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Wave model of torsion vibrations of deep rotating drill columns is 
obtained. Computer simulation of the torsion auto-oscillations 
generations is performed. The diapason of rotation velocity values 
corresponding to regimes of stable periodic motions is found. It is shown 
that The Poincare – Andronov – Hopf bifurcations are realized at the 
states limiting these diapasons. Influence of the length of the articulated 
drill columns on the bifurcational values of the angular velocities is 
analyzed. The general regularities of generation and accomplishment of 
the auto-oscillation processes in the articulated drill columns are 
established. 

 
 

INTRODUCTION  
In the XX century a time of easy extraction of oil and 

gas is finished and inasmuch as the readily accessible deposits 
of hydrocarbon fuels are practically depleted in the result of 
their intensive extraction during the last two centenaries, their 
drawing is out from depths of 10km holds much promise. 
Taking into consideration that mechanical phenomena 
attending these processes are very complicated and there is no 
producing experience of such wells drilling, it may be 
concluded that problems of their theoretical simulation are 
urgent. 

At present, the vertical, inclined and horizontal bore 
wells are drilled in accordance with requirements of economy, 
demands of oil-gas industry and its technological possibilities. 
Great attention is paid to the questions of drilling deep wells 
from ground surface and sea bottom. In the drilling technology 
the leading position belongs to the rotor method based on the 
use of a drill column with a bit. 

When the fuel extraction is realized from great depths, 
the drill efficiency is associated with the problems of revealing 
the emergency regimes of the DC functioning. 

One of the dynamic phenomena conducing the 
appearance of emergency situation during drilling is a self-
excitation of torsion vibrations of rotating drill columns [1,2]. 
Inasmuch as a drill column (DC) represents a torsion pendulum 
(Fig.1) with energy outflow due to dissipative interaction 
between the bit and broken rock at its lower part, it can transit 
from a stationary state to the mode of torsional auto-oscillation 
at violation of the energy outflow conditions. 

                                                             
1 Corresponding author. Email valery@gulyayev.com.ua  

Fig. 1. Drill column scheme. 
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In a general case the auto-oscillations constitute non-damping periodic motions of a non-linear 
dissipative system which are sustained by external non-vibrational source of energy [2].  

For their generating to happen, the non-linear force interaction between separate parts of the 
system is of importance which regulates income and expenditure of the energy and by this means 
gives rise to finite amplitude vibration. In drill assemblies the reason of the torsion vibration self-
excitation is bifurcational disturbance of the balance between elastic force moments in the DC and the 
non-linear moment of the bit interaction with the well wall. By now the general regularities of these 
phenomena are not studied, so the problem of their theoretical simulation is urgent. 

 
MATHEMATICAL AND MECHANICAL PECULIARITIES OF A TORSION WAVE 

PENDULUM 
In the theory of non-linear differential equations the periodical solutions are named cycles and 

the change of stationary solution by periodical one at transition of some distinctive parameter through 
a critical value is spoken of as a cycle generation or the Poincare – Andronov – Hopf bifurcation [3]. 
In the problems of drill column torsion dynamics the parameter exerting influence on their stationary 
and auto-oscillatory regimes is the angular velocity ω  of their rotation. 

In the cases when an additional impact is not necessary for a mechanical system transition from 
an initial (stationary) state into regime of auto-vibration, the transition is designated as soft self-
excitation. If the vibration begins to increase only after some initial threshold amplitude, the self-
excitation is termed to be rigid. 

The amplitude and frequency of the self-oscillation are determined only by the system 
parameters only. This is its distinction from natural vibration, whose frequency is determined by the 
system properties but the phase and amplitude are dictated by initial conditions, as well as from forced 
vibration, whose amplitude, frequency and phase are governed by an external force. 

In the phase space the periodic auto-vibration corresponds to a closed trajectory attracting all the 
neighboring trajectories. So such a curve is generally referred to as a stable limit cycle (or attractor). 

Auto-vibrational systems with several degrees of freedom and systems with distributed 
parameters are characterized by such phenomena as synchronization and competition of vibrations. In 
many cases this phenomena are responsible for initiation of well organized, complicated modes of 
periodic motions in dissipative unstable systems. 

As applied to the phenomena accompanying drill column rotation, investigation of their auto-
oscillation generating permits one to provide the answers to three important questions: 1) what values 
of the system parameters and manners of functioning are responsible for the torsion auto-oscillation 
generation; 2) what type of the oscillation self-excitation (soft or rigid) does occur; 3) what 
precautions should be taken to prevent the possible mode of the torsion auto-oscillation. 

For the drill columns in comparatively shallow, the answers to these questions can be received 
with the help of simplified mathematical model constructed issuing from the consideration of an 
appropriate torsion pendulum with non-linear friction forces applied to its fly-wheel. In doing so the 
fly-wheel and the DC elements can be considered to perform torsional oscillations with the same 
phase and in consequence the overall elastic system can be changed by one oscillator with one DOF. 

However if the DC is long, application of the torsion pendulum model for analysis of its 
dynamics is not justified, as vibrations of its elements cease to be synchronized. So their simulation 
should be performed on the basis of the wave theory. 

Under real conditions this simplification is not met, as the time of the torsion wave propagation 
through the DC length is not multiple to the period of the lower fly-wheel vibration and for this reason 
its motion can attain a complicated mode. This effect can be essentially favored by the bit stick-slip 
dynamics inherent in the systems with dry friction. It consists in short-term stopping of the bit rotation 
in the time intervals, when the sum of all the moments of active and inertia forces is less than some 
threshold moment of friction forces which should be overcome to begin the fly-wheel slewing. During 
these intervals the drive device at the upper end of the DC continues to rotate with constant angular 
velocity ω , the DC twists and accumulates potential energy of elastic strains. When elastic torque 
achieves a magnitude which is equal to the threshold value of the friction moment, the lower fly-
wheel begins to rotate, the DC untwists and its potential energy begins to transform into kinetic 
energy of the DC and fly-wheel rotation. This rotation continues till the sum of elastic moment of the 
DC and inertia force moment of the fly-wheel again begins to be under the threshold value of the 
friction moment. As the result of this, the fly-wheel stops again and etc. Inasmuch as the functions of 
angular velocity and acceleration begin to be discontinuous in the described motion, the DC rotation 
acquires a shock character representing severe danger for the dynamic strength and stability of the 
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whole system. It is not rational to describe these vibrations by trigonometric functions, so numerical 
methods should be used. 

This theory contains an important factor complicating the considered phenomenon and the 
problem statement. It is the effect of torsion wave action on the fly-wheel (the bit). The waves are 
formed as a result of elastic interaction between the fly-wheel and the DC. They achieve the DC top 
end, reflect and return with the delay to the lower end. Influence of this effect has not been studied yet 
and as shown below it reveals itself in the quantized character of the bit motion with the time quantum 
which is equaled the wave passage time from one end of the DC to another and reverse. 

In this paper, on the basis of taking into account non-linear frictional interaction of a bit and 
broken rock and influence of incident wave delay effects the problem about analysis of self-excitation 
of wave and vibrational twisting motions in a vertical deep DC is stated and solved. 

 
STATEMENT OF THE PROBLEM 

For an extended analysis of mechanism of the DC torsion auto-oscillation generation, assume 
that the system can be simulated as a wave torsional pendulum (Fig. 1). Consider the case of 
stationary rotation of the DC top end with constant velocity ω . Introduce inertial coordinate system 
OXYZ with its origin at the bit mass center and axis OZ  in line with the DC axis, as well as the 
coordinate system Oxyz  rotating together with the DC top end. 

Then the angle of the bit rotation relative to system OXYZ  is ( )0ϕω +t , where tω  is the angle 
of the DC top end rotation; t is the time; ( )zϕϕ =  is the angle of the DC element elastic twist 
relative to the Oxyz  system. 

The equation of elastic oscillation of the torsional pendulum can be represented in the form of 
d’Alembert’s principle   

 
0=++ elfrin MMM                                                          (1) 

 
Here ( )ϕinin MM =  is the moment of inertia forces acting on the bit; ( )ϕω += frfr MM  

the moment of the friction forces formed between the bit and the broken rock; ( )ϕelel MM =  the 
moment of elastic forces acting on the bit at the DC twist; the dots above ϕ  denote differentiation 

with respect to time t . Value inM  is calculated through the formula  
 

ϕ⋅−= JM in ,                                                                   (2) 
 

where J  is the bit inertia moment. 
Moment elM  is determined by the equality   
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where G  is the DC material elasticity module in shear; zI the DC cross-section area inertia moment.  

The question about the frM  determining is more complicated. The models of the frM  
dependence on the rotary velocity ϕω +  of the bit relative to the rock medium are constructed in 
accordance with the tribological properties of rubbing materials and their friction interaction 
conditions. The most commonly encounted relationships are represented by the Coulomb friction law. 
In its diagram the vertical segment determines the static friction moment frM st , it is realized in the 

absence of sliding between bodies. Its limit value is equal to dynamic moment frM dyn , which occurs in 
the bit rotation and remains constant for any value of the relative angular velocity ϕω + . 

The friction force moment model with nonlinear dynamic moment is also widespread. Its feature 
is that the dynamic moment frM dyn  is less than the limit static moment frM st . It should be recorded 
that the stick-slip effect connected with stoppings of the bit rotation relative to inertial coordinate 
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system OXYZ  is inherent in both these models. Its mathematical explanation is associated with the 
presence of non -linearities in the frM  expression which cannot be linearized.  

If lubricating liquid is between the rubbing bodies the function ( )ϕω +frM  can gain the form 
shown in Fig. 2,a. It has only segments of dynamic interaction. If conditions of dry friction are 
realized the frM  function has also the segment of static friction (Fig. 2,b). 

 
 
 
 
 
 
 
 
 
 
 
                                  a)                                                                                     b) 
 
 
 
Rotary dynamics of a bit hanged at the end of a long drill column possesses specificities typical 

of waveguide systems. As a disturbance applied to its one end attains other end in a finite time 
interval, one is forced to take into consideration the disturbance delay. Indeed, if for example the DC 
is manufactured from steel then the velocities of longitudinal and transversal waves expressed through 
the elasticity moduli E , G  and density ρ  are equal to 5100/ ≈= ρα E m/s, 

3200/ ≈= ρβ G m/s, correspondingly. So if the DC length 6500=L m the torsional disturbance 
applied to one of its ends reaches another one and returns back in 4s only. 

For this reason the DC torsion oscillation should be studied on the basis of the wave equation  
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where G  is the DC material elasticity module in shear; ρ  the material density; zI the DC cross-
section area inertia moment. 

After substitution ρβ /G=  this equation is converted to the standard form  
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It has the d’Alembert solution  

( ) ( ) ( )tzgtzftz ββϕ ++−=, ,                                            (6) 
 

where ( )tzf β− , ( )tzg β+  are the arbitrary continuous functions. The first of them determines the 
wave propagating in the direction of the Oz  axis and the reverse is true for the second one. As the 
waves are not dispersive they propagate without varying their profile, resulting in essential 
simplification of the problem solving.  

Indeed, in this case the functions, ( )tzf β− , ( )tzg β+  are determined only by the initial 
conditions  

 
( ) ( ) ( ) ( )zgzgzfzf 00 0,0 =+=− ,                                       (7) 

 
and boundary conditions  
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Fig. 2. Friction moment functions. 
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where F  is the non-linear differential operator determining the bit motion.  

Using equation (1) of the drill column bit equilibrium, one gains the constitutive differential 
equation of the wave pendulum vibration with delay argument 
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In this equation J  is the bit inertia moment. Moment frM  was chosen as shown in Fig.2,b. 
Equation (10) is integrated numerically at a constant angular velocity ω  and prescribed initial 

conditions, ( ) ( ) ( ) ( )0
22

0
11 0,0 qqqq == . The found solutions allow determining the drill regimes 

accompanied by the DC torsion oscillation self-excitation, to construct their modes and to select the 
drill conditions excluding the system auto-oscillation.  

The stated problem belongs to the case of stationary rotation, when const=ω . But its 
formulation can be easily extended for non-stationary cases of the DC rotation connected with the 
starting and braking regimes. 

 
ANALYSIS OF THE RESULTS 

Application of the wave torsion pendulum model for investigation of drill column vibration self-
excitation permitted not only to reflect general regularities of limit cycle birth bifurcations, 
established on the basis of simplified 1 DOF oscillator model, but also to find radically new feature 
unique only to wave systems. It is associated with formation of the so-called quantized time with the 
resulting effect of constant angular velocity staying during time segment τ∆ , which is equal to the 
time duration of the torsion wave passing the path from the bit to the upper end and backward 

τ∆ β/2L=     .        (10) 
Fig. 3,a presents ϕ  as a function of t  in the segment st 130124 ≤≤ , constructed by the way 

of equation (9) integration with the use of the Runge-Kutta method. It can be seen that the bit 
vibrations have relaxational character. 

Initial conditions, ( ) ( ) 00,00 == ff  , were assumed and integration step of time 

measured t∆ s610474155.6 −⋅= . In doing so the system parameters were chosen to be 

,10077.8 10 PaG ⋅=  ,1012.3 45 mI z
−⋅=  21.3 mkgJ ⋅= ; the rotation velocity srad /17=ω . It 

should be noted, that the periodical oscillations with the period sT 275.1≈  are set very rapidly and 

function ( )tϕ  has the step-wise shape in the chosen scale, in spite of the function ( )ϕfrM  
smoothness. The attempts to integrate equation (9) with other initial conditions led to the same results 
indicating to soft character of the oscillation self-excitation. 

The outline of function ( )tϕ  in Fig. 3,b testifies that the bit oscillations proceed with jerks 
accompanied by large acceleration at transfer from one angular velocity level to another one. 
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                                         a)                                                                                b) 
 
 
 
 
 
 

CONCLUSIONS 
The problem of analysis of limit cycle birth bifurcations in the torsion wave models of 

superdeep drill columns is set up. The constitutive differential equation with delay argument is 
constructed. Analysis of its solutions permitted to establish the following features of the drill column 
torsion oscillation self-excitation: 

1. The limit cycles of the torsion wave pendulum do not depend on initial conditions, so 
the self-excitation has the soft character. 

2. The self-excited oscillations proceed in the manner of quatized time. The time 
quantum duration equals the time of the torsion wave propagation through the column doubled 
length. 

3. The auto-oscillations prevail at low values of the DC angular velocity. 
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Fig. 3. Self-excitation of torsional vibrations: 
a) angle of elastic torsion; 
b) angular velocity. 
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