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Two-mechanism models (or, generally, multi-mechanism models) are a 
useful tool for modelling of complex material behaviour, in particular for 
modelling of interaction of creep and plasticity. As we will demonstrate, 
pure creep can also be modelled by two-mechanism models. 

 
 

INTRODUCTION  
1) Two-mechanism (or, generally, multi-mechanism) models have been studied and applied for 

the last twenty years. Their characteristic trait is the additive decomposition of the inelastic (i.e., 
plastic or visco-plastic, e.g.) strain into two (or multi) parts (sometimes called ``mechanisms'') in the 
case of small deformations. In comparison with rheological models (cf. [1], e.g.), there is an 
interaction between these mechanisms (see Figure 1). This interaction allows to describe important 
observable effects, but, it requires additional efforts in modelling and simulation. Each inelastic strain 
part may exhibit plastic, creep or general inelastic behaviour. The (thermo-)elastic strain is not 
regarded as an own mechanism. Each mechanism has its own internal variables with corresponding 
evolution equations. Moreover, each mechanism may have an own yield criterion, or, there may be 
common yield criteria for several mechanisms. Thus, in the case of two mechanisms, there are 
possible models of the type 2M1C and 2M2C. That means two mechanisms with one or two yield 
criteria. A mechanism without yield criterion like creep can be formally treated as a mechanism with 
its own criterion with zero yield stress. 

If the inelastic strain is seen as one mechanism (as it was historically first), one refers to a 
“unified model” (or “Chaboche” model) (cf. the survey [2] and the references cited therein). (That 
means plastic and viscous components are considered together in the same variable.) As explained in 
[3] and [4], there are experimentally observable effects (inverse strain-rate sensibility, e.g.) which can 
be qualitatively correctly described by the two-mechanism approach. 

 

 
Fig. 1 Scheme of a two-mechanism model. The two inelastic mechanisms 1 and 2 

have their own evolution equations. But, they are not independent from each other. 
The thermoelastic strain ε te

                                                             
1 Corresponding author: mwolff@math.uni-bremen.de 

 is usually not regarded as a mechanism 
 

2) For modelling and applications of multi-mechanism models we refer to [3], [4], [5], [6], [2], 
[7], [8], [9], [10] and the references therein. 
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3) Two-mechanism models have been applied in modelling of cyclic plasticity (cf. [7], [8],[10], 
e.g.) and of steel behaviour (cf. [11] and the references therein). Moreover, there is a large variety of 
papers dealing with complex material behavior of metals, soils, composites, biological tissues etc. in 
which the inelastic strain is decomposed into several parts. But, as a rule, multi-mechanism models 
are not directly addressed. In [9], some references can be found. 

4) Creep is a complex phenomenon of material behaviour. Thus, there are several approaches of 
modelling (cf. [12]). To our knowledge, creep (alone) is not modelled in the framework of 2M 
models. In this note, we propose first steps for doing so. 

 
1.  SOME CLASSES OF TWO-MECHANISM MODELS  

In short we provide important basic relations for 2M models. Due to the limitation of this 
extended abstract, we only deal with 2M2C models. Besides, these models can well describe possible 
interactions of plasticity and creep as well as creep alone.  

 
1.1 General assertions 

In the framework of small deformations, the balance equation of momentum and energy as well 
as the Clausius-Duhem inequality are given by 

 
q =      (1) 

      (2) 
 
The relations (1) and (2) have to be fulfilled in the space-time domain Ω×]0, T[. The notation is 

standard: ρ - density in the reference configuration, that means for t = 0, u - displacement vector, ε - 
linearized Green strain tensor, θ - absolute temperature, σ - Cauchy stress tensor, f - volume density 
of external forces, e - mass density of the internal energy, q - heat-flux density vector, r - volume 
density of heat supply, ψ - mass density of free (or Helmholtz) energy, η - mass density of entropy. 
The time derivative is denoted by a dot. α:β is the scalar product of the tensors α and β, q⋅p is the 
scalar product of the vectors p and q. We note the well-known relations 

 
   (3) 

 
In the general case of inelastic material behaviour, the full strain ε is split up via 
 

      (4) 
 

(ε te - thermoelastic strain, ε in - inelastic strain). Usually, the inelastic strain is assumed to be traceless, 
i.e. 

       (5) 
 

The accumulated inelastic strain is defined by 
 

    (6) 
 
We propose for the free energy ψ the split 
 

      (7) 
 

The thermoelastic part ψ te

 

 is standard (cf. [9] for details) and leads to the usual material law 
connecting stress and thermoelastic strain: 

    (8) 
 

µ > 0 - shear modulus, K > 0 - compression modulus, α - linear heat-dilatation coefficient, θ0 – initial 
temperature, i.e. t = 0, I – unity tensor, ε te* - deviator of ε te
 

, defined (in 3d case) by 
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     (9) 
 

We assume that the inelastic part ψ in
 

 of ψ has the general form 

     (10) 
 

ξ = (ξ1, ..., ξm) (ξ - scalars or tensors) represent the internal variables. Further on, these variables will 
be chosen in accordance with concrete models under consideration. In the case of damage, the 
thermoelastic part ψ te

 

 of the free energy may depend on internal variables too (cf. [12], e.g.). Internal 
variables have to fulfil evolution equations which are usually ordinary differential equations (ODE) 
with respect to the time t. As a rule, one poses zero initial conditions, i.e. 

     (11) 
 

Using standard arguments of thermodynamics (cf. [12], [13], e.g.) and assuming Fourier's heat-
conduction law, from (2) one obtains the remaining dissipation inequality: 
 

    (12) 

 
If (12) is fulfilled for arbitrarily chosen sets of variables, then the model under consideration is 
thermodynamically consistent. 

Until now, the relations developed above are addressed to one-mechanism models (“Chaboche” 
models) as well as to two-mechanism models. 

In the theory of 2M models the following decomposition is crucial: 
 

      (13) 
 

A1, A2
 

 are positive real numbers. As usual, the inelastic strains are trace-less: 

      (14) 
 

Remark 1. (i) The parameters A1 and A2 open opportunities for further extensions and special 
applications. We refer to [5]. In many applications, A1 and A2

(ii) In case of n mechanisms, instead of (13), one has the split 

 are equal to 1, but, they can depend on 
further quantities. For instance, they can constitute phase fraction in complex materials (steel, shape 
memory alloys, e.g.). In this sense, here is a bridge from the macro to the meso (or micro) level of 
modelling. 

 
     (15) 

 
with Aj 

For both ε
> 0. In this note, we preferably deal with 2M models. 

j
 

 we introduce separate accumulations 

     (16) 
 

Note, that sin (as defined in (6)) is not the sum of s1 and s2

We introduce the local stresses σ
. 

1, σ2
 

 via 

     (17) 
 

To develop further the theory, 2M1C and 2M2C models are separately considered. As 
mentioned above, here, we only deal with 2M2C models. 

 
1.2 Two-mechanism models with two yield criteria 
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To focus, here, we do not consider isotropic hardening in the case of (visco-)plastic 
mechanisms. Thus, the forthcoming explanations will become shorter. However, the main idea of the 
two-mechanism approach (mutual coupling of mechanisms) can be made clear. We refer to [9] and 
[10] for detailed descriptions. 

The ansatz for the inelastic part of the free energy in (10) will be specialised in the following 
way: Assuming the internal variables to be given ξ = (α1, α2

 
), we suppose 

  (18) 
 

The tensorial symmetric internal variables of strain type α1 and α2 are related to kinematic hardening 
and associated with the mechanisms ε1 and ε2

Remark 2. For “frozen” temperature, the inelastic free energy ψ
, respectively. 

in in (18) is a convex function with 
respect to α1 and α2
 

, if there hold (for all admissible θ) the conditions 

    (19) 
 

Clearly, the quadratic form in (18) is also positive semi-definite. 
The definition of the backstresses X1 and X2 associated with the mechanisms ε1 and ε2

 

, 
respectively, and (18) give 

 (20) 
 

The relations (12), (13), (17) and (18) imply the following remaining inequality 
 

  (21) 
 

Based on the von Mises stress, we define the quantities 
 

     (22) 
 

(σvM
 

(σ) - von Mises equivalent stress of σ) and the two yield functions 

    (23) 
 

(R0j is the yield stress of the jth

 

 mechanism in case of plasticity. To focus, we do not consider isotropic 
hardening.) and finally, 

      (24) 

 
We assume evolution laws for the inelastic mechanisms ε1 and ε2

 

 in a common form for all 
inelastic mechanisms: 

       (25) 
 
The relations (16), (22), (24) and (25) yield 
 

        (26) 
 

To distinguish between plastic and creep behaviour, we define the inelastic multipliers λ j

Plastic mechanism: If the j

 in a 
suitable way. Clearly, both mechanisms can be of the same kind, but, they can differ, too. 

th mechanism is plastic, the (plastic) multiplier λ j 
 

≥ 0 has to fulfil 

    (27) 
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    (28) 
 

As usual in plasticity, λ j can be expressed via loading conditions (cf. [13], e.g.). In numerical 
schemes, approximations of λ j

Creep mechanism: If the j
 will be determined simultaneously with other quantities. 

th mechanism models creep, the multiplier λ j
 

 can be defined by 

     (29) 

 
aj > 0, mj > 0, kj generally depend on temperature θ, sj is the accumulation in accordance with (16). 
The drag stress Dj > 0 may be constant, or it may have an own evolution (cf. [2], e.g.). Via the 
exponent kj
 - k

 the stadia of creep can be distinguished: 
j 

 - k
< 0 - primary creep, 

j 
 - k

= 0 - secondary creep, 
j 

Clearly, in the case of creep there is no yield stress. Formally, one can use a yield function as in (23) 
without R

> 0 - tertiary one. 

0j
Note that viscoplastic mechanisms can be dealt with analogously. There remain the evolution 

equations for the internal variables α

.  

j
 

. We make a common proposal for plastic and creep behaviour: 

     (30) 
 

This proposal extends the wide-spread approach which is covered by b12= b21= 0 (cf. [2], e.g.). To 
save thermodynamic consistency, we require that the (generally temperature dependent) matrix b is 
positive semi-definite. However, the matrix b is not necessarily symmetric. This gives more 
possibilities for modelling. We demonstrate this in short. For constant cij

 

, (20) and (30) imply the 
following generalised Armstrong-Frederick relations (cf. [2], e.g.): 

 (31) 

  (32) 
 

If c12 = 0, b12 = 0, b11 > 0, and b22 > 0, the backstress X1 has an influence on the evolution of X2

 

, but 
not vice versa. Under the assumption “matrix b positive semi-definit”, the above model is 
thermodynamically consistent for plastic and creep mechanisms (cf. (21)).   

CONCLUSIONS 
In this extended abstract, only some basic items of 2M models could be sketched. In our 

conference contribution, we intend to deal with: 
 - further approaches for evolution equations, 
 - thermodynamic consistency in non-standard cases, 
 - 3M models, 
 - problems of parameter optimisation, 
 - formulation of arising mathematical problems. 
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