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A problem of passing the resonance frequency zone at start and run-out 
of vibrational machine with inertial exciter of oscillations is considered 
with application of method of direct separation of motions in conjunction 
with method of sequential approximation. Expression for retarding 
moment and equation of semi slow oscillations of so called “internal” 
pendulum has been obtained. 

 
INTRODUCTION  

The problem of passing through resonance frequences zone arises in start and run-out periods 
of vibration machines operation. In particular, sticking of rotor rotating frequency close by one of its 
own frequencies may occur at starting, that is, Zommerfield’s effect may develop. Passing through 
resonance zone in these cases involves considerable oscillations in the system and, correspondingly, 
dynamic loads on the construction elements. Besides, up rated engine power is needed. 

Zommerfield’s effect is considered with the application of various methods in a number of 
works (books [1-6], paper [7], see also works [8-11]). Rigorous investigation of Zommerfield’s effect 
by Poincare’s method was carried out in work [1]. Book [4] shows that theoretical explanation and 
numerical description of the known appropriateness of Zommerfield’s effect may be easily obtained 
by means of the method of direct separation of motions. In [7] the problem for the case of oscillating 
system with one degree of freedom is solved by the method of successive approximation coupled with 
the method of direct separation of motions. It is shown that such approach, rougher than in known 
works, allows to comparatively easier describe the system behavior in both pre- and post- resonance 
zones of rotor rotation frequencies. Such approach is used in the offered work for systems whose 
oscillating part is a rigid body with plane-parallel motion. 
 
1. SCHEME OF THE SYSTEM AND MOTION EQUATIONS 

Carrying body (vibrating member of machine) is considered to be a rigid body capable to 
execute small plane-parallel oscillations, that is, it has, in general case, three degrees of freedom (Fig. 
1). It is linked with stationary base by the system of elastic and damping elements. An unbalanced 
rotor, set to rotation by asynchronous electric motor or by d.c. current motor, is mounted on the 
carrying body. 

 
Fig. 1 Scheme of oscillatory system  

                                                
1 Corresponding author. Email m_yaroshevich@mail.ru 
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Let x and y be masses C centre coordinates in the rest system xOy and 1,ϕ ϕ  be 
correspondingly angles of rotation of carrying body and rotor exciter. Differential equations of motion 
of the system under consideration are presented as 

 
( )1 1 1 1 1 1( ) ( ) sin cos sinI L R m x y hϕ ϕ ϕ ε ϕ ϕ ϕ ϕ= − + + −     ,                     (1) 

( )2
1 1 1 1sin cosx xMx x c x mβ ε ϕ ϕ ϕ ϕ+ + = +   ,  ( )2

1 1 1 1cos siny yMy yс y mβ ε ϕ ϕ ϕ ϕ+ + = −   , 

( )2
1 1 1 1sin cosJс m hϕ ϕϕ β ϕ ϕ ε ϕ ϕ ϕ ϕ+ + = − +    ,                       (2) 

 
where M is total mass of the system; J  is a moment of inertia in respect to the axes passing through 
the masses centre; I is a total moment of vibro exciter rotor inertia in respect to its axis of rotation; 

,m ε  are, correspondingly, vibro exciter mass and its eccentricity; , ,x y ϕβ β β  are coefficients of 

viscous resistance, ,x yc c  are longitudinal rigidities of vertical and horizontal springs; 
2 2; ,y xc c l c b l bϕ = +  are parameters determining attaching point of the upper spring ends in respect 

to the masses centre of carrying body; h  is the distance from centre the masses of carrying body to 
exciter rotor axis; 1 1( ), ( )L Rϕ ϕ   are correspondingly, motor torque and a moment of forces resistant 
to rotation. 
 
2. THE FIRST APPROXIMATION, PECULIARITIES OF ZOMMERFIELD’S EFFECT 
MANIFESTATION IN THE SYSTEM 

To study motion of unbalanced excites rotor at passing through the resonance zone the method 
of direct separation of motions is used [4], according to the main precondition of the method let us 
assume that motions under consideration may be presented in the form: 

( )1 , ,t t tϕ ω ψ ω= + ( ),x x t tω= , ( ),y y t tω= , ( ),t tϕ ϕ ω=  where ( )tω ω=  is slow and ψ  
and , ,x y ϕ  are fast time functions, they are 2π - periodical at tτ ω= and they value average equals 
zero; it is also assumed that ψ ω<< . 

Such presentation of equations (1), (2) at studying the vibroexciter rotor passing through 
resonance zone, when Zommerfield’s effect is taking place and, correspondingly, the frequency of 
rotor rotation 1ϕ  changes slowly enough seems to be rightful.  

In the capacity of the first approximation let us assume (1) 0,ψ ψ= = (1)
1 1 .tϕ ϕ ω= =  Then we 

come to the equation of slow motions of rotor exciter at passing through resonance zone in the form  
 

( ) ( ) ( )I L R Vω ω ω ω= − + .     (3) 

Here 2
2 2 2( ) ( ) [ ]yx

x y

n nn hV m
JMB MB B

ϕ

ϕ

ω εω= − + +                                                                                  (4) 

is so called vibrational moment, 
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At obtaining this system linearization of expressions 1 1( ), ( )L Rϕ ϕ , as in [1], close by value 

1ϕ ω=  (where ω  is frequency of rotor “sticking”) is performed, 
1

( ) 0d L Rk
d ϕ ωϕ =

−
= − >





 being a 

total damping coefficient. 
All components in formula (4) are negative. Thus, as it is for the system with one oscillatory 

degree of freedom, vibrational moment is always retarding, i.e., it is an additional load upon the 
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engine rotor, its dependency on frequency is of resonance character, and, therefore, its retarding effect 
manifests itself in comparatively narrow frequency range. 

Rotor rotational speed in stationary regimes is determined from equation 
( ) ( ) ( ).L R Vω ω ω= −  Solutions of this equation are in conformity with cross-points of plots ( )L ω  

and ( ) ( ),sM R Vω ω= −  where curves L correspond to static characteristics of the motor (Fig. 2). 
According to the figure, the presence of several resonance peaks of the vibrational moment curve may 
lead to the emergence of additional cross-points of curves sM  and L in comparison with the system 
with rectilinear oscillations of the working head. Thus, several regimes of motion, close to uniform 
rotation of the rotor and having different average angular velocities are possible in the system. 
Solution 1 1pω <  under conditions of the picture is pre resonance 2 3,ω ω  ( 1 2 3 3,p pω ω< < ) is 
inter resonance, 4 3pω >  is post resonance and 5 3pω >>  is a post resonance. Inequality 

( ) ( ) ( )R V Lω ω ω∗ ∗ ∗′ ′ ′− >  is a condition of stability of the regime under consideration [4]. Thus, 

solution 1ω , 3ω , 5ω  and (1)
5ω  are stable and 2ω , 4ω , corresponding to discending branches of the 

curve sM  are unstable. Characteristic L corresponds to “sticking” of the system with motor of 
deficient power close to resonance at frequencies 1ω  or 3ω  (motor, on coming to this regime in the 
process of acceleration would not be able to overcome the resonance peak and reach nominal angular 
velocity 5ω ) and characteristic 1L  of more powerful motor corresponds to coming to post resonance 

regime of motion with velocity (1)
5ω . Hence, as it is in the system with one oscillatory degree of 

freedom, only two basically different regimes of motion take place: “sticking” of the system in 
resonance zone and a post resonance regime, or if motor power is sufficient for acceleration, the 
system, as a rule, after some retardation, rapidly (“by a leap”) comes to the second stationary regime, 
corresponding to angular velocity 5ω . 

  
Fig. 2 Stationary regimes of rotor of oscillations 

rotation 
Fig. 3 Dependency of vibrational moment on 

frequency and resistance coefficient β  
 
Expression (4) for vibrational moment may be considered as the sum 

, ,
( )

q x y
qV v

ϕ
ω

=
= ∑ , 

summands of which 2
2( ) q

q
q q

n
v m

M B
εω= − , are “particular” vibrational moments characterizing the 

affect of oscillations exciter upon rotor rotation, corresponding to q generalized coordinate. (Here 

q x= , if q y= , то qM M= ; if q ϕ= , то 
2

2qM M
h
ρ

= ).  

If should, be noted that expression for “particular” vibrational moment may be presented in the 

form 
1 sin ,
2q q qv Fa γ=  where 2F mε ω=  is an amplitude of driving force developed by exciter 
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rotor at stationary carrying body, 

( )22 21 4
q

q q q

ma
M n

ε

λ
=

− +
 is an amplitude of platform 

oscillations, corresponding to q  oscillatory coordinate. 
Both particular and general vibrational moments characterize vibrational link between carrying 

body oscillatory motions and rotating motions of vibro exciter rotor. 
According to formula (4) the retarding effect of vibration at starting is the less, the stronger the 

resistance of the system in coordinates , ,x y ϕ . Fig.3 shows the dependency of vibrational moment 
on viscous resistance coefficient β  ( /1,1 / 0,05x y ϕβ β β β= = = ) at passing through the 
resonance zone. 

It should be emphasized that the value of maximal retarding vibrational moment sufficiently 
depends, according to (4), on the frequencies of natural oscillations of the system; decreasing natural 
frequency we may decrease the retarding moment and, in consequence, decrease resonance 
amplitudes of oscillations as well as the power of the engine necessary for passing through the 
resonance zone. Taking into account dependency of vibrational moment on natural frequencies we 
may assume that the most significant retarding effect is exerted by a particular vibrational moment 
vϕ , whose frequency is pϕ , as a rule, the highest for the range of machines under consideration. 
Thus, for instance, in the case of damper application for decreasing the level of oscillations at passing 
through the resonance the mounting of only one damper of rotational oscillations will be enough.  

A particular case of the system when the axle of unbalanced rotor passes through the centre of-
the carrying body masses has been considered. The exciter axle and attaching chamber spring points 
are in the same plane ( 0b ≈ ). Thus, carrying body performs only transitional motion in plane xOy . 

 
3. SECOND APPROXIMATION. SEMISLOW OSCILLATIONS OF EXCITER ROTOR 

For further analysis of rotor motion at passing through the resonance zone we shall use methods 
offered for investigation of the simplest system in work [7]. We assume (2)

1 1 tϕ ϕ ω ψ= = + , 
(1) (2)x x x= + , (1) (2)y y y= + , (1) (2)ϕ ϕ ϕ= + . Then we come to the following system of equations 

for ψ  and (2) (2) (2), ,x y ϕ : 
(1) (2) (1) (2) (1) (2)

2
(1) (1) (1)

0

{ ( ) sin( ) ( ) cos( )}

[( )sin cos ] ,
2

I k m x x h t y y t

m x h t y t d
π

ψ ψ ε ϕ ϕ ω ψ ω ψ

εω ϕ ω ω τ
π

 + = − + − + + + + + − 

− − +∫

      

 

 

(2) (2) (2) 2 2[( )sin( ) ( ) cos( ) cos ]x xMx x c x m t t tβ ε ω ψ ω ψ ω ψ ω ψ ω ω+ + = + + + + + −    , 
(2) (2) (2) 2 2[( ) cos( ) ( ) sin( ) sin ]y yMy y c y m t t tβ ε ω ψ ω ψ ω ψ ω ψ ω ω+ + = + + + + + +    , 

(2) (2) (2) 2 2[( )sin( ) ( ) cos( ) cos ]J c m h t t tϕ ϕϕ β ϕ ϕ ε ω ψ ω ψ ω ψ ω ψ ω ω+ + = + + + + + −     .  (5) 
 

For the solution of system (5) we shall again use the method of direct separation of motions 
assuming that ψ γ= Ψ + , (2)

xx X δ= + , (2)
yy Y δ= + , (2)

ϕϕ δ= Φ + , where Ψ , X , Y , Φ  are 

slow and γ , xδ , yδ  ϕδ -fast 2π -periodic in fast time τ  components with average zero values. 
In the long run we come to the equations of semi slow (or semi fast) oscillations of exciter rotor 

angular velocity with respect to uniform rotation (equation of “internal pendulum” oscillations) in the 
form obtained in [7] for the system with rectilinear oscillations of carrying body  

 
2

12 sin sin 0
2

n B Ψ
Ψ + Ψ + Ψ −Ρ =  ,    (6) 

here 12 /n k I= ,  x yB b b bϕ= + + ,   2 2 2 2
x y

P
ϕ

ρ ρ ρ= + + , 
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2 22 2

2 2 2 2 4
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2 ( ) 4
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x x
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MI p n

ωεω
ω ω
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− +
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22 2
2

2 2 2 2 4
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( ) 4
x
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x x
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MI p n

ωεωρ
ω ω
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2 22 2

2 2 2 2 4
( )

2 ( ) 4
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y
y y
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MI p n

ωεω
ω ω

−
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22 2
2

2 2 2 2 4

2( )
( ) 4
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y y

nm
MI p n

ωεωρ
ω ω
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− +

, 

2 22 2 2

2 2 2 2 4
( )

2 ( ) 4
pm hb

JI p n
ϕ

ϕ
ϕ ϕ

ωεω
ω ω

−
=

− +
,     

22 2 2
2

2 2 2 2 4

2( )
( ) 4

nm h
JI p n

ϕ
ϕ

ϕ ϕ

ωεωρ
ω ω

=
− +

.           (7) 

 
In the case of consideration of small oscillations, having linearized equation (6) we may present 

it in classical form 12 0n βΨ + Ψ+ Ψ =  . 

At satisfaction of condition 2ω ω<<  frequency of rotor rotational speed ω  changes slowly 

and value q B=  is frequency of small free oscillations of the linearized model of internal 
pendulum (without account of the force of resistance). 

Conclusions, made in work [7], about the validity of equation (6) for the system with one 
oscillatory degree of freedom apply to the cases with two or three degrees of freedom as well.  

It follows from the analysis of equation (6) that at B>0 the solution 1 0,Ψ = Ψ =  
corresponding to “lower” position of internal pendulum, is stable and at 0B <  the solution 

2 πΨ = Ψ = corresponding to “upper” position is stable. Therefore, solution 1 0Ψ =  is stable in pre 
resonance zone of variations of frequency min ,pω <  where pmin , ,x yp p pϕ-is the smallest of values -

and in post resonance zone solution 2 0Ψ =  is stable. So, as in the case of oscillatory system with one 
degree of freedom, we may say that the internal pendulum turns over in the post resonance zone of 
frequencies maxpω > . The fact that in intermediate zone minp <ω < maxp  pendulum may have time 
to turn over several times is a sufficient distinction of the system under consideration. In other words, 
complicated behavior of the system may be expected in the mentioned zone. It is natural, that such 
effect may take place in the system with any number of oscillatory degrees of freedom. 

The obtained results are corroborated by numerical experiment. Fig.3 shows “sticking” of the 
system I pre-and inter resonance zones with motor of deficient power. Fig.4 shows the effect of 
emergence of semi slow oscillations of exciter rotor angular velocity close to the resonance zone in 
the case of rotor “sticking” for the system with one and two degrees of oscillatory freedom. 

  

  
Fig. 4 Fig. 5 

Fig. 4. Dependency of the vibro exciter rotor rotation frequency time: 1- rotor “sticking” 
in pre resonance zone, 2- rotor “sticking” in inter resonance zone, 3- acceleration with 
coming to post resonance regime 

Fig. 5. Change of vibroexciter rotor rotation frequency in case of “sticking” in the 
resonance zone: 1- system with one; 2- system with two oscillatory degrees of freedom. 
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It should be noted that simulation was performed with account of dynamic response of 
asynchronous motor. According to the presented plots the ratio of frequencies of semi slow free 
oscillations of exciter rotor velocity for such oscillatory systems makes up 1.4, as it should be 
according to the formula ( )q B= . 
 
CONCLUSIONS 

The work deals with the problem of passing the resonance frequency zone at start and run-out 
of vibrational machine with inertial exciter of oscillations. The case have been studied when 
oscillatory part of the system is linear and is a plane-parallely oscillating rigid body. As in the 
simplest case of the system with one oscillatory degree of freedom, the problem is comparatively 
simply solved by application of the method of direct separation of motions coupled with the method 
of successive approximations. 

Expression for the retarding vibrational moment which must be overcome by the motor at 
passing through the resonance zone consists in the considered case with three components, 
corresponding to each of three frequencies of free oscillations of the body. These components are of 
pronouncedly manifested resonance character. Accordingly, the obtained expression for the square of 
the frequency of semi slow oscillations of the internal pendulum (rotor “swinging”) also consists of 
tree components. As in the simplest system, this pendulum as if turns over at passing through 
resonance frequency: its “lower” position is stable in pre resonance zone and its “upper” position is 
stable in post resonance zone. Stable positions may alternate in the interval between the smallest and 
the greatest resonance frequencies. A complicated behavior of the system may be expected in this 
interval. Absence of fast oscillations of rotor with doubled frequency of rotation in the case of 
symmetry of the oscillatory part of the system is a peculiar feature of the considered system. 
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