УТИЛИЗАЦИЯ ТЕПЛОТЫ ВОЗДУХА ПОСЛЕ ПРЕДПРИЯТИЙ ОБЩЕСТВЕННОГО ПИТАНИЯ

Зайцев Д.В., Олевский Г.

Одесский национальный политехнический университет, г. Одесса

Поскольку воздух, выбрасываемый предприятием общественного питания Одесского национального политехнического университета, содержит большое количество жиров и других характерных примесей, необходима его очистка. Для решения этой проблемы в качестве теплообменника-утилизатора предлагается использовать скрубберы, которые менее склонны к загрязнению, по сравнению с другими типами теплообменников. Полый и насадочный скрубберы (рис. 1), схожие по строению – это колонны, вверху которых расположены форсунки, распыляющие воду. В полом скруббере воздух входит в нижний патрубок, проходит через распыляемую воду, охлаждается, очищается и затем удаляется через верхний патрубок. Внизу расположена труба для стекания шлама. Отличие насадочного скруббера состоит в том, что воздух, проходя через нижний патрубок, входит через насадку, благодаря которой значительно улучшается теплообмен. Насадочный скруббер улавливает 80 % тепла, а полый 30 %. Недостатком насадки является то, что вероятность загрязнения выше, т.к. загрязненный воздух проходит через намного более узкое сечение. Утилизация теплоты и использование ее для подогрева воздуха имеют несколько вариантов: утилизация теплоты с подогревом вентиляционного воздуха: после того как воздух очистился и охладился, шлам стекает в бак отстойник. Пленка жира на поверхности удаляется через выпускной клапан.

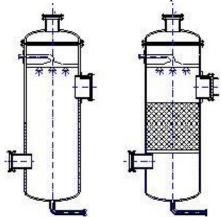


Рис. 1 — Полый и насадочный скрубберы

Тепло подогретой воды помощью змеевикового теплообменника передается вентиляционному воздуху подогревает И утилизация теплоты с помощью теплового насоса: здесь тепло от подогретой воды передается с помощью пластинчатого теплообменника на тепловой насос, и далее, через ребристый теплообменник тепло отдается на вентиляцию. Преимущество утилизации теплоты посредством теплового насоса состоит в том, что благодаря тепловому насосу можно полностью обеспечить необходимую температуру воздуха вентиляции, в то время как в первом варианте можно лишь частично (на несколько градусов)

подогреть воздух. По результатам расчета выбран насадочный скруббер, как более компактный и обеспечивающий лучшие условия теплопередачи. Тепловой насос NIBE 750 вода-вода рекомендуется для столовой площадью до 200 м^2 , с системой отопления до $70 \, ^{\circ}\text{C}$. В работе учтены также эколого-экономические преимущества от утилизации теплового потенциала выхлопного воздуха после предприятий общественного питания. Срок окупаемости – $5 \, \text{лет}$.

Литература:

1. Лебедев П.Д., Щукин А.А. Теплоиспользующие установки промышленных предприятий. – М.: Энергия, 1970. – 408 с. 2. Кичигин, М.А. Теплообменные аппараты и выпарные установки / М.А. Кичигин, Г.Н. Костенко. – М.–Л.: Госэнергоиздат, 1955. – 392 с. 3. Черепенников, И.А. Примеры теплового расчета теплообменника: метод. указания – Тамбов: ТИХМ, 1973. – 34 с. 4. Кулинченко, В.Р. Справочник по теплообменным расчетам / В.Р. Кулинченко. – К.: Техника, 1990. – 165