− ]))()(/[()1( 2'2'''

µηη λαε HHxmHHH x  

        .0))(/()]]([[ '' =−−++ HxmxmHH λαασαηε η  ◊                               (6) 
 
We can determine the same solution of the equation (6) in the converge power series.  The 

function ),( ηxH  can be wrote of the form:  
),()()()()()(),( 54

4
3

3
2

21 ηηηηηη OxCxCxCxCxCxH o +++++=  where  .1<η  
Terms up to fourth degree are saved. Then we can use exact formulae for solutions of the 

algebraic equation of the fourth order. So, returning to initial variables, one has the explicit 
approximate solution, using the KFP equation exact solution.  

Finally, note that if we put ,)4/(2 αεωσ −=   then the obtained solution of the non-stationary 
KFP equation transforms to the stationary solution of this equation with the coefficient ),( yxp . It 
can be wrote the ODEs system to determine coefficients 4,0),( =ixCi . Zero conditions at the 
infinity are used for this system. By using the obtained explicit approximate formulae, for 0=x  we 
numerically construct a function having zero conditions at infinity to determine coefficients )(xCi . 
Then the iteration process is formed with additional traditional non-local condition of normalization.  
 
2. ON CONNECTION EIGENVALUES AND CHARACTER OF EVOLUTION OF THE 
SOLUTIONS OF THE NONLINEAR  AND LINEAR PARABOLIC EQUATIONS     
(with Volosova A.K., Vdovina E.K.) 

Remark 1.  It is not simple to construct solution of the equation (1). Problems for the equation 
(1) are badly studied. On the contrary, problems for the equation (7) are well studied; it investigated 
during a long time. Hundred families of solutions of the equation (7) and of equations similar to it can 
be found in papers by G.I.Barenblatt, L.D.Landau, A.N.Kolmogorov, I.G.Petrovskii, I.S.Piskunov, 
R.Fischer, Ya.B.Zeldovich, A.S.Kalashnikov, A.D.Polyanin, V.F.Zaitev, V.N.Denisov, 
E.M.Vorob’ev, V.P.Maslov and  many others. References on publications by these authors can be 
found in [3].   
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K.A.Volosov made the following mathematical experiment. Using formulae for eigenvalues of 
the equation (7) matrix A , it is possible to calculate they on these exact solutions. As a result, we 
have alternative classification for the PDE solutions on the eigenvalues. 

     In papers [1-5] the proposed method with arbitrary transformation of variables is described 
for the following equation:   

                                                                           (7) 
One uses the arbitrary transformation of variables of the form:  

 
We note that the determinant, , is nonzero. The inverse 

transformation of variable exists, at least locally: . The derivatives of the old 
independent variables on the new variables are determined as follows:    

 
Let us introduce the following relation:  

),,()( ),(),,( δξδξδξ Y
x
ZZK ttxx =

∂
∂

== ).,()( ),(),,( δξδξδξ T
t
ZZK ttxx =
∂
∂

==  We obtain the 

formulae:   

                               ,det),()))(,(( JYtUtUUK δξ
ξδδξ

δξ =
∂
∂

∂
∂

−
∂
∂

∂
∂

              

     JTxUxUUK det),()))(,(( δξ
ξδδξ

δξ =
∂
∂

∂
∂

+
∂
∂

∂
∂

−                                     (8) 

The equation (7) takes the form:  

           0)()(det/))((),( =+
∂
∂

∂
∂

−
∂
∂

∂
∂

− UFUKJtYtYUKT
ξδδξ

δξ                    (9) 

Since Z is the continuously differentiable function, one has that    in variables 
, or  

                               (10) 
 
The system (8)-(10) will be analyzed in two stages. At the first stage, we consider the system  

(8)-(10) as a nonlinear algebraic equation system with respect to the derivatives '''' ,,, δξδξ ttxx .  
 
Theorem  3. 
The implicit linear algebraic equation system (8)-(10) bAX =  with regards to the derivatives 

'
4

'
3

'
2

'
1 ,,, δξδξ tXtXxXxX ==== , has the unique solution 

              4
'

3
'

2
'

1
' ,,, Ψ=Ψ=Ψ=Ψ= δξδξ ttxx                                                (11) 

where functions 4,...,1, =Ψ ii  are presented in [1-5], and the denominator in (11) is the following:  
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δξξδ YUYUT −    Matrix A  has the form: 
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  Vectors bX ,  are the following:  
),0,0,0(,),,,( 44321 bbXXXXX == τ , where 

,)()(,)()( '''
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'''
21 ξξδδ UUKYYUKaUUKYYUKa −=+−=   

,)()( '''
23 δδ UUKTTUKa +−=  =4b      ],][))(([)( ''''''
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441 

Vector symbol τ  means a conjugation. The eigenvalues have the following form:  

],[
2
1),,(, 312331 DMPa −=== λδξλλ ],[

2
1

4 DM +=λ  

].))(([)(4),)(( 2''''''''''''
ξδξξδξδξδξ UUKUYYKYUUYKYDUUKUYYKM −++−=−+=  

It is proved that two conditions of solvability of the new system (11) of arbitrary functions 
TYU ,,  always have the common multiplier [1]- [5].  
K.A.Volosov with collaborators analyzed more than one hundred known, exact or approximate 

solutions, and calculated for them eigenvalues indicated at the Theorem 4. The astonishing 
regularities are obtained; see a lot of examples in [6]. It was formulated a problem of connection of 
the eigen values with a character of evolution and stabilization of solutions of the mixed problems for 
the equation (7). Analysis of calculated eigenvalues for many known solutions permits to select three 
cases of mixed problems [6].  

The necessary conditions presented in the theorem 4 are strongly connected with an existence of  
the special solution ),( txΩ  of the mixed problem (with initial and boundary conditions) formulated 
for the equation (7). This solution is called the “limit attracting solution”. Three cases are selected 
below. Note that a proof of the theorem 4 is obtained by the induction method.   

Part 1. It exists a class of exact solutions of the mixed problems for concrete types of the 
equation (7) when in the presence of dissipation, and for the corresponding boundary conditions a 
solution of the problem tends to constant, may be to zero. It is a stabilization of the solution [7]. This 
result is correct as for linear equations or half-linear parabolic equations, as well for degenerate 
quasilinear parabolic equations of the form (7), but only in the region of the solution localization. In 
this case, from our point of view, the “limit attracting solution” is a constant ≡Ω ),( tx  constant, or, 
may be, 0),( ≡Ω tx .See papers by L.K.Martinson, A.D.Polyanin, V.N.Denisov  [7],  R.O.Kershner. 

Part 2. It exists a class of the mixed problems with initial and boundary conditions. Properties 
of solutions of these problems are determined by properties of the function )(ZF  in the equation (7). 
It is the famous problems by A.N.Kolmogorov, I.G.Petrovskii, I.S.Piskunov, R.Fischer and others. 
Solutions of such problems, as it was shown in different publications including publications by 
authors, tend to the “limit attracting” solutions, which are waves having the specific profile and 
velocity.  

Part 3. If there is a stationary solution of the equation (7), that is a solution which is not depend 
on the independent variable t , then other solutions tend to the stationary one. In this case, from our 
point of view, this is the “limit attracting solution”, ),( txΩ . The mixed problem with initial and 
boundary conditions for degenerate quasilinear parabolic equations has been investigated in [8]. 

 
By results of our investigation all three cases are united.  
Plan of the analysis is the following. Formulae of the Theorem 3 are applied for the next trivial 

transformation of variables: δδξξδξ == ),(,),( tx  , where the Jacobian is equal to unit. This 
transformation is isomorphism, and the equation (7) pass to itself and solutions of the equation (7) 
pass to itself. Then by the exact solution, obtained in papers by other authors, or by the asymptotic 
properties of the solution, the eigenvalues and ATr , that is a trek of the matrix A , can be calculated 
directly.  

 In all three cases we have as a result: three eigenvalues are equal to zero, and one eigenvalue is 
smaller than zero in region 2

1 R⊂ω ; or  two eigenvalues smaller than zero in region 2
1 R⊂ω . 

By analogy with the dynamic systems theory we can stress that in all three cases the limit 
steady-states are of the knot type or of the saddle -knot type.  

It is formulated the following theorem on evolution of solution of the equation in partial 
derivatives to the “limit attracting solution” and to propose the alternative classification for PDE 
solutions on the corresponding Eigen values. 
 

Theorem  4. Let the conditions of the Theorem 3 are satisfied. Let unknown special solution 
),( txΩ of the mixed problem (with initial and boundary conditions) for concrete types of the equation 

(7) having the special properties as the “limit attracting solution”. One assumes that in formulae of the 
Theorem 3 the transformation δδξξδξ == ),(,),( tx  is made. 



 
442 

By necessity, the determinant ,0≥D  and eigenvalues 0,0 32 ≤≤ λλ  in region 2
1 R⊂ω ;  and 

a sign of ATr  of the matrix A   changes in a region of determination of the functions ,4,...,1, =iiλ  
then ),( txΩ is exist, and it is realized the limit ),,(),( txtxZ Ω→  for any values of ,x  for .∞→t  

Remark 2. We divide two following questions:  
1. Which are necessary conditions of existence of the “limit attracting solution” for three 

problems described above?  
2. How is the passage to the solution realized? In which functional spaces is it performed?  
In the paper authors answer only for the first question.  
 
In all three cases we have the difficult special steady point, namely, a saddle - knot takes place. 

In a region 2
1 R⊂ω   the functions ),,(),,( 32 txtx λλ   depend on variables and change, but the special 

singular point type saves. For the localized solutions the theorem 4 works only in the localization 
area. The proposed theory can be extended to cases of many variables and to other PDEs and to 
equation KFP (1) too.   

 
CONCLUSIONS 

It is shown that wide class of equations in partial derivatives (PDEs) is equivalent to a system 
of functional linear algebraic equations.  
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