СЕКЦІЯ 13. ІНТЕГРОВАНІ ХІМІЧНІ ТЕХНОЛОГІЇ У ХІМІЧНІЙ ТЕХНІЦІ ТА ЕКОЛОГІЇ

МАССЫ ПОЛИКАПРОАМИДА ПО ВЯЗКОСТИ РАСПЛАВА ПОЛИМЕРА

¹Авраменко В.Л., ²Карими Язди Амир Эхсан, ¹Близнюк А.В. ¹Национальный технический университет «Харьковский политехнический институт», г. Харьков ²Промышленная компания «Самед»г. Мешхед, Иран

Рассмотрение течения реальных полимерных систем свидетельствует о том, что вязкость, которая характеризует большее или меньшее сопротивление сдвигу слоев относительно друг друга не является величиной постоянной, а зависит от значения скорости сдвига или приложенного напряжения.

В большинстве расплавов полимеров вязкость уменьшается с увеличением скорости сдвига или напряжения. Зависимость вязкости реальных расплавов полимеров от скорости сдвига описывается следующим уравнением: $\eta = \kappa \gamma^{n-1}$ (1)

Однако, при достаточно низких скоростях сдвига вязкость полимеров носит ньютоновский характер (вязкость при нулевом сдвиге (η^0)). С учетом этого уравнение (1) можно записать как:

$$\eta = \eta_0 \left[\ \lambda \gamma \right]^{n-1}$$
 , где λ — константа

Согласно динамической теории полимеров η_0 пропорционально молекулярной массе полимера в кубе: $\eta_0 \approx M^3$

В тоже время для высокоструктурированных систем (полимеры) справедливо соотношение

$$\eta_0$$
 = $M_{\omega}^{\ \alpha}$, где α – константа, равная 3,14-3,4

Исходя из вышесказанного, зависимость молекулярной массы от η_0 для полидисперсных полимеров, можно представить

 $\eta_{0\,\text{=}}\,\kappa M_{\omega}$, где $M_{\omega}\,$ - среднемассовая молекулярная масса.

С помощью этой зависимости была определена молекулярная масса поликапроамида, полученного анионной полимеризацией ϵ -капролактама при 170 ± 5^{0} С (полимеризация in situ), которая показала хорошее совпадение полученных результатов с известными значениями молекулярной массы поликапроамида

Литература:

1.Ueda K.Stabilization of high moleculas weight nylon6 synthesized by anionic polymerization of caprolactam Polym J.1996, Vol 28 №5, p 1084-1089.