Proceedings of the 3 International Conference on Nonlinear Dynamics
ND-KhPI2010
September 21-24, 2010, Kharkov, Ukraine

STOCHASTIC SYSTEMS UNDER PERIODIC AND WHITE NOISE EXTERNAL
EXCITATIONS, AND THE ALTERNATIVE CLASSIFICATION FOR THE PDE
SOLUTIONS

Volosov Konstantin
Alexandrovich?, ABSTRACT
Sinitsyn Sergey O.,

Volosova Alexandra K.,
Vdovina Elena K.
Moscow State University of
Railway Engineering,
Moscow,Russia

It is shown that wide class of equations in partial derivatives (PDES) is
equivalent to a system of functional linear algebraic equations. It permits
to construct exact and approximate solutions and to determine the
solution character of evolution with respect to “limit attracting solution”
according to eigenvalues of the matrix corresponding to the equation
under consideration. K.A.Volosov proposes the alternative classification
for PDE solutions on eigen values.

INTRODUCTION

The new important property of wide class PDE was found by K.A.Volosov [1-5] {see also
www.aplsmath.ru}. One considers now a simple case of two independent variables X,y. For an

arbitrary transformation of the variables, namely, x = x(¢£,0), y = y(&,0), it is possible to present
all PDEs of the second order, or more, as AX = b, that is as a system of linear algebraic equations
with respect to derivatives of the initia variables x(&,0), y(&,0) on the new variables

£, 51X, %5, Y, Y, This algebraic system has the unique solution. The same presentation is possible

for a case of three and more independent variables X, y,t,...,

In the present paper, we suggest this new approach to obtain closed formulae for exact solutions
of the Kolmogorov-Fokker-Planck (KFP) equation. New identity is obtained which follows from
conditions of the obtained algebraic system solvability. Eigenvalues are calculated in obvious form.

In this case these eigenvalues are functions of independent variables, but we use the classical
terminology as in each specific point these ones are numbers. As far as there are only few exact
solutions of the KFP egauation (1), we refer to the analogy with quasilinear parabolic equations (7)
which are well studied by many investigators who found around one hundred of exact families of
solutions. We can calculate the pointed out eigenvalues for these exact solutions. Based on this
comparison some important conclusion is made and it is proposed some hypothesis on the nature of
the solutions evolution to so-called “attractive limits” solution of the same equation. This hypothesis
by our opinion can be extended to evolution of the Cauchy problem solutions for the non-stationary
KFP equation of the form (1) [6].

1. ANALYSIS OF THE KFP EQUATION ( with Sinitsyn S.0O.)
One considers a stochastic system under periodic and white noise external excitations:

X +ax=A4 Cos(ylt)), y =w+&,,
where &, is the Gaussian white noise. Then one considers the KFP equation which follows from this
system
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P, —a(x p), + 2Cos(y) p, +@ p, —& P, =0, D
where p = p(X,Y,t) isthedensity function of probabilityand « , £, A, ® are constants.

The proposed algorithm works in assumption that all used functions are continuously
differentiable ones.
One considers for a beginning a case when in (1) p = p(X,y). It isintroduced the following

arbitrary transformation of variables:
P(X, y) X=X(£,8),y=y(£,8) — U(<,0).
Wenotethat detJ = X, y; —X;y; #0.
One introduces the following relation:

op op
x| XEBy=Y(£0) =Y(¢,9), a_y xex(@.ay=y(es) = 1(550)-
One obtains from here the following formulas:
Uy _UBY i ey, QY% QU X Loy o
0& 06 00 0¢& 0& 06 00 0¢
Equation (1) in new variables takes the form
oT +&(X; T, — . T,)/ det I+ 1Y Cos(y(&,5)) —a x(&,8)Y —aU (&,6) = 0. ©

As p(x,y) is the continuously differentiable function, it must be realized a condition of
equality of mixed derivatives,
Py (X(E,8), Y(£,8)) = Py (X(&,8), Y(E,6)), in the variables £,5. It can write this
equality inthe form:
_OYOox oYox 0Toy oToy_
0§00 000& 0&E06 000¢
The system of equations (2)-(4) will be analyzed by two stages.

(4)

Theorem 1.

The implicit system of linear algebraic equations (2)-(4), AX =b ,with regards to the
derivatives X; = X, X, = X;, X; = y;, X, = ¥, has the next unique solution:

Xlg = gl(g,é'),xld = 92(5’5)’1'.'5 = g3(§,5),t; =0,($,9) ®)

It is possible to calculated the functions_g; (&,0),1 =1,...,4 in obvious form, for example,
0,(£,6) =[eTT, = (@T —aU + 4 Cos(y(&,8)Y —a X(&,H)Y)U (U T, +U,; T,)/ R(&,5).
Matrix A hasthe following form:

—TU% TU, —YU% YU,

Aol T T, T, =Y, Y,
0 0 A3 Ay
0 0 0 Ay,

Vectors X, b have the forms:
X =(X,, X5, X,,X,)",b=(0,0,0,b,),
where
b, = 9,(§,6) P.(£,9), ag =[aU +[ax(£,6) -2 Cos(y(&, )YV, +T(-o U, +£T)),
8y, =[~aU +[~aXx(&,6)~ 2 Cos(Y(&, YU, +T(0U; ~£T,), a, =PR(,0).
R(£.6) =[YlaU +[a x(§,8) - ACos(y(&, SNIYIU, T, ~T,U 1+ T2[Y, (eT, - 0U ) +
[-T; +@U;1Y 1+ T[aUY, U, =U; Y)) + Y[[oT,; + (a X(&,J) — 2 Cos(y(£,5))) Y;1U, —
[U;(@T; +(a X(&8) - ACos(y(&, &) Y,)II.

The vector symbol 7 means a conjugation. The eigenvalues can be wrote of the form
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1 1
=8, Ay = R(6,0), 45 =M -/D1, 4, =M +4/D],
M=T,-TU., D=(T;)?+2TT,U.+T[TU})?-4U,T.].0

At the second stage, we consider the new first-order system (5) with respect to the functions
X(&,0),y(&,0).1tiswell known that the solvability of a system of thistypeis verified by calculating

the second mixed derivatives of the functionsx = x(&,0),y = y(&,0) on the arguments & and

S Xiy = Xsp Yes = Y5z [3.p.83], and[4, p.5].

Example. It is considered the more general equation KFP (1), where the second term is
changed for a (m(x) p),, where the last function is arbitrary twice continuously differentiated
function. For concrete  calculations  the  following function is sel ected:
m(x) = (exp(f x) —1) /(exp(B X) +1). If the solvability condition is satisfied, we can found the
exact solution for the equation (1) with p = p(X,Y,t), having the parameter o . It is existed a
passage to the limit by this parameter, to a stationary solution (obtained for p(X, y)) having the some

fixed value of this parameter. Corresponding formulae, which are analogical to (2)-(4) can be found
in[3, p.89], [4, p.12].

Theorem 2
Let us solution of the equation (1) is the following:

p(x, y,t) =explat + yol(2¢) —tw® I(4€)W(X,y,t), which follows from the above
presented condition of solvability, where the function W(Xx, y,t) isa solution of the equation

W, +aW —a (m(x) W), + A Cos(y) W, —eW,, =0.
The exact solution of this equation has the form Cos(y) — H (x,exp(-t o)W(X, y,t)) =0,
herethe function H(X,77), 7 =exp(-to)W(X,y,t), isa solution of the equation
Hy—¢eH,, (H?=D/[(am(x)—AH)(H )1+
[¢eH +77H,'][a+a—am'(x)]]/(am(x)—/1H)=O. 0 (6)

We can determine the same solution of the equation (6) in the converge power series. The
function H(x,7) can be wrote of the form:

H(x17) =C, (%) + C,() 7+ C,()n* + C5(X)17° + C,(x)n”* + O(°), where 7 <1.

Terms up to fourth degree are saved. Then we can use exact formulae for solutions of the
algebraic equation of the fourth order. So, returning to initial variables, one has the explicit
approximate solution, using the KFP equation exact solution.

Finally, notethat if weput o = w®/(4¢) —a, then the obtained solution of the non-stationary
KFP equation transforms to the stationary solution of this equation with the coefficient p(x,y). It

can be wrote the ODEs system to determine coefficients C, (x), i =0,4. Zero conditions at the

infinity are used for this system. By using the obtained explicit approximate formulae, for x =0 we
numerically construct a function having zero conditions at infinity to determine coefficients C, (X).
Then the iteration process is formed with additional traditional non-local condition of normalization.

2. ON CONNECTION EIGENVALUES AND CHARACTER OF EVOLUTION OF THE
SOLUTIONS OF THE NONLINEAR AND LINEAR PARABOLIC EQUATIONS
(with Volosova A.K., VdovinaE.K.)

Remark 1. It is not simpleto construct solution of the equation (1). Problems for the equation
(1) are badly studied. On the contrary, problems for the equation (7) are well studied; it investigated
during a long time. Hundred families of solutions of the equation (7) and of equations similar to it can
be found in papers by G.I.Barenblatt, L.D.Landau, A.N.Kolmogorov, I.G.Petrovskii, 1.S.Piskunov,
R.Fischer, YaB.Zeldovich, A.S.Kalashnikov, A.D.Polyanin, V.F.Zaitevy, V.N.Denisov,
E.M.Vorob' ev, V.P.Maslov and many others. References on publications by these authors can be
found in[3].
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K.A.Volosov made the following mathematical experiment. Using formulae for eigenvalues of
the equation (7) matrix A, it is possible to calculate they on these exact solutions. As a result, we
have aternative classification for the PDE solutions on the eigenvalues.

In papers [1-5] the proposed method with arbitrary transformation of variables is described
for the following equation:
Z, —(K(2Z ), +F(Z) =0 (7)

One uses the arhitrary transformation of  variables of the form:
Z(x, )| =iz ) =202y = U(E,8).

We note that the determinant, det] =x%t's —tzx'z = 0, is nonzero. The inverse
transformation of variable exists, at least locally: & = &(x,t), & = &{(x, t). The derivatives of the old
independent variables on the new variables are determined as follows:

S=det]y, p=—det] 3, 2= —det] =, £ = ey =,
Let usintroduce the following relation:

ﬁ_

0z 0z .
K(Z)a X=X(E,5) =t (£,5) =Y(&,9), K(Z)E X=X(£,5) t=t(&,5) =T(5,0). We obtain the
formulae:
oUu ot oU ot
KU (6,5))(E$—5%) =Y(&,5) det J,
oU ox dU ox
KU (515))(—557“5%) =T(&,0) detJ (8)
The equation (7) takes theform:
oY ot oY ot
T(§,5)—K(U)(§$—%£)/det\]+K(U)F(U)—0 ©

. . . . . . 8 ., 8 e .
Since Z is the continuously differentiable function, one has that sz = E{zt in variables
Ea,or

dxd [ ¥ dxd [ ¥ graf[ T graf T

Bt o e e e el e e (10)

The system (8)-(10) will be analyzed in two stages. At the first stage, we consider the system
(8)-(10) asa nonlinear algebraic eguation system with respect to the derivatives X, X;,t;,t;.

Theorem 3.

The implicit linear algebraic equation system (8)-(10) AX =b with regards to the derivatives
Xy =Xz, X, = X5, X5 =t;, X, =t,, hasthe unigue solution

X, =W, X =W, t, =¥yt =, (12)
wherefunctions ¥, ,i =1,...,4 are presented in [1-5], and the denominator in (11) is the following:
R(&,0)= FK[(TYLE' —YT;)U; +(YT, —TYg')U;g] +TY[—U(;T§'+U;ET5'] +Y2[Y, T% -T, Yé] +
T?U,Y,-U.Y,;]. Matrix A hastheform:
YU, -YU., TU, -TU,

A — a21 a22 a23 a24
0 0 Az Ay
0 0 0 a,

Vectors X, b arethefollowing:
X =(X;, X,,X;5,X,),b=(0,0,0,b,), where
a, =-KU)Y; +YK U)U;, a,=KU)Y.-YK U)U,,
8, =-KU)T,+TK'U)U,, b= KU)[-YY, +(FKU)+T) U ]IV, Y, =Y, U],
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Vector symbol 7 means a conjugation. The eigenvalues have the following form:
1 1
A =8, 2, =R(£,8), A =M =+/D], 4, =2[M +4D],

M = KY{:' +Y(U!; - K'(U)U'g), D=4YK (Y(;U% —U;Y;)+[KY§' +Y(U(; - K'(U)U;E)Z].

It is proved that two conditions of solvability of the new system (11) of arbitrary functions
U,Y,T aways have the common multiplier [1]- [5].

K.A.Volosov with collaborators analyzed more than one hundred known, exact or approximate
solutions, and calculated for them egenvalues indicated at the Theorem 4. The astonishing
regularities are obtained; see a lot of examples in [6]. It was formulated a problem of connection of
the eigen values with a character of evolution and stabilization of solutions of the mixed problems for
the equation (7). Analysis of calculated eigenvalues for many known solutions permits to select three
cases of mixed problems[6].

The necessary conditions presented in the theorem 4 are strongly connected with an existence of
the special solution Q(Xx,t) of the mixed problem (with initial and boundary conditions) formulated
for the equation (7). This solution is called the “limit attracting solution”. Three cases are sdected
below. Note that a proof of the theorem 4 is obtained by the induction method.

Part 1. It exists a class of exact solutions of the mixed problems for concrete types of the
equation (7) when in the presence of dissipation, and for the corresponding boundary conditions a
solution of the problem tends to constant, may be to zero. It is a stabilization of the solution [7]. This
result is correct as for linear equations or half-linear parabolic equations, as well for degenerate
quasilinear parabolic equations of the form (7), but only in the region of the solution localization. In
this case, from our point of view, the “limit attracting solution” is a constant Q(x,t) = constant, or,
may be, Q(Xx,t) = 0.See papers by L.K.Martinson, A.D.Polyanin, V.N.Denisov [7], R.O.Kershner.

Part 2. It exists a class of the mixed problems with initial and boundary conditions. Properties
of solutions of these problems are determined by properties of the function F(Z) in the equation (7).
It is the famous problems by A.N.Kolmogorov, |.G.Petrovskii, |.S.Piskunov, R.Fischer and others.
Solutions of such problems, as it was shown in different publications including publications by
authors, tend to the “limit attracting” solutions, which are waves having the specific profile and
velocity.

Part 3. If there is a stationary solution of the equation (7), that is a solution which is not depend
on the independent variable t, then other solutions tend to the stationary one. In this case, from our
point of view, this is the “limit attracting solution”, Q(X,t). The mixed problem with initial and
boundary conditions for degenerate quasilinear parabolic equations has been investigated in [8].

By results of our investigation all three cases are united.

Plan of the analysis is the following. Formulae of the Theorem 3 are applied for the next trivial
transformation of variables: x(&,0) =¢&,t(£,8) =9 , where the Jacobian is equal to unit. This
transformation is isomorphism, and the equation (7) pass to itself and solutions of the equation (7)
pass to itself. Then by the exact solution, obtained in papers by other authors, or by the asymptatic
properties of the solution, the eigenvaluesand Tr A, that isatrek of the matrix A, can be calculated
directly.

In all three cases we have as aresult: three eigenvalues are equal to zero, and one eigenvalue is
smaller than zero inregion o, < R?; or two eigenvalues smaller than zero in region W, C R®.

By analogy with the dynamic systems theory we can stress that in all three cases the limit
steady-states are of the knot type or of the saddle -knot type.

It is formulated the following theorem on evolution of solution of the equation in partial
derivatives to the “limit attracting solution” and to propose the alternative classification for PDE
solutions on the corresponding Eigen values.

Theorem 4. Let the conditions of the Theorem 3 are satisfied. Let unknown special solution
Q(x,t) of the mixed problem (with initial and boundary conditions) for concrete types of the equation

(7) having the special properties as the “limit attracting solution”. One assumes that in formulae of the
Theorem 3 the transformation x(&,0) = &,t(&,0) = 6 ismade.
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By necessity, the determinant D > 0, and eigenvalues 4, < 0,4, <0 inregion o,  R*; and
asign of Tr A of thematrix A changesin aregion of determination of the functions 4, ,i =1,...,4,
then Q(x,t) isexist, and it isrealized thelimit Z(x,t) - Q(x,t), for any values of x, for t — oo.

Remark 2. We divide two following questions:

1. Which are necessary conditions of existence of the “limit attracting solution” for three
problems described above?

2. How is the passage to the solution realized? In which functional spacesisit performed?
In the paper authors answer only for the first question.

In all three cases we have the difficult special steady point, namely, a saddle - knot takes place.
Inaregionw, — R® thefunctions A, (X,t), 4,(X,t), depend on variables and change, but the special

singular point type saves. For the localized solutions the theorem 4 works only in the localization
area. The proposed theory can be extended to cases of many variables and to other PDEs and to
equation KFP (1) too.

CONCLUSIONS
It is shown that wide class of equations in partial derivatives (PDES) is equivalent to a system
of functional linear algebraic equations.
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